ON Λ_{Bg}–CLOSER SETS IN TOPOLOGICAL SPACES

O. Ravi, S. Jeyashri* and S. Pious Misser

1,2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, India
3 Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India

E-mail: ssiingam@yahoo.com, jeyabala1@yahoo.com, spmissier@yahoo.com

(Received on: 02-06-11; Accepted on: 11-06-11)

ABSTRACT

We introduce new classes of sets called Λ_{Bg}-closed sets and Λ_{Bg}-open sets in topological spaces. We also investigate several properties of such sets. It turns out that Λ_{Bg} - closed sets and Λ_{Bg} - open sets are weaker forms of B-closed sets and B-open sets, respectively and stronger forms of Bg -closed sets and Bg-open sets, respectively.

2000 Mathematics Subject Classification: 54B05, 54C08.

Keywords and Phrases: λ-open set, Bg-closed set, Λ_{Bg}–closed set, locally-B-closed set.

1. INTRODUCTION:

In 1986, Maki [9] introduced the notion of Λ-sets in topological spaces. A Λ-set is a set A which is equal to its kernel (saturated set), i.e to the intersection of all open supersets of A. Arenas et al. [2] introduced and investigated the notion of λ-closed sets by involving Λ-sets and closed sets. Caldas et al. [4] introduced the notion of the λ-closure of a set by utilizing the notion of λ-open sets defined in [2]. Levine [7] introduced the notions of simply extended topological spaces. Abd El-Monsof et al. [1] introduced the notions of B-open sets and associated interior and closure operators on simply extended topological spaces.

In this paper, we introduce new classes of sets called Λ_{Bg}-closed sets and Λ_{Bg}-open sets in topological spaces. We also establish several properties of such sets. It turns out that Λ_{Bg}-closed sets and Λ_{Bg}-open sets are weaker forms of B-closed sets and B-open sets, respectively and stronger forms of Bg-closed sets and Bg-open sets, respectively.

2. PRELIMINARIES:

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by $\text{int}(A)$, $\text{cl}(A)$ and $X \setminus A$ or A^c, respectively.

A subset A of a space (X, τ) is called λ-closed [2] if $A = L \cap D$, where L is a Λ-set and D is a closed set. The complement of λ-closed set is called λ-open. A subset A of a space (X, τ) is called semi-open [8] if $A \subseteq \text{cl}(\text{int}(A))$. The complement of semi-open set is called semi-closed. The intersection of all semi-closed subsets of X containing A is called the semi-closure [5] of A and is denoted by $\text{scl}(A)$.

A subset A of a space (X, τ) is called preopen [10] if $A \subseteq \text{int}(\text{cl}(A))$. The complement of preopen set is called preclosed. The intersection of all preclosed subsets of X containing A is called the preclosure of A and is denoted by $\text{pcl}(A)$. The union of all preopen subsets of X contained in A is called the preinterior of A and is denoted by $\text{pint}(A)$. A subset A of a space (X, τ) is called regular open [13] if $A = \text{int}(\text{cl}(A))$. The complement of regular open set is called regular closed.

Let X be a non empty set and Levine [7] defined $\tau(B) = \{ O \cup (O' \cap B) : O, O' \in \tau \}$ and called it simple extension of τ by B, where $B \notin \tau$. We recall the pair $(X, \tau(B))$ a simply extended topological spaces (briefly SETS). The elements of $\tau(B)$ are called B-open [1] sets and the complements are called B-closed sets [1]. The family of B-open sets of X forms a topology. In other words, we can say, A is closed set in $(X, \tau(B))$ or A is a B-closed set in (X, τ). The B-closure of a subset S of X, denoted by $Bcl(S)$ [1], is the intersection of B-closed sets of X containing S and the B-interior of S, denoted by $Bint(S)$, is the union of B-open sets contained in S. A subset A of a space (X, τ) is called $\beta\lambda$-closed [12] if $A = L \cap D$, where L is a Λ-set and D is a B-closed. The complement of $\beta\lambda$-closed is called $\beta\lambda$-open.

*Corresponding author: S. Jeyashri *, E-mail: jeyabala1@yahoo.com
Theorem: 3.8

and $A = \{b\}$ is B-closed set but it is not closed.

Here $A = \{a, c, d\}$ is B-closed.

Example: 3.7

None of these implications is reversible as shown in the following example.

Remark: 3.4

Let $\{A_i : i \in I\}$ be a family of subsets of a space X. In general $\bigcap \{A_i : i \in I\} \not\subseteq Bcl(\bigcap \{A_i : i \in I\})$ and $A_i \neq Bcl(A_i)$.

Example: 3.5

Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $B = \{c\}$. Then $(B_i) = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}.

Let $A = \{a\}$ and $B = \{b\}$. Then $\Lambda_{Bg}(A \cap B) = \Lambda_{Bg}(\emptyset) = \emptyset$. Also, we have $\Lambda_{Bg}(A) = \{a, b\}$ and $\Lambda_{Bg}(B) = \{b\}$. Thus $\Lambda_{Bg}(A) \cap \Lambda_{Bg}(B) = \emptyset$.

Remark: 3.6

We have the following implications.

\[
\text{closed } \rightarrow \text{B-closed } \rightarrow \Lambda_{Bg} \text{-closed } \rightarrow \text{Bg - closed }
\]

None of these implications is reversible as shown in the following example.

Example: 3.7

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, d\}\}$ and $B = \{c\}$. Then $\tau(B_i) = \{\emptyset, X, \{c\}, \{a, d\}, \{a, c, d\}\}.$

(1) Here $A = \{c\}$ is a B-closed set but it is not closed.

(2) Here $A = \{a, b, c\}$ is a Λ_{Bg}-closed set but it is not B-closed.

(3) Here $A = \{a, d\}$ is a B_{g}-closed set but it is not Λ_{Bg}-closed.

(4) Here $A = \{a, c, d\}$ is B_{g}-closed set but it is not B-closed.

(5) Here $A = \{a, b, d\}$ is B_{g}-closed set but it is not λ-closed.

(6) λ-closed sets and B-closed sets are independent of each other. Here $A = \{a, d\}$ is λ-closed set but it is not B-closed.

Theorem: 3.8

The union of two Λ_{Bg}-closed sets is Λ_{Bg}-closed.

Proof: Let $A \cup B \subseteq U$, then $A \subseteq U$ and $B \subseteq U$ where U is B_{g}-open. As A and B are Λ_{Bg}-closed $Bcl(A \subseteq U$ and $Bcl(B) \subseteq U$. Hence $Bcl(A \cup B) = Bcl(A) \cup Bcl(B) \subseteq U$.

\[\alpha, \beta \text{ are } \Lambda_{Bg} \text{-open.} \]

Let $\tau \leq \alpha \leq \beta$, then $\tau \leq \alpha \leq \beta$ is Λ_{Bg}-open.

Let $\tau \leq \alpha \leq \beta$, then $\tau \leq \alpha \leq \beta$ is Λ_{Bg}-open.

Proof: Let $A \cup B \subseteq U$, then $A \subseteq U$ and $B \subseteq U$ where U is B_{g}-open. As A and B are Λ_{Bg}-closed $Bcl(A \subseteq U$ and $Bcl(B) \subseteq U$. Hence $Bcl(A \cup B) = Bcl(A) \cup Bcl(B) \subseteq U$.

\[\alpha, \beta \text{ are } \Lambda_{Bg} \text{-open.} \]
Proof: Suppose that $Bcl(A) \setminus A$ contains no nonempty B-closed subset of X. Thus $Bcl(A) \subseteq F$ or $F \subseteq [Bcl(A)]^c$. Then $F \subseteq [Bcl(A)]^c \cap (Bcl(A) \setminus A) \subseteq [Bcl(A)]^c \cap Bcl(A) = \emptyset$. This shows that $F = \emptyset$.

The converse of the above theorem is not true in general as it is shown in the following example.

Example: Let $A = \{d\}$ from Example 3.7. Then $Bcl(A) \setminus A = \{a, b\}$ does not contain nonempty B-closed set.

Definition: A topological space (X, τ) is called a BT_1-space if to each pair of distinct points x, y of (X, τ) there exist a B-open set U containing x but not y and a B-open set V containing y but not x.

Theorem: A topological space (X, τ) is a BT_1-space if and only if every subset of X consisting of exactly one point is B-closed.

Proof: Let (X, τ) be a BT_1-space and x be an arbitrary point of X. Then, we must show that $\{x\}$ is B-closed or equivalently that $((\{x\})^c)$ is B-open. If $((\{x\})^c) = \emptyset$, then it is clearly B-open. So, let $((\{x\})^c) \neq \emptyset$ and let $y \in ((\{x\})^c)$. Then $y \neq x$. But, (X, τ) being a BT_1-space there exist a B-open set G containing y but not x. Consequently, $y \in G \subseteq ((\{x\})^c)$. This shows that $((\{x\})^c)$ is neighbourhood of each of its points and therefore, B-open. Hence, $\{x\}$ is B-closed.

Conversely, let (X, τ) be a topological space such that every subset of X consisting of exactly one point is B-closed. Let x and y be any two distinct points of X. Then, by hypothesis, $\{x\}$ as well as $\{y\}$ is B-closed. Consequently, $G = ((\{x\})^c) \cap H = ((\{y\})^c)$ are B-open sets such that $y \in G$ but $x \notin G$ and $x \in H$ but $y \notin H$. Hence (X, τ) is a BT_1-space.

Corollary: In a BT_1-space, every $\Lambda_{B\lambda}$-closed set is B-closed.

Proof: Let A be a $\Lambda_{B\lambda}$-closed set in a BT_1-space (X, τ). Let $x \in Bcl(A) \setminus A$. Since (X, τ) is BT_1, $\{x\}$ is a B-closed set in (X, τ). By Theorem 3.11, there exists no nonempty B-closed set in $Bcl(A) \setminus A$ and so $Bcl(A) \setminus A = \emptyset$. Therefore $Bcl(A) = A$, i.e., A is B-closed.

Theorem: A set A is $\Lambda_{B\lambda}$-closed if and only if $Bcl(A) \setminus A$ contains no nonempty $B\lambda$-closed sets.

Proof: Necessity. Suppose that A is $\Lambda_{B\lambda}$-closed. Let S be a $B\lambda$-closed subset of $Bcl(A) \setminus A$. Then $A \subseteq S^c$. Since A is $\Lambda_{B\lambda}$-closed, we have $Bcl(A) \subseteq S^c$. Consequently $S \subseteq [Bcl(A)]^c$. Hence $S \subseteq Bcl(A) \cap [Bcl(A)]^c = \emptyset$. Therefore S is empty.

Sufficiency. Suppose that $Bcl(A) \setminus A$ contains no nonempty $B\lambda$-closed sets. Let $A \subseteq G$ and G be $B\lambda$-open. If $Bcl(A) \subseteq G$, then $Bcl(A) \cap G^c$ is a nonempty $B\lambda$-closed subset of $Bcl(A) \setminus A$. Therefore, A is $\Lambda_{B\lambda}$-closed.

Theorem: If A is a $\Lambda_{B\lambda}$-closed set of (X, τ) and $A \subseteq B \subseteq Bcl(A)$, then B is a $\Lambda_{B\lambda}$-closed set of (X, τ).

Proof: Since $B \subseteq Bcl(A)$, we have $Bcl(B) \subseteq Bcl(A)$. Hence $(Bcl(B) \setminus B) \subseteq (Bcl(A) \setminus A)$. But by Theorem 3.16 $Bcl(A) \setminus A$ contains no nonempty $B\lambda$-closed subsets of X and hence $Bcl(B) \setminus B$ does not contain $B\lambda$-closed sets. Again by Theorem 3.16, B is $\Lambda_{B\lambda}$-closed.

Theorem: If A is a $B\lambda$-open and $\Lambda_{B\lambda}$-closed set in (X, τ), then A is B-closed in (X, τ).

Proof: Since A is $B\lambda$-open and $\Lambda_{B\lambda}$-closed, $Bcl(A) \subseteq A$ and hence A is B-closed in (X, τ).

Theorem: For each $x \in X$, either $\{x\}$ is $B\lambda$-closed or $\{x\}^c$ is $\Lambda_{B\lambda}$-closed in (X, τ).

Proof: Suppose $\{x\}$ is not $B\lambda$-closed in (X, τ). Then $\{x\}^c$ is not $B\lambda$-open and the only $B\lambda$-open set containing $\{x\}^c$ is the space X itself. Therefore $Bcl(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $\Lambda_{B\lambda}$-closed in (X, τ).
Theorem: 3.20 Let A be a Λ_{Bg}-closed set in (X, τ). Then

1. If A is regular open, then $\text{pint}(A)$ and $\text{scl}(A)$ are also Λ_{Bg}-closed.
2. If A is regular closed, then $\text{pcl}(A)$ is also Λ_{Bg}-closed.

Proof:

1. Since A is regular open in (X, τ), we have $\text{scl}(A)=A \cup \text{int}(\text{cl}(A))=A$ and $\text{pint}(A)=A \cap \text{int}(\text{cl}(A))=A$. Thus $\text{scl}(A)$ and $\text{pint}(A)$ are Λ_{Bg}-closed in (X, τ).
2. Let A be regular closed in (X, τ). Then $\text{pcl}(A)=A \cap \text{cl}(\text{int}(A))=A$. Thus $\text{pcl}(A)$ is Λ_{Bg}-closed in (X, τ).

Definition: 3.21 A space X is said to be a B-normal space if for every pair of disjoint B-closed subsets A and B of X there exist B-open sets U, V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Remark: 3.22 If (X, τ) is a B-normal space and suppose that Y is a Bg-closed subset of X. Then $(Y, Y \cap \tau)$ is B-normal.

Proof: Let E and F be B-closed in X and suppose that $(Y \cap E) \cap (Y \cap F) = \emptyset$. Then $Y \subseteq (E \cap F)^c \in \tau$ and hence $\text{Bcl}(Y) \subseteq (E \cap F)^c$. Thus $(\text{Bcl}(Y) \cap E) \cap (\text{Bcl}(Y) \cap F) = \emptyset$. Since (X, τ) is B-normal, there exists disjoint B-open sets U and V such that $\text{Bcl}(Y) \cap E \subseteq U$ and $\text{Bcl}(Y) \cap F \subseteq V$. It follows then that $Y \cap E \subseteq U \cap Y$ and $Y \cap F \subseteq V \cap Y$.

Remark: 3.23 By Remark 3.6, every Λ_{Bg}-closed set of a B-normal space is B-normal.

Definition: 3.24 A subset S of X is said to be locally-B-closed if $S = U \cap F$, where U is B-open and F is B-closed in (X, τ).

Theorem: 3.25. For a subset S of (X, τ), the following are equivalent:

1. S is locally-B-closed.
2. $S = P \cap \text{Bcl}(S)$ for some B-open set P.
3. $\text{Bcl}(S) - S$ is B-closed.
4. $S \cup (X - \text{Bcl}(S))$ is B-open.
5. $S \subseteq \text{Bint}(S) \cup (X - \text{Bcl}(S))$.

Proof:

1. (\rightarrow) If $S = P \cap \text{Bcl}(S)$ for some B-open set P, then $S \subseteq \text{Bcl}(S) \subseteq Q$, where $P \subseteq \text{Bcl}(S)$. So $S = P \cap Q$ implies $\text{Bcl}(S) \cup Q$. Since $S \subseteq P$ implies $S \subseteq \text{Bcl}(S)$, hence $S = P \cap \text{Bcl}(S)$.
2. (\rightarrow) Since $S \cup (X - \text{Bcl}(S)) = X$, $\text{Bcl}(S) - S$ is B-closed.
3. (\rightarrow) Since $S \cup (X - \text{Bcl}(S)) = X$, $\text{Bcl}(S) = S$. Hence $S \subseteq \text{Bint}(S) \cup (X - \text{Bcl}(S))$.
4. (\rightarrow) $S \subseteq \text{Bint}(S) \cup (X - \text{Bcl}(S))$ implies $S = \text{Bint}(S) \cup (X - \text{Bcl}(S)) \cap \text{Bcl}(S)$.

Theorem: 3.26 Let A be locally-B-closed subset of (X, τ). For the set A, the following properties are equivalent:

1. A is B-closed;
2. A is Λ_{Bg}-closed;
3. A is Bg-closed.

Proof: By Remark 3.6, it suffices to prove that (3) implies (1). By Theorem 3.25 $A \cup (\text{Bcl}(A))^c$ is B-open in (X, τ) since A is locally-B-closed. Now $A \cup (\text{Bcl}(A))^c$ is an B-open set of (X, τ) such that $A \subseteq A \cup (\text{Bcl}(A))^c$. Since A is Bg-closed, then $\text{Bcl}(A) \subseteq A \cup (\text{Bcl}(A))^c$. But $\text{Bcl}(A) \cap (\text{Bcl}(A))^c = \emptyset$. Thus we have $\text{Bcl}(A) \subseteq A$ and hence A is B-closed.

Definition: 3.27 A subset A in (X, τ) is said to be Λ_{Bg}-open in (X, τ) if and only if A^c is Λ_{Bg}-closed in (X, τ).

Every B-open set in (X, τ) is Λ_{Bg}-open in (X, τ) but not conversely. It can be verified from the following example.

Example: 3.28 Let $A = \{a\}$ from Example 3.7. Then A is Λ_{Bg}-open set but it is not B-open in (X, τ).

Theorem: 3.29 The intersection of two Λ_{Bg}-open sets is Λ_{Bg}-open.

Proof: This is obvious by Theorem 3.8.

Theorem: 3.30 A set A is Λ_{Bg}-open in (X, τ) if and only if $F \subseteq \text{Bint}(A)$ whenever F is $B\lambda$-closed in (X, τ) and $F \not\subseteq A$.
Proof: Suppose that $F \subseteq Bcl(A)$ whenever F is $\beta\lambda$-closed and $F \subseteq A$. Let $A' \subseteq G$, where G is $\beta\lambda$-open. Hence $G^c \subseteq A$. By assumption $G^c \subseteq Bcl(A)$ which implies that $(Bcl(A))^c \subseteq G$, so $Bcl(A^c) \subseteq G$. Hence A' is Λ_{BG}-closed, i.e., A is Λ_{BG}-open.

Conversely, let A be Λ_{BG}-open. Then A^c is Λ_{BG}-closed. Also let F be a $\beta\lambda$-closed set contained in A. Then F^c is $\beta\lambda$-open. Therefore whenever $A' \subseteq F^c$, $Bcl(A') \subseteq F^c$. This implies that $F \subseteq (Bcl(A))^c = Bcl(A)$. Thus $F \subseteq Bcl(A)$.

Theorem: 3.31 A set A is Λ_{BG}-open in (X, τ) if and only if $G = X$ whenever G is $\beta\lambda$-open and $Bcl(A) \cup A \subseteq G$.

Proof: Let A be Λ_{BG}-open, G be $\beta\lambda$-open and $Bcl(A) \cup A \subseteq G$. This gives $G^c \subseteq (Bcl(A))^c \cap (A')^c = (Bcl(A))^c \cap A^c = Bcl(A^c) \setminus A^c$. Since $A' \subseteq \Lambda_{BG}$-closed and G^c is $\beta\lambda$-closed, by Theorem 3.16 it follows that $G^c = \emptyset$. Therefore $X = G$. Conversely, suppose that F is $\beta\lambda$-closed and $F \subseteq A$. Then $Bcl(A) \cup A' \subseteq Bcl(A) \cup F^c$. It follows that $Bcl(A) \cup F^c = X$ and hence $F \subseteq Bcl(A)$. Therefore A is Λ_{BG}-open.

Theorem: 3.32 If $Bcl(A) \subseteq B \subseteq A$ and A is Λ_{BG}-open in (X, τ), then B is Λ_{BG}-open in (X, τ).

Proof: Suppose $Bcl(A) \subseteq B \subseteq A$ and A is Λ_{BG}-open in (X, τ). Then $A' \subseteq B \subseteq Bcl(A)$ and $A^c \subseteq Bcl(A^c)$. By Theorem 3.17, B is Λ_{BG}-open in (X, τ).

Theorem: 3.33. A set A is Λ_{BG}-closed in (X, τ) if and only if $Bcl(A) \setminus A$ is Λ_{BG}-open in (X, τ).

Proof: Necessity. Suppose that A is Λ_{BG}-closed in (X, τ). Let $F \subseteq Bcl(A) \setminus A$, where F is $\beta\lambda$-closed. By Theorem 3.16, $F \neq \emptyset$. Therefore $F \subseteq Bcl(Bcl(A) \setminus (A))$ and by Theorem 3.30, $Bcl(A) \setminus A$ is Λ_{BG}-open in (X, τ).

Sufficiency. Let $A \subseteq G$ where G is $\beta\lambda$-open. Then $Bcl(A) \cap G^c \subseteq Bcl(A) \cap A^c = Bcl(A) \setminus A$. Since $Bcl(A) \cap G^c$ is $\beta\lambda$-closed and $Bcl(A) \setminus A$ is Λ_{BG}-open, by Theorem 3.30, we have $Bcl(A) \cap G^c \subseteq Bcl(Bcl(A) \setminus A) = \emptyset$. Hence A is Λ_{BG}-closed in (X, τ).

Theorem: 3.34 For a subset $A \subseteq X$, the following properties are equivalent.

(1) A is Λ_{BG}-closed.
(2) $Bcl(A) \setminus A$ contains no nonempty $\beta\lambda$-closed set.
(3) $Bcl(A) \setminus A$ is Λ_{BG}-open.

Proof: This follows from Theorems 3.16 and 3.33.

Theorem: 3.35 A subset A in (X, τ) is Λ_{BG}-closed if and only if $\text{cl}_{\beta\lambda}({\{x\}}) \cap A \neq \emptyset$ for every $x \in Bcl(A)$.

Proof: Necessity. Suppose that $\text{cl}_{\beta\lambda}({\{x\}}) \cap A = \emptyset$ for some $x \in Bcl(A)$. Then $X \setminus \text{cl}_{\beta\lambda}({\{x\}})$ is a $\beta\lambda$-open set containing A. Furthermore, $x \in Bcl(A) \setminus (X \setminus \text{cl}_{\beta\lambda}({\{x\}}))$ and hence $Bcl(A) \cap X \setminus \text{cl}_{\beta\lambda}({\{x\}})$. This shows that A is not Λ_{BG}-closed.

Sufficiency. Suppose that A is not Λ_{BG}-closed. There exists a $\beta\lambda$-open set U containing A such that $Bcl(A) \setminus U = \emptyset$. There exists $x \in Bcl(A)$ such that $x \notin U$; hence $\text{cl}_{\beta\lambda}({\{x\}}) \cap U = \emptyset$. Therefore, $\text{cl}_{\beta\lambda}({\{x\}}) \cap A = \emptyset$ for some $x \in Bcl(A)$.

4. FUNCTIONS:

Definition: 4.1 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be

(1) $\beta\lambda$-irresolute if $f^{-1}(V)$ is $\beta\lambda$-open in X for every $\beta\lambda$-open set V of Y,
(2) $\beta\lambda$-closed if $f(F)$ is $\beta\lambda$-closed in Y for every $\beta\lambda$-closed set F of X,
(3) β-continuous if $f^{-1}(V)$ is β-closed in X for every β-closed set V of Y.

Definition: 4.2 A map $f : (X, \tau) \to (Y, \sigma)$ is said to be β-closed if the image of every β-closed set in (X, τ) is β-closed set in (Y, σ).

Theorem: 4.3 Let $f : (X, \tau) \to (Y, \sigma)$ be $\beta\lambda$-irresolute β-closed function. If A is Λ_{BG}-closed in X, then $f(A)$ is Λ_{BG}-closed in Y.

Proof: Let A be a Λ_{BG}-closed set of X and V a $\beta\lambda$-open set of Y containing $f(A)$. Since f is $\beta\lambda$-irresolute, $f^{-1}(V)$ is $\beta\lambda$-open in X and $A \subseteq f^{-1}(V)$. Since A is Λ_{BG}-closed, $Bcl(A) \subseteq f^{-1}(V)$ and $f(A) \subseteq f(Bcl(A)) \subseteq V$. Since f is β-closed, we obtain $Bcl(f(A)) \subseteq V$. This shows that $f(A)$ is Λ_{BG}-closed in Y.
Lemma: 4.4 A function \(f : (X, \tau) \to (Y, \sigma) \) is \(\lambda_\theta \)-closed if and only if for each subset \(B \) of \(Y \) and each \(U \in B\sigma(X, \tau) \) containing \(f^{-1}(B) \), there exists \(V \in B\sigma(Y, \sigma) \) such that \(B \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Proof: Necessity. Suppose that \(f \) is \(\lambda_\theta \)-closed. Let \(B \subseteq Y \) and \(U \in B\sigma(X, \tau) \) containing \(f^{-1}(B) \). Put \(V = Y - f(X - U) \). Then we obtain \(\forall \in B\sigma(Y, \sigma) \), \(B \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Sufficiency. Let \(F \) be any \(\lambda_\theta \)-closed set of \((X, \tau) \). Set \(f(F) = B \), then \(F \subseteq f^{-1}(B) \) and \(f^{-1}(Y - B) \subseteq X - F \in B\sigma(X, \tau) \). By hypothesis, there exists \(V \in B\sigma(Y, \sigma) \) such that \(Y - B \subseteq V \) and \(f^{-1}(V) \subseteq X - F \). Therefore we obtain \(Y - V \subseteq B = f(F) \subseteq Y - V \). Hence \(f(F) = Y - V \) and \(f(F) \) is \(\lambda_\theta \)-closed in \((Y, \sigma) \). Therefore, \(f \) is \(\lambda_\theta \)-closed.

Theorem: 4.5 Let \(f : (X, \tau) \to (Y, \sigma) \) be a \(\lambda \)-continuous \(\lambda_\theta \)-closed function. If \(B \) is a \(\lambda_{BG} \)-closed set of \((Y, \sigma) \), then \(f^{-1}(B) \) is \(\lambda_{BG} \)-closed in \((X, \tau) \).

Proof: Let \(B \) be a \(\lambda_{BG} \)-closed in \((Y, \sigma) \) and \(U \) a \(\lambda \)-open set of \((X, \tau) \) containing \(f^{-1}(B) \). Since \(f \) is \(\lambda \)-closed, by Lemma 4.4 there exists a \(\lambda \)-open set \(V \) of \((Y, \sigma) \) such that \(B \subseteq V \) and \(f^{-1}(V) \subseteq U \). Since \(B \) is \(\lambda_{BG} \)-closed in \((Y, \sigma) \), \(\text{Cl}(B) \subseteq V \) and hence \(f^{-1}(B) \subseteq f^{-1}(\text{Cl}(B)) \subseteq f^{-1}(V) \subseteq U \). Since \(f \) is \(\lambda \)-continuous, \(f^{-1}(\text{Cl}(B)) \) is \(\lambda \)-closed and hence \(\text{Cl}(f^{-1}(B)) \subseteq U \). This shows that \(f^{-1}(B) \) is \(\lambda_{BG} \)-closed in \((X, \tau) \).

REFERENCES:

