International Journal of Mathematical Archive-2(6), June - 2011, Page: 870-875 Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON Λ_{Bg} -CLOSED SETS IN TOPOLOGICAL SPACES

¹O. Ravi, ²S. Jeyashri* and ³S. Pious Misser

^{1, 2}Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, India

³Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India

E-mail: ¹siingam@yahoo.com, ²jeyabala1@yahoo.com, ³spmissier@yahoo.com

(Received on: 02-06-11; Accepted on: 11-06-11)

ABSTRACT

We introduce new classes of sets called Λ_{Bg} -closed sets and Λ_{Bg} -open sets in topological spaces. We also investigate several properties of such sets. It turns out that Λ_{Bg} - closed sets and Λ_{Bg} - open sets are weaker forms of B-closed sets and B-open sets, respectively and stronger forms of Bg -closed sets and Bg-open sets, respectively.

2000 Mathematics Subject Classification: 54B05, 54C08.

Keywords and Phrases: λ -open set, Bg-closed set, Λ_{Bg} -closed set, locally-B-closed set.

1. INTRODUCTION:

In 1986, Maki [9] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel (saturated set), i.e to the intersection of all open supersets of A. Arenas et al. [2] introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. Caldas et al. [4] introduced the notion of the λ -closure of a set by utilizing the notion of λ -open sets defined in [2]. Levine [7] introduced the notions of simply extended topological spaces. Abd El-Monsef et al. [1] introduced the notions of B-open sets and associated interior and closure operators on simply extended topological spaces.

In this paper, we introduce new classes of sets called Λ_{Bg} -closed sets and Λ_{Bg} -open sets in topological spaces. We also establish several properties of such sets. It turns out that Λ_{Bg} -closed sets and Λ_{Bg} -open sets are weaker forms of B-closed sets and B-open sets, respectively and stronger forms of Bg-closed sets and Bg-open sets, respectively.

2. PRELIMINARIES:

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by int(A), cl(A) and X \ A or A^c, respectively.

A subset A of a space (X, τ) is called λ -closed [2] if $A = L \cap D$, where L is a Λ -set and D is a closed set. The complement of λ -closed set is called λ -open. A subset A of a space (X, τ) is called semi-open [8] if $A \subseteq cl(int(A))$. The complement of semi-open set is called semi-closed. The intersection of all semi-closed subsets of X containing A is called the semi-closure [5] of A and is denoted by scl(A).

A subset A of a space (X, τ) is called preopen [10] if $A \subseteq int(cl(A))$. The complement of preopen set is called preclosed. The intersection of all preclosed subsets of X containing A is called the preclosure of A and is denoted by pcl(A). The union of all preopen subsets of X contained in A is called the preinterior of A and is denoted by pint (A). A subset A of a space (X, τ) is called regular open [13] if A = int(cl(A)). The complement of regular open set is called regular closed.

Let X be a non empty set and Levine [7] defined $\tau(B) = \{ O \cup (O' \cap B) : O, O' \in \tau \}$ and called it simple extension of τ by B, where B $\notin \tau$. We recall the pair (X, $\tau(B)$) a simply extended topological spaces (briefly SETS). The elements of τ (B) are called B-open [1] sets and the complements are called B-closed sets [1]. The family of B-open sets of X forms a topology. In other words, we can say, A is closed set in (X, $\tau(B)$) or A is a B-closed set in (X, τ). The B-closure of a subset S of X, denoted by Bcl(S) [1], is the intersection of B-closed sets of X containing S and the B-interior of S, denoted by Bint(S), is the union of B-open sets contained in S. A subset A of a space (X, τ) is called B λ -closed [12] if A = L \cap D, where L is a Λ -set and D is a B-closed. The complement of B λ -closed is called B λ -open.

The intersection of all $B\lambda$ -closed sets containing a subset A of X is called the $B\lambda$ -closure of A and is denoted by $cl_{B\lambda}(A)$. We denote the collection of all $B\lambda$ -open sets by $B\lambda O(X, \tau)$.

Let τ (B_x) and τ (B_y) be simple extension of topologies on X and Y respectively.

Lemma: 2.1[12] Let A_i ($i \in I$) be subsets of a topological space (X, τ). The following properties hold:

(i) If A_i is $B\lambda$ -closed for each $i \in I$, then $\bigcap_{i \in I} A_i$ is $B\lambda$ -closed. (ii) If A_i is $B\lambda$ -open for each $i \in I$, then $\bigcup_{i \in I} A_i$ is $B\lambda$ -open.

3. Λ_{Bg} - CLOSED SETS:

Definition: 3.1[1] A subset A of a topological space (X, τ) is called B-generalized closed set (briefly Bg-closed) if Bcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ) . B is Bg-open set of (X, τ) if and only if B^c is Bg-closed.

Definition: 3.2 A subset A of a topological space (X, τ) is called Λ_{Bg} -closed if $Bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $B\lambda$ - open in (X, τ) .

Lemma: 3.3 For subsets A and A_i ($i \in I$) of a space (X, τ), the following hold:

(1) $B \subseteq \Lambda_{Bg}(B)$, (2) $A \subseteq B$, then $\Lambda_{Bg}(A) \subseteq \Lambda_{Bg}(B)$, (3) $\Lambda_{Bg}(\Lambda_{Bg}(B)) = \Lambda_{Bg}(B)$, (4) $\Lambda_{Bg}(A \cup B) = \Lambda_{Bg}(A) \cup \Lambda_{Bg}(B)$, (5) A is B-closed $\Leftrightarrow A = Bcl(A)$, (6) A is B-open $\Leftrightarrow A = Bint(A)$, (7) $\Lambda_{Bg}(\cap \{ A_i : i \in I \}) \subset \cap \{ \Lambda_{Bg}(A_i) : i \in I \}$, (8) $\Lambda_{Bg}(\cup \{ A_i : i \in I \}) = \cup \{ \Lambda_{Bg}(A_i) : i \in I \}$,

Remark: 3.4 Let {Ai: $i \in I$ } be a family of subsets of a space X. In general $\cap \{ \Lambda_{Bg}(A_i) : i \in I \} \not\subseteq \Lambda_{Bg}(\cap \{ A_i : i \in I \})$ and $A_i \neq \Lambda_{Bg}(A_i)$.

Example: 3.5 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $B = \{c\}$. Then $\tau (B_x) = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Let $A = \{a\}$ and $B = \{b\}$. Then $\Lambda_{Bg}(A \cap B) = \Lambda_{Bg}(\emptyset) = \emptyset$. Also, we have $\Lambda_{Bg}(A) = \{a, b\}$ and $\Lambda_{Bg}(B) = \{b\}$. Thus $\Lambda_{Bg}(A) \cap \Lambda_{Bg}(B) = \{b\} \notin \Lambda_{Bg}(A \cap B) = \emptyset$ and $A = \{a\} \neq \Lambda_{Bg}(A) = \{a, b\}$.

Remark: 3.6

We have the following implications.

closed \rightarrow B-closed $\rightarrow \Lambda_{Bg}$ -closed \rightarrow Bg - closed \downarrow \downarrow \cdot λ -closed \rightarrow B λ -closed

None of these implications is reversible as shown in the following example.

Example: 3.7 Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, d\}\}$ and $B = \{c\}$. Then $\tau (B_x) = \{\emptyset, X, \{c\}, \{a, d\}, \{a, c, d\}\}$.

- (1) Here $A = \{c\}$ is a B-closed set but it is not closed.
- (2) Here A = {a, b, c} is a Λ_{Bg} -closed set but it is not B-closed.
- (3) Here A = {a, d} is a Bg-closed set but it is not Λ_{Bg} -closed.
- (4) Here A = {a, c, d} is B λ -closed set but it is not B-closed.
- (5) Here A = $\{a, b, d\}$ is B λ -closed set but it is not λ -closed.
- (6) λ -closed sets and B-closed sets are independent of each other. Here A = {a, d} is λ -closed set but it is not B-closed and A = {b} is B-closed set but it is not λ -closed.

Theorem: 3.8 The union of two Λ_{Bg} - closed sets is Λ_{Bg} - closed.

Proof: Let $A \cup B \subseteq U$, then $A \subseteq U$ and $B \subseteq U$ where U is $B\lambda$ -open. As A and B are Λ_{Bg} - closed Bcl (A) $\subseteq U$ and Bcl(B) $\subseteq U$. Hence Bcl($A \cup B$) = Bcl(A) \cup Bcl(B) $\subseteq U$.

Remark: 3.9 The intersection of two Λ_{Bg} - closed sets need not be Λ_{Bg} - closed as can be verified from the following example.

Example: 3.10 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X\}$ and $B = \{a\}$. Then $\tau (B_x) = \{\emptyset, X, \{a\}\}$. Here $A = \{a, b\}$ and $B = \{a, c\}$ are Λ_{Bg} - closed sets but $A \cap B = \{a\}$ is not Λ_{Bg} - closed set.

Theorem: 3.11 If a subset A of (X, τ) is Λ_{Bg} -closed, then Bcl(A) \ A contains no non empty B-closed subset of (X, τ) .

Proof: Let F be a B-closed subset contained in Bcl(A) \ A. Clearly $A \subseteq F^c$ where A is Λ_{Bg} -closed and F^c is an B-open set of X. Thus Bcl (A) $\subseteq F^c$ or $F \subseteq [Bcl(A)]^c$. Then $F \subseteq [Bcl(A)]^c \cap (Bcl(A) \setminus A) \subseteq [Bcl(A)]^c \cap Bcl(A) = \emptyset$. This shows that $F = \emptyset$.

The converse of the above theorem is not true in general as it is shown in the following example.

Example: 3.12 Let $A = \{d\}$ from Example 3.7. Then $Bcl(A) \setminus A = \{a, b\}$ does not contain nonempty B -closed set. But A is not Λ_{Bg} -closed in (X, τ) .

Definition: 3.13 A topological space (X, τ) is called a BT₁-space if to each pair of distinct points x, y of (X, τ) there exist a B-open set U containing x but not y and a B-open set V containing y but not x.

Theorem: 3.14 A topological space (X, τ) is a BT₁-space if and only if every subset of X consisting of exactly one point is B-closed.

Proof: Let (X, τ) be a BT1-space and x be an arbitrary point of X. Then, we must show that $\{x\}$ is B-closed or equivalently that $(\{x\})^c$ is B-open. If $(\{x\})^c = \emptyset$, then it is clearly B-open. So, let $(\{x\})^c \neq \emptyset$ and let $y \in (\{x\})^c$. Then $y \neq x$. But, (X, τ) being a BT₁-space there exist a B-open set G containing y but not x. Consequently, $y \in G \subseteq (\{x\})^c$. This shows that $(\{x\})^c$ is neighbourhood of each of its points and therefore, B-open. Hence, $\{x\}$ is B-closed.

Conversely, let (X, τ) be a topological space such that every subset of X consisting of exactly one point is B-closed. Let x and y be any two distinct points of X. Then, by hypothesis, $\{x\}$ as well as $\{y\}$ is B-closed. Consequently, $G = (\{x\})^c$ and $H = (\{y\})^c$ are B-open sets such that $y \in G$ but $x \notin G$ and $x \in H$ but $y \notin H$. Hence (X, τ) is a BT₁-space.

Corollary: 3.15 In a BT₁ - space, every Λ_{Bg} -closed set is B-closed.

Proof: Let A be a Λ_{Bg} -closed set in a BT₁- space (X, τ) . Let $x \in Bcl(A) \setminus A$. Since (X, τ) is BT₁, $\{x\}$ is a B-closed set in (X, τ) . By Theorem 3.11. there exists no nonempty B -closed set in Bcl(A) \ A and so Bcl(A) \ A= \emptyset . Therefore Bcl (A) = A, i.e., A is B-closed.

Theorem: 3.16 A set A is Λ_{Bg} - closed if and only if Bcl (A) \ A contains no nonempty B λ -closed sets.

Proof: Necessity. Suppose that A is Λ_{Bg} -closed. Let S be a B λ -closed subset of Bcl (A) \ A. Then A \subseteq S^c. Since A is Λ_{Bg} -closed, we have Bcl(A) \subseteq S^c. Consequently S \subseteq [Bcl(A)]^c. Hence S \subseteq Bcl(A) \cap [Bcl(A)]^c= \emptyset . Therefore S is empty.

Sufficiency. Suppose that $Bcl(A) \setminus A$ contains no nonempty $B\lambda$ -closed sets. Let $A \subseteq G$ and G be $B\lambda$ -open. If $Bcl(A) \not\subseteq G$, then $Bcl(A) \cap G^c$ is a nonempty $B\lambda$ -closed subset of $Bcl(A) \setminus A$. Therefore, A is Λ_{Bg} -closed.

Theorem: 3.17 If A is a Λ_{Bg} -closed set of (X, τ) and $A \subseteq B \subseteq Bcl(A)$, then B is a Λ_{Bg} -closed set of (X, τ) .

Proof: Since $B \subseteq Bcl(A)$, we have $Bcl(B) \subseteq Bcl(A)$. Hence $(Bcl(B) \setminus B) \subseteq (Bcl(A) \setminus A)$. But by Theorem 3.16 $Bcl(A) \setminus A$ contains no nonempty $B\lambda$ -closed subsets of X and hence $Bcl(B) \setminus B$ does not contain $B\lambda$ -closed sets. Again by Theorem 3.16, B is Λ_{Bg} - closed.

Theorem: 3.18 If A is a B λ -open and Λ_{Bg} -closed set in (X, τ) , then A is B-closed in (X, τ) .

Proof: Since A is B λ -open and Λ_{Bg} -closed, Bcl(A) \subseteq A and hence A is B-closed in (X, τ).

Theorem: 3.19 For each $x \in X$, either $\{x\}$ is $B\lambda$ -closed or $\{x\}^c$ is Λ_{Bg} -closed in (X, τ) .

Proof: Suppose $\{x\}$ is not $B\lambda$ -closed in (X, τ) . Then $\{x\}^c$ is not $B\lambda$ -open and the only $B\lambda$ -open set containing $\{x\}^c$ is the space X itself. Therefore Bcl $(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is Λ_{Bg} -closed in (X, τ) .

Theorem: 3.20 Let A be a Λ_{Bg} -closed set in (X, τ) . Then

(1) If A is regular open, then pint (A) and scl(A) are also Λ_{Bg} -closed.

(2) If A is regular closed, then pcl (A) is also Λ_{Bg} -closed.

Proof:

(1) Since A is regular open in (X, τ) , we have $scl(A)=A \cup int(cl(A)) = A$ and $pint(A)=A \cap int(cl(A)) = A$. Thus scl(A) and pint(A) are Λ_{Bg} -closed in (X, τ) .

(2) Let A be regular closed in (X, τ) . Then pcl(A)=A U cl(int(A)) = A. Thus pcl(A) is Λ_{Bg} -closed in (X, τ) .

Definition: 3.21 A space X is said to be a B-normal space if for every pair of disjoint B-closed subsets A and B of X there exist B-open sets U, V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Remark: 3.22 If (X, τ) is a B-normal space and suppose that Y is a Bg-closed subset of X. Then $(Y, Y \cap \tau)$ is B-normal.

Proof: Let E and F be B-closed in X and suppose that $(Y \cap E) \cap (Y \cap F) = \emptyset$. Then $Y \subseteq (E \cap F)^c \in \tau$ and hence $Bcl(Y) \subseteq (E \cap F)^c$. Thus $(Bcl(Y) \cap E) \cap (Bcl(Y) \cap F) = \emptyset$. Since (X, τ) is B-normal, there exists disjoint B-open sets U and V such that $Bcl(Y) \cap E \subseteq U$ and $Bcl(Y) \cap F \subseteq V$. It follows then that $Y \cap E \subseteq U \cap Y$ and $Y \cap F \subseteq V \cap Y$.

Remark: 3.23 By Remark 3.6. every Λ_{Bg} - closed set of a B-normal space is B-normal.

Definition: 3.24. A subset S of X is said to be locally-B-closed if $S = U \cap F$, where U is B-open and F is B-closed in (X, τ) .

Theorem: 3.25. For a subset S of (X, τ) , the following are equivalent.

(1) S is locally-B-closed.
(2) S = P ∩ Bcl(S) for some B-open set P.
(3) Bcl(S) - S is B-closed.
(4) S U (X- Bcl(S)) is B-open.
(5) S ⊆ Bint(S ∪ (X - Bcl(S))).

Proof:

 $\begin{array}{l} (1) \rightarrow (2) \ S = P \cap Q \ \text{where P is B-open and Q is B-closed. } S \subset Q \ \text{implies Bcl}(S) \subset Q. \ \text{So} \ S = P \cap Q \supset P \cap Bcl}(S). \\ \text{And } S \subset P \ \text{and } S \subset Bcl}(S) \ \text{implies } S \subset P \cap Bcl}(S). \ \text{Hence } S = P \cap Bcl}(S). \\ (2) \ \rightarrow (3) \ Bcl}(S) - S = Bcl}(S) \cap (X - P) \ \text{which is B-closed.} \\ (3) \ \rightarrow (4) \ S \cup (X - Bcl}(S)) = X - (Bcl}(S) - S). \ \text{Hence } S \cup (X - (Bcl}(S))) \ \text{is B- open.} \\ (4) \ \rightarrow (5) \ \text{Since } S \cup (X - (Bcl}(S))) \ \text{is B-open, } S \subseteq Bint}(S \cup (X - (Bcl}(S)))). \\ (5) \ \rightarrow (6) \ S \subseteq Bint \ (S \cup (X - (Bcl}(S)))) \ \text{implies } S = Bint}(S \cup (X - (Bcl}(S)))) \ \cap Bcl}(S). \end{array}$

Theorem: 3.26 Let A be locally-B-closed subset of (X, τ) . For the set A, the following properties are equivalent:

(1) A is B-closed; (2) A is Λ_{Bg} -closed; (3) A is Bg -closed.

Proof: By Remark 3.6, it suffices to prove that (3) implies (1). By Theorem 3.25 A \cup (Bcl(A))^c is B-open in (X, τ) since A is locally-B-closed. Now A \cup (Bcl(A))^c is an B-open set of (X, τ) such that A \subseteq AU (Bcl(A))^c. Since A is Bg-closed, then Bcl (A) \subseteq A \cup (Bcl (A))^c. But Bcl(A) \cap (Bcl(A))^c= \emptyset . Thus we have Bcl(A) \subseteq A and hence A is B-closed.

Definition: 3.27 A subset A in (X, τ) is said to be Λ_{Bg} -open in (X, τ) if and only if A^c is Λ_{Bg} -closed in (X, τ) .

Every B-open set in (X, τ) is Λ_{Bg} -open in (X, τ) but not conversely. It can be verified from the following example.

Example: 3.28 Let A = {a} from Example 3.7. Then A is Λ_{Bg} -open set but it is not B-open in (X, τ).

Theorem: 3.29 The intersection of two Λ_{Bg} - open sets is Λ_{Bg} - open.

Proof: This is obvious by Theorem 3.8.

Theorem: 3.30 A set A is Λ_{Bg} -open in (X, τ) if and only if $F \subseteq Bint(A)$ whenever F is $B\lambda$ -closed in (X, τ) and $F \subseteq A$.

© 2011, IJMA. All Rights Reserved

Proof: Suppose that $F \subseteq Bint(A)$ whenever F is $B\lambda$ -closed and $F \subseteq A$. Let $A^c \subseteq G$, where G is $B\lambda$ -open. Hence $G^c \subseteq A$. By assumption $G^c \subseteq Bint(A)$ which implies that $(Bint(A))^c \subseteq G$, so $Bcl(A^c) \subseteq G$. Hence A^c is Λ_{Bg} -closed i,e., A is Λ_{Bg} - open.

Conversely, let A be Λ_{Bg} -open. Then A^c is Λ_{Bg} -closed. Also let F be a $B\lambda$ -closed set contained in A. Then F^c is $B\lambda$ -open. Therefore whenever $A^c \subseteq F^c$, $Bcl(A^c) \subseteq F^c$. This implies that $F \subseteq (Bcl(A^c))^c = Bint(A)$. Thus $F \subseteq Bint(A)$.

Theorem: 3.31 A set A is Λ_{Bg} -open in (X, τ) if and only if G = X whenever G is $B\lambda$ -open and Bint $(A) \cup A^c \subseteq G$.

Proof: Let A be Λ_{Bg} -open, G B λ -open and Bint(A) \cup A^c \subseteq G. This gives G^c \subseteq (Bint(A))^c \cap (A^c)^c = (Bint(A))^c \setminus A^c = Bcl(A^c) \setminus A^c. Since A^c is Λ_{Bg} -closed and G^c is B λ -closed, by Theorem 3.16 it follows that G^c = Ø. Therefore X = G. Conversely, suppose that F is B λ - closed and F \subseteq A. Then Bint(A) \cup A^c \subseteq Bint(A) \cup F^c. It follows that Bint(A) \cup F^c = X and hence F \subseteq Bint(A). Therefore A is Λ_{Bg} - open.

Theorem: 3.32 If Bint(A) \subseteq B \subseteq A and A is Λ_{Bg} -open in (X, τ), then B is Λ_{Bg} - open in (X, τ).

Proof: Suppose Bint(A) \subseteq B \subseteq A and A is Λ_{Bg} -open in (X, τ). Then $A^c \subseteq Bc \subseteq Bcl(A^c)$ and A^c is Λ_{Bg} -closed. By Theorem 3.17, B is Λ_{Bg} -open in (X, τ).

Theorem: 3.33. A set A is Λ_{Bg} -closed in (X, τ) if and only if Bcl(A) \ A is Λ_{Bg} -open in (X, τ) .

Proof: Necessity. Suppose that A is Λ_{Bg} -closed in (X, τ) . Let $F \subseteq Bcl(A) \setminus A$, where F is $B\lambda$ - closed. By Theorem 3.16, $F = \emptyset$. Therefore $F \subseteq Bint(Bcl(A) \setminus (A))$ and by Theorem 3.30, $Bcl(A) \setminus A$ is Λ_{Bg} -open in (X, τ) .

Sufficiency. Let $A \subseteq G$ where G is $B\lambda$ - open. Then $Bcl(A) \cap G^c \subseteq Bcl(A) \cap A^c = Bcl(A) \setminus A$. Since $Bcl(A) \cap G^c$ is $B\lambda$ - closed and $Bcl(A) \setminus A$ is Λ_{Bg} -open, by Theorem 3.30, we have $Bcl(A) \cap G^c \subseteq Bint(Bcl(A) \setminus A) = \emptyset$. Hence A is Λ_{Bg} - closed in (X, τ) .

Theorem: 3.34 For a subset $A \subseteq X$, the following properties are equivalent.

(1) A is Λ_{Bg}-closed.
(2) Bcl(A) \ A contains no nonempty Bλ - closed set.
(3) Bcl(A) \ A is Λ_{Bg} -open.

Proof: This follows from Theorems 3.16 and 3.33.

Theorem: 3.35 A subset A in (X, τ) is \bigwedge_{Bg} -closed if and only if $cl_{B\lambda}(\{x\}) \cap A \neq \emptyset$ for every $x \in Bcl(A)$.

Proof: Necessity. Suppose that $cl_{B\lambda}(\{x\}) \cap A = \emptyset$ for some $x \in Bcl(A)$. Then $X - cl_{\lambda}(\{x\})$ is a B λ -open set containing A. Furthermore, $x \in Bcl(A) - (X - cl_{B\lambda}(\{x\}))$ and hence $Bcl(A) \not\subset X - cl_{B\lambda}(\{x\})$. This shows that A is not Λ_{Bg} -closed.

Sufficiency. Suppose that A is not Λ_{Bg} -closed. There exists a $B\lambda$ -open set U containing A such that $Bcl(A) - U \neq \emptyset$. There exists $x \in Bcl(A)$ such that $x \notin U$; hence $cl_{B\lambda}(\{x\}) \cap U = \emptyset$. Therefore, $cl_{B\lambda}(\{x\}) \cap A = \emptyset$ for some $x \in Bcl(A)$.

4. FUNCTIONS:

Definition: 4.1 A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(1) $B\lambda$ -irresolute if $f^{-1}(V)$ is $B\lambda$ -open in X for every $B\lambda$ -open set V of Y, (2) $B\lambda$ -closed if f(F) is $B\lambda$ -closed in Y for every $B\lambda$ -closed set F of X,

(3) B-continuous if $f^{-1}(V)$ is B-closed in X for every B-closed set V of Y.

Definition: 4.2 A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be B-closed if the image of every B-closed set in (X, τ) is B-closed set in (Y, σ) .

Theorem: 4.3 Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be B λ -irresolute B-closed function. If A is Λ_{Bg} -closed in X, then f (A) is Λ_{Bg} -closed in Y.

Proof: Let A be a Λ_{Bg} -closed set of X and V a B λ -open set of Y containing f(A). Since f is B λ -irresolute, f¹(V) is B λ -open in X and A \subset f¹(V). Since A is Λ_{Bg} -closed, Bcl (A) \subset f¹(V) and f(A) \subset f(Bcl(A)) \subset V. Since f is B-closed, we obtain Bcl (f (A)) \subset V. This shows that f (A) is Λ_{Bg} -closed in Y.

Lemma: 4.4 A function $f : (X, \tau) \to (Y, \sigma)$ is B λ -closed if and only if for each subset B of Y and each $U \in B\lambda O(X, \tau)$ containing $f^{-1}(B)$, there exists $V \in B\lambda O(Y, \sigma)$ such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof: Necessity. Suppose that f is B λ -closed. Let $B \subset Y$ and $U \in B\lambda O(X, \tau)$ containing $f^{-1}(B)$. Put V = Y - f(X - U). Then we obtain $V \in B\lambda O(Y, \sigma)$, $B \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency. Let F be any B λ -closed set of (X, τ). Set f (F) = B, then F \subset f¹(B) and f¹(Y-B) \subset X – F \in B λ O(X, τ). By hypothesis, there exists V \in B λ O(Y, σ) such that Y – B \subset V and f¹(V) \subset X – F. Therefore we obtain Y –V \subset B = f (F) \subset Y – V. Hence f (F) = Y – V and f (F) is B λ -closed in (Y, σ). Therefore, f is B λ -closed.

Theorem: 4.5 Let $f: (X, \tau) \to (Y, \sigma)$ be a B-continuous B λ -closed function. If B is a Λ_{Bg} -closed set of (Y, σ) , then $f^{1}(B)$ is Λ_{Bg} -closed in (X, τ) .

Proof: Let B be a Λ_{Bg} -closed in (Y, σ) and U a B λ -open set of (X, τ) containing $f^{1}(B)$. Since f is B λ -closed, by Lemma 4.4 there exists a B λ -open set V of (Y, σ) such that $B \subset V$ and $f^{1}(V) \subset U$. Since B is Λ_{Bg} -closed in (Y, σ) , Bcl $(B) \subset V$ and hence $f^{1}(B) \subset f^{1}(Bcl(B)) \subset f^{1}(V) \subset U$. Since f is B-continuous, $f^{1}(Bcl(B))$ is B-closed and hence Bcl $(f^{1}(B)) \subset U$. This shows that $f^{1}(B)$ is Λ_{Bg} -closed in (X, τ) .

REFERENCES:

[1] M. E. Abd El-Monsef, A. M. Kozae and R. A. Abu-Gdairi, New approaches for generalized continuous functions, Int. Journal of Math. Analysis, 4(27) (2010), 1329-1339.

[2] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and dual of generalized continuity, Questions Answers Gen. Topology, 15(1997), 3-13.

[3] M. Caldas, S. Jafari and T. Noiri, On A-generalized closed sets in topological spaces, Acta Math. Hungar., 118 (4) (2008), 337-343.

[4] M. Caldas, S. Jafari and G. B. Navalagi, More on λ -closed sets in topological spaces, Revista Colombiana de Math., 41(2) (2007), 355-369.

[5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.

[6] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internat J.Math. Math. Sci., 12 (1989), 417-424.

[7] N. Levine, Simple extension of topologies, Amer. Math. Monthly, 71 (1964), 22-25.

[8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[9] H. Maki, Generalized A-sets and the associated closure operator in Special Issue in Commemoration of Prof. Kazusada Ikeda's Retirement (1986), 139-146.

[10] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-Deep, On pre- continuous and weak pre- continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.

[11] M. Murugalingam, O. Ravi and S. Nagarani, New generalized continuous functions via new generalized open sets on simply extended topological spaces. (Submitted).

[12] O. Ravi, S. Pious Missier and S. Jeyashri, Another generalization of closed sets in simply extended topological spaces (submitted).

[13] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-481.

[14] A. Vadivel, R. Vijayalakshmi and D. Krishnaswamy, B-Generalized regular and B-generalized normal spaces, International Mathematical Forum, 5 (54) (2010), 2699-2706.
