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ABSTRACT 

We treat very simple nerve net models for the sake of tractability, such that we obtain explicitly the behaviours of the 

models. This enables us to know how the behaviours of the models depend on the values of the system parameters and 

to know the possible information processing manners of neuron nets. The study is devoted in two parts first part treats 

the general equation of neural learning in a unified manner. Thus, perceprons learning, correlation learning for 

associative memory, automatic formation of signal or feature detectors etc, are studied in this common frame. The 

second part treats dynamics of neural excitation. Dynamics of neuron pools, of neural fields, and of a completion 

model are analysed. By combining the result of first and second parts, we can analyze self organizing neural systems: 

We analyze a model of formation of signal or feature detectors, and a model of topographic organization of nerve 

fields. 
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1. INTRODUCTION: 

 

The brain is a self organizing system adapting to the information structures of the environment. It is highly hierarchical 

and enormously complex system so that it is in general difficult to analyse its model. Here we present a mathematical 

approach of analyzing the brain functioning. We treat very simple nerve net models for the sake of tractability, such 

that we obtain explicitly the behaviours of the models. This enables us to know how the behaviours of the models 

depend on the values of the system parameters and to know the possible information processing manners of neuron 

nets. Since the biological systems are structurally stable, so the results obtained by using the simplified models are 

expected to be applicable, at least qualitatively, to more realistic and complex model as well. 

 

The study consist of three parts, summarizing and extending the results of Amari and Takeuchi (1978), Amari, Yoshida 

and Kanatani (1977), Kishimoto and Amari (1979). The first part treats the general equation of neural learning in a 

unified manner. Thus, perceptron learning, correlation learning for associative memory, automatic formation of signal 

or feature detectors, etc, are studied in this common frame. The second part treats dynamics of neural excitation. 

Dynamics of neuron pools, of neural fields, and of a completion model are analyzed. By combining the result of first 

and second parts, we can analyze self organizing neural systems. We analyze a model of formation of signal or feature 

detectors, and a model of topographic organization of nerve fields. A possible mechanism of formation of micro – 

regional structures is suggested. 

 

2. EQUATION OF NEURAL LEARNING: 

 

Modification of synaptic efficiency:  
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Let us consider a simple mathematical model of neurons (Fig.-1). The model neuron receives n inputs signals x1, x2 … 

xn and emits one output signals z. These signals take in general analog values between 0 and 1, representing the 

respective normalized pulse frequencies (they may take on two values 0 and 1). Let s1, s2, ……sn be the synaptic 

efficiencies or weights of inputs x1, x2, …... xn. Then neuron receives the weight sum � sixi of inputs, and the average 

membrane potential u (t) at time t of the neuron changes subject to the equation  

� hxs)t(u)t(u ii

.
−�+−=                                (2.1) 

where “ . ” denotes the time derivative 
dt

d
,  �  is a time constant of neural excitation and h is a threshold value, (-h) is 

the resting potentional. Since � is small, the potential quickly converges to  

 

     u = �sixi – h,                                             (2.2) 

 

for constant inputs. The neuron emits output pulses with frequency  

 

z = f (u),                                              (2.3) 

 

according to average membrane potentional u, where f is a monotonically non-decreasing function. The equation (2.2) 

and (2.3) give the input - output relations of the model neuron. 

 

The neuron modifies its synaptic weights si depending on the inputs xi, the output z, etc. In some cases, the neuron can 

make use of an extra signal y which plays the role of a teacher. In this case self –organization is called learning with 

teacher. The teacher signal is set identically equal to 0 in case of learning without teacher. 

 

We propose the following rule of synapse modification by generalizing Hebbian law: 

� ),t(x)t(cr)t(ss iii

.
+−=  i = 1, 2, 3, …..n ,                                                         (2.4) 

 

where c is a constant and r(t) is a function of the synaptic weights si inputs xi and the teacher signal y at time t is  

 

r(t) = r[ si(t), xi(t), y(t)] .                                            (2.5)  

 

Learning takes places only when r is not 0. We call r the reinforcement signal or learning signal. These are various 

kinds of neurons in the brain, so that different kinds of neurons may have different types of learning signal r. The 

nervous system probably combines neurons with different types of learning signal r, so that it realizes a variety of 

information processing. 

 

Where r is put equal to the output z  

 

r = z = f (� sixi –h) ,                                               (2.6) 

 

we have the Hebbien law without teacher.  

 

When,    r = y – z,                                  (2.7) 

 

i.e. r is equal to the difference between the output and the teacher signal, we have the perception type learning rule. 

When y = r, we have the correlation learning ruled used in the model of associative memory. When  

 

r = y - � sixi ,                                               (2.8) 

  

we have the orthogonal learning rule.  

 

(a) Environment, information source and average learning equation 

We use the vector notation such that =x (x1, x2, x3 … xn) and =s (s1, s2, s3 … sn ), then the learning equation 

(2.4) is written as  

� =s -s + cr ( s , x , y) x .                                              (2.9) 

 

The synaptic weight vector )t(s  is modified depending on the time sequence { x (t), y(t)} which the neuron receives. 

The time sequence usually carries information of the environment so that the neuron can adapt to the environment. We 

regard the environment as an information source I which produces the time sequence { x (t), y(t)}. We treat a very 
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simple ergodic information source which produces a pair ( x , y) of input x  and associate teacher signal y (which does 

not necessarily exist) with probability (density) distribution p( y,x ). Here we assume that I produces a pair ( x , y) 

with probability p( x , y) and that the chosen pair lasts for a fixed time duration �t. Then another pair is produced 

independently of the previous pair.  

 

Since (2.9) is random equation, we consider the average equation 

� ><+−= x)y,x,s(rcs
.
s  ,                                          (2.10) 

 

where < > denotes the average over ( x , y). Since I is ergodic, it is expected that the behaviour of (2.10) gives a good 

approximation to (2.9). (Geman, 1979). We call (2.10) the average learning equation.  

 

We see that, when r is of the form r = r ( s . x , y) 

where “. ” is the inner product, we have a potentional function of learning  

 

R = ( s , x , y) = du)y,u(rcs
2

1 x.s

0

2
�− ,                                         (2.11) 

by which the learning equation is written as  

 

� 

.
s  = -

s

R

∂

∂
.                               (2.12) 

 

The average learning equation is  

 

� 

.
s  = - 

s

L

∂

∂
,                               (2.13) 

where  

L(s) = < R ( s , x , y) >,                                           (2.14) 

 

is a function of s  only. Hence we see that the synaptic weight vector s  converges to one of the minima of the function 

L(s). This clarifies the characteristics of neural learning. It plays an important role in self- organization without teacher 

that L(s) has a number of minima, as will be shown later. 

 

The equilibrium state of learning is given by solving the equation, s = 0  or  

 

s  = c < r ( s , x , y) x  >,                                             (2.15) 

 

which reflects the structure of I, because the average < > is taken over I.    

  

(c) Associative Memory:  

 

Let us consider the case where I includes k pairs ( x i, yi), i = 1, 2, 3 … k, of input and teacher signal with un equal 

probabilities
k

1
. By correlation learning, where r = y, the synaptic weight converges to  

 

s  = 
k

1
�
=

k

1i

ii xy .                               (2.16) 

 

Hence, when k signal are mutually orthogonal and xi = 1, we have 

 

s . x j = 
k

1
yj,          j = 1, 2, 3… k.                                                        (2.17) 
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This provides a primitive model of association such that k signal pairs ( x i, yi) in I are memorized in a single s  and i 

recall yj from any x j by taking the weighted sum s . x j of the input x j .  

 

Let us consider an information source I which include k pairs of vectors ( x i, yi). When there are m neurons, and the 

learning signal r of the jth neuron is the jth component yj of y , where m is the dimension number of y , then the pool of 

these m neurons together recall vector signal y i from input x i , I = 1, 2, 3 …. k, because the jth neurons recall the jth 

component. This is indeed a model of associative memory studied by many researches. 
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Fig.-02   Simple model of formation signal detectors 

 

This model is well when x i are mutually orthogonal. The orthogonal learning rule (2.8) is effective even when x i are 

not mutually orthogonal. In this case, it has been proved (Amari, [1977]) that the synaptic weight s  of a neuron 

converges approximately to  

 

s  = �
=

k

1i

i*i xy  ,                                            (2.18) 

 

where
i*

x , (i = 1, 2 … k) are the dual system of x i, s such that x i are linear combinations of
i

x , s satisfying  

 

x *i
 . x

j
 = 0,   (i � j) 

x *i
 . x

i
 = 1. 

In this case, we have  

s . x j
 = y

j
,  j = 1, 2 ….k. 

 

(d) Learning equations for neural systems: 

  

We have so far treated learning by a single neuron. In order to analyze self- organizing neural systems in which neurons 

intract, we consider the dynamics of neural excitations. Let us consider a net consisting of N neuron which are mutually 

connected and which receive input signal x  from a common environment information source I.  

 

Let ui(t) be the membrane potential  of the ith neuron, s i = (sil, ….sin) be the synaptic weight vector for input x  = (x1, 

x2, …… xn),  

Zj = f [uj(t)],                                (2.19) 
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be the output of the jth neuron, and wij be the synaptic weight of the output Zj of the jth neuron entering into the ith 

neuron (fig.-3). Then for a constant input x , the dynamics of neural excitations is a described by 

� ui(t) = - ui – h + s i . x  + )]t(u[fw j

n

1j
ij�

=
 .                                                   (2.20) 
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Fig.-03 Self organizing nerve net 

 

Here we consider the case where the above dynamics is monostable, having the only equilibrium state iu  or u  

u  = (
1

u , 
2

u ,……
N

u ).  The equilibrium u  depends on, x , s i and wij. Hence   

 

u  = u  ( x , wij, s i),                              (2.21) 

 

which we call the equilibrium function .The equilibrium changes slowly as the synaptic weight change by self 

organization. 

 

3. DYNAMICS OF NEURAL EXCITATIONS: 

 

(a) Dynamics of neural pool: 

 

Let us consider a very simple net consisting of N neurons. The dynamical equation of the net is described by  

 

� ui(t) = - ui +  ijij S]u[fw +� ,                                            (3.1) 

 

where Si is the weighted sum of input to the ith neuron minus threshold h 

 

Si = S i. x  - h,                                               (3.2) 

and wij is the synaptic weight connecting the output of the jth neuron to the ith neuron. 

 

When the synaptic weights wij are identically and independently distributed random variables, the net is called the 

homogeneous neuron pool. In such a net, the behaviour of a single neuron itself is not important. Information is carried 

by macroscopic quantity of the net. The activity Z of the net is defined by the average of the outputs. 

 

Z = � jZ
n

1
,                                 (3.3) 

 

and is a macroscopic quantity. The dynamical behaviour of the macroscopic quantities are studied in detail by many 

researches by the use of various types of neural models. 
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(b) Dynamics of nerve fields: 

 

Let us consider a system consisting of m layers of nerve fields and let ui(x, t) be the average membrane potential of the 

neurons of the ith layers at time t at spatial position x (we consider a one – dimensional fluid for the simplicity’s sake). 

Then the dynamics of excitations is described by the following equations 

 

� [ ] [ ] h)t,x(a`dx)t`,x(uf`)xx(wu)t,x(u
t

i
j

jijii −+−+−=
∂

∂
� � ,                           (3.4) 

 

where wij(x-x`) is the synaptic weight from the neurons at positions x` of the jth layer to the neurons at position x of the 

ith layer (we assume the homogeneity and isotropy of the field), ai(x, t) is the intensity of the stimulation from the out 

side to the neurons of the ith layer at position x at time t. 

 

This kind of nerve fields have been studied by Witson and Cow in (1973), Amari (1977 a), Ellias and Grossberg 

(1975). When the output function f is approximately by the step function I (u) taking on two values 0 and 1, the 

complete categorization of the dynamical behaviour is given for the one – layes field of tateral inhibition type, i.e. when 

connection weight function w(x) is of tateral – inhibition type (fig-4) the field equation is in this case  

 

[ ] [ ] .h)t,x(a`dxt`,x(uI`)xx(wu)t,x(u
t

−+−+−=
∂

∂
�                             (3.5) 

 
 

Fig.-04  Weighted function w(x) 

 

The dynamics is in general multi-stable. Even when the input stimulus distributions a(x,t) is uniform and constant. 

 

a(x, t) = a,                                 (3.6) 

 

the field can retain a local excitations persistently  around the position where a strong stimulus came recently. 

 

4. SELF- ORGANIZATION OF NEURAL SYSTEM: 

 

Let us consider a revised model for formation of signal detectors, where the inhibitory neuron pool is a activated by the 

output of the excitatory neurons (fig.-5). The excitatory neurons interact with each other through the inhibitory neuron 

pool, so that we can not analyze the behaviour of each neuron independently. Instead, it is necessary before solving the 

average learning equation to obtain the equilibrium functions by solving the dynamical equation of neural excitations. 

 

In the revised model, the stimulus Si to each neuron is given by 

 

Si ( x ) = s i. x ,                                              (4.1)  

 

for an input signal x  from a common information source I, where iS  is the modifiable synaptic weight vector of the ith 

neuron. The inhibitory synaptic weight – S0i is also modifiable. We have the following equilibrium function  
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hNv −=                                  (4.2) 

 

x.s)v(gs)s,s,x(u ii0ii
i0

+= ,                              (4.3) 

where N  is determined by iT > i, where  

 

Ti = h
s

s

i0

i + .                                 (4.4) 

 

The average learning equations are  

� i

.
s = - s i + c < x I ( )u j >,                                (4.5) 

� 
i0

.
s = ><+ )u(I)v(g`cs

ii0
 .                              (4.6) 

 

Let us consider the case where I includes a finite number of signals αx , where  

 

ax
2

=α , αx . bx ≤β  ( )β≠α , 

 

are satisfied. We can then prove, by obtaining the equilibrium solution (4.5) and (4.6), that detectors of each signal αx  

are formed and its number N� satisfies 

 

h
`c

ca

a

b
Nh

`c

ca
+�

�

�
�
�

�
>>+ α ,                              (4.7) 

 

for all αx . This proves that the detectors of various signals are formed in the revised model in balanced manner in 

number. 

 

5.  CONCLUSION: 

 

We have presented a mathematical method of analyzing a wide class of nerve system. A number of self – organizing 

nerve system are analyzed by this method. Though the mathematical analysis is carried in to effect only under some 

bold mathematical simplification, the behaviour of the simplified models is believed to show, at least quantitatively, the 

same behaviour as more realistic model have. Hence the present method is useful in analyzing nervous system as well 

as in building more realistic models.      
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