ALMOST CONTRA- $\hat{\mathrm{g}}$-CONTINUOUS FUNCTIONS

${ }^{1}$ O. Ravi*, ${ }^{2}$ S. Jeyashri, ${ }^{3}$ C. M. Santhana and ${ }^{4}$ J. Antony Rex Rodrigo
${ }^{1,2,3}$ Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, India
${ }^{4}$ Department of Mathematics, V.O. Chidambaram College, Thoothukudi, Tamil Nadu, India
E-mail: ${ }^{1}$ siingam@yahoo.com, ${ }^{2}$ jeyabala1@yahoo.com, ${ }^{3}$ santhana.cm@gmail.com,
${ }^{3}$ antonyrexrodrigo@yahoo.co.in

(Received on: 15-02-11; Accepted on: 01-06-11)

Abstract

In this paper, we introduce and investigate the notion of almost contra- $\hat{\mathrm{g}}$-continuous functions which is weaker than both notions of contra -continuous functions [10] and (θ, s)-continuous functions [20] in topological spaces. We discuss the relationships with some other related functions. At the same time, we show that almost-contra- \hat{g}-continuity and ($\left.s c^{*}, s\right)$-continuity are independent of each other.

Key words and phrases: \hat{g}-closed set, contra- \hat{g}-continuous function, almost contra-gे-continuous function.
2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05

1. INTRODUCTION:

Many topologists studied the various types of generalizations of continuity [1, 3, 5, 12, 17, 22, 25, 26, 32, 34]. In 1996, Dontchev [10] introduced the notion of contra-continuity. Recently, new types of contra-continuity, such as almost contra-continuity [3], almost contra-precontinuity [12] and contra almost β-continuity [3] have been introduced and studied. Noiri and Popa [29] have obtained a unified theory of almost contra- continuity by using the notion of minimal structures. They have also pointed out that almost contra- continuity (resp. almost contra-precontinuity, contra almost β-continuity) is equivalent to (θ, s)-continuity [20] (resp. (p, s)-continuity [18], β-quasi irresoluteness [19]). Quite recently, Ekici [13] has introduced the notion of (LC, s) - continuity and obtained some properties and relationships among the other related functions.

In this paper, we introduce the notion of almost contra $\hat{\mathrm{g}}$-continuous functions as a generalization of both notions of contra-continuous functions and (θ, s)-continuous functions. We obtain their characterizations and properties and a new decomposition of (θ, s)-continuity.

2. PRELIMINARIES:

Throughout the present paper, (X, $\boldsymbol{\tau}),(\mathrm{Y}, \sigma$) and (Z, γ) (or X, Y and Z) denote topological spaces in which no separation axiom are assumed unless explicitly stated. The closure and the interior of a subset A of a topological space $(\mathrm{X}, \boldsymbol{\tau})$ are denoted by $\mathrm{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{A})$, respectively.

Definition: 2.1 A subset A of a space (X, τ) is said to be
(1) regular open [40] if $\mathrm{A}=\operatorname{int(cl(A))}$;
(2) α-open $[28]$ if $\mathrm{A} \subseteq \operatorname{int(cl(int(A)));~}$
(3) semi-open [22] if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$.
(4) preopen [25] (or locally dense [7] or nearly open [17]) if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A})$);
(5) β-open [1](or semi-preopen [2]) if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$;
(6) Locally closed [4] (or FG [41]) if $\mathrm{A}=\mathrm{U} \cap \mathrm{V}$, where U is open in X and V is closed in X .
(7) slc *-set [33] if $\mathrm{A}=\mathrm{U} \cap \mathrm{V}$, where U is semi-open in X and V is closed in X .

The δ-interior of a subset A of X is the union of all regular open sets of X contained in A and is denoted by δ-int(A). A subset A is said to be δ-open [43] if A $=\delta$-int(A). The family of all regular open (resp. δ-open, α-open, semi-open, preopen, β-open) sets in a space (X, τ) is denoted by $\mathrm{RO}(\mathrm{X})$ (resp. $\delta \mathrm{O}(\mathrm{X}), \alpha \mathrm{O}(\mathrm{X}), \mathrm{SO}(\mathrm{X}), \mathrm{PO}(\mathrm{X}), \beta \mathrm{O}(\mathrm{X})$).
*Corresponding author: O. Ravi¹, *E-mail: siingam@yahoo.com
${ }^{1}$ O. Ravi et al. / Almost contra- \hat{g}-continuous functions/IJMA- 2(6), June-2011, Page: 894-903
The complement of a regular open (resp. δ-open, α-open, semi-open, preopen, β-open) set is said to be regular closed (resp. δ-closed [43], α-closed [26], semi-closed [8], preclosed [25], β-closed [1] or semi-preclosed [2]). The family of all clopen (resp. regular closed) subsets of X will denoted by $\mathrm{CO}(\mathrm{X})$ (resp. $\mathrm{RC}(\mathrm{X})$). We set $\mathrm{CO}(\mathrm{X}, \mathrm{x})=\{\mathrm{V} \in \mathrm{CO}(\mathrm{X}) \mid \mathrm{x}$ $\in \mathrm{V}\}$.

Definition: 2.2 A subset A of a space (X, τ) is said to be g-closed $[23]$ in X if $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X .

Definition: 2.3 A subset A of a space (X, τ) is said to be \hat{g}-closed [45] (or ω-closed [33]) in X if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is semi-open in X .

The complement of a \hat{g}-closed set is said to be \hat{g}-open. The family of all \hat{g}-open sets forms a topology. The family of all $\hat{\mathrm{g}}$-closed (resp. $\hat{\mathrm{g}}$-open) subsets of X will denoted by $\hat{\mathrm{G}} \mathrm{C}(\mathrm{X})$ (resp. $\hat{\mathrm{G} O}(\mathrm{X})$). It is well known that every closed set is $\hat{\mathrm{g}}$-closed set. But, the converse of this implication is not true [44].

Remark: 2.4. [33]
Closed sets imply both slc*-sets and $\hat{\mathrm{g}}$-closed sets which are independent of each other.
Example: 2.5. [33]

(2). Let $X=\{a, b, c\}$ and $\tau=\{\emptyset, X,\{a\}\}$. Let $A=\{a, c\}$. Then A is slc*-set but it is not \hat{g}-closed set.

Proposition: 2.6. [33]
A subset A is closed in a space (X, τ) if and only if it is slc*-set and $\hat{\mathrm{g}}$-closed.

Remark: 2.7.

From the subsets mentioned above, we have the following implications.

Diagram: 1
Diagram 1 is obvious. None of these implications is reversible (see, related papers).

3. CHARACTERIZATIONS OF ALMOST CONTRA $\hat{\mathbf{g}}$-CONTINUOUS FUNCTIONS:

Definition: 3.1.

A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be almost contra \hat{g}-continuous if $f^{-1}(V)$ is \hat{g}-closed in X for each regular open set V of Y .

Theorem: 3.2.
For a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$, the following properties are equivalent :
(1) f is almost contra g -continuous;
(2) $\mathrm{f}^{-1}(\mathrm{~F}) \in \hat{\mathrm{G} O}(\mathrm{X})$ for every $\mathrm{F} \in \mathrm{RC}(\mathrm{Y})$;
(3) $\mathrm{f}^{-1}(\operatorname{int}(\mathrm{cl}(\mathrm{G})) \in \hat{\mathrm{G}} \mathrm{C}(\mathrm{X})$ for every open subset G of Y;
(4) $\mathrm{f}^{-1}(\operatorname{cl}(\operatorname{int}(\mathrm{~F}))) \in \hat{\mathrm{G} O}(\mathrm{X})$ for every closed subset F of Y .

Proof:
(1) \Rightarrow (2) Let $\mathrm{F} \in \mathrm{RC}(\mathrm{Y})$. Then $(\mathrm{Y}-\mathrm{F}) \in \mathrm{RO}(\mathrm{Y})$ and by $(1), \mathrm{f}^{1}(\mathrm{Y}-\mathrm{F})=\left(\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~F})\right) \in \hat{\mathrm{G}} \mathrm{C}(\mathrm{X})$. Hence, $\mathrm{f}^{1}(\mathrm{~F}) \in \hat{\mathrm{G} O}(\mathrm{X})$.
(2) \Rightarrow (1) This proof is obtained similarly to that of $(1) \Rightarrow(2)$
$(1) \Rightarrow(3)$ Let G be an open subset of Y. Since $\operatorname{int}(c l(G))$ is regular open, we have $f^{-1}(\operatorname{int}(\operatorname{cl}(G)) \in \hat{G} C(X)$ by using (1).
(3) \Rightarrow (1) This proof is obvious.
$(2) \Rightarrow(4)$ This proof is similar as $(1) \Rightarrow(3)$.
$(4) \Rightarrow(2)$. This proof is similar as $(3) \Rightarrow(1)$.
Theorem: 3.3
If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is almost contra $\hat{\mathrm{g}}$-continuous, then the following equivalent properties hold:
(1) For each $x \in X$ and each regular closed F in Y containing $f(x)$, there exists a \hat{g}-open set U in X containing x such that $f(U) \subseteq F$;
(2) For each $x \in X$ and each regular open V in Y non-containing $f(x)$, there exists a \hat{g}-closed set K in X non-containing x such that $f^{-1}(V) \subseteq K$.

Proof: Since it is obvious that (1) and (2) are equivalent of each other, we will prove (1). Let F be any regular closed set in Y containing $f(x)$. By Theorem 3.2(2), $f^{-1}(F) \in \hat{G O}(X)$ and $x \in f^{-1}(F)$. If we take $U=f^{-1}(F)$, we obtain immediately $f(U) \subseteq F$.

4. THE RELATED FUNCTIONS AND SOME PROPERTIES:

Definition: 4.1

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be almost continous [34] (resp. δ-continuous [30], an R-map [6], regular setconnected [11], a contra R-map[15], almost contra super continuous [14], (LC, s)-continuous [13], (θ, s)-continuous [20], (slc*, s)-continuous, almost semi-continuous [27], almost contra g-continuous [21]) if $f^{-1}(V)$ is open (resp. δ open, regular open, clopen, regular closed, δ-closed, locally closed, closed, slc*-set, semi-open, g-closed) in X for each regular open set V of Y .
By using Diagram 1 and Proposition 2.6, we obtain Diagram 2.

Diagram II

Where
(1) regular set-connected,
(6) δ-continuous,
(2) contra R-map,
(7) almost-continuous,
(3) almost contra super continuous,
(8) (LC, s)-continuous,
(4) (θ, s)-continuous,
(9) (slc*, s)-continuous,
(5) R-map,
(10) almost contra $\hat{\mathrm{g}}$-continuous,
(11). almost contra g-continuous.

Remark: 4.2

None of the implications is reversible as shown by following example.

Example: 4.3

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\emptyset, \mathrm{X},\{\mathrm{a}\}\}$ and $\sigma=\{\varnothing, \mathrm{Y},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an identity map.
(1) Here f is $\left(\mathrm{slc}^{*}, \mathrm{~s}\right)$-continuous but it is not almost contra \hat{g}-continuous, since $\mathrm{f}^{-1}(\{a\})=\{\mathrm{a}\}$ is not \hat{g}-closed in X.
(2) Here f is $\left(s l c^{*}, s\right)$-continuous but it is not (LC, s)-continuous, since $f^{-1}(\{b\})=\{b\}$ is not locally closed in X.

Example: 4.4

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\emptyset, \mathrm{X},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\emptyset, \mathrm{Y},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an identity map. Then f is almost contra \hat{g}-continuous.
(1) It is not $\left(\mathrm{slc}^{*}, \mathrm{~s}\right)$-continuous, since $\mathrm{f}^{1}(\{\mathrm{c}\})=\{\mathrm{c}\}$ is not slc*-set in X .
(2) It is not (θ, s)-continuous, since $f^{-1}(\{a, b\})=\{a, b\}$ is not closed in X.

Example: 4.5

Let $X=Y=\{a, b, c\}, \tau=\{\emptyset, X,\{a\}\}$ and $\sigma=\{\emptyset, Y,\{b\},\{c\},\{b, c\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an identity map. Then f is almost contra g-continuous but it is not almost contra \hat{g}-continuous, since $f^{-1}(\{b\})=\{b\}$ is not \hat{g}-closed in X.

The other examples are as shown in the related papers.

Proposition: 4.6

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is (θ, s)-continuous if and only if it is (slc*, s)-continuous and almost contra $\hat{g}-$ continuous.

Proof: This obtained from Proposition 2.6.

Definition: 4.7

A space X is said to be
(1) \hat{g}-space (resp. locally \hat{g}-indiscrete) if every \hat{g}-open set of X is open (resp. closed) in X .
(2) In a $\mathrm{T}_{\hat{\mathrm{g}}}$-space [33] if every $\hat{\mathrm{g}}$-closed set of X is closed in X .

${ }^{1}$ O. Ravi et al. / Almost contra- \hat{g}-continuous functions/IJMA- 2(6), June-2011, Page: 894-903

We obtain directly the following theorem by using Definition 4.7.

Theorem: 4.8

If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is almost contra $\hat{\mathrm{g}}$-continuous, then the following properties hold:
(1) If X is a $\hat{\mathrm{g}}$-space (or $\mathrm{T}_{\hat{\mathrm{g}}}$-space), then f is (θ, s)-continuous;
(2) If X is locally $\hat{\mathrm{g}}$-indiscrete, then f is almost continuous.

Theorem: 4.9

If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is almost contra $\hat{\mathrm{g}}$-continuous and almost semi-continuous, then f is contra-R-map.
Proof: Let $\mathrm{V} \in \mathrm{RO}(\mathrm{Y})$. Since f is almost contra $\hat{\mathrm{g}}$-continuous and almost semi-continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\hat{\mathrm{g}}$-closed and semiopen. So $f^{1}(V)$ is regular closed. It turns out that f is contra R-map.

Theorem: $\mathbf{4 . 1 0}$

Let $f: X \rightarrow Y$ be a function and let $g: X \rightarrow X \times Y$ be the graph function of f, defined by $g(x)=(x, f(x))$ for every $x \in$ X . If g is almost contra $-\hat{g}$ - continuous function, then f is almost contra- \hat{g}-continuous.

Proof: Let $V \in R C(Y)$, then $X \times V=X \times \operatorname{cl}(\operatorname{int}(V))=\operatorname{cl}(\operatorname{int}(X)) \times \operatorname{cl}(\operatorname{int}(V))=\operatorname{cl}(\operatorname{int}(X \times V))$. Therefore, we have X $\times V \in R C(X \times V)$. Since g is almost contra- \hat{g}-continuous, then $f^{-1}(V)=g^{-1}(X \times V) \in \hat{G} O(X)$. Thus, f is almost contra-$\hat{\mathrm{g}}$-continuous.

Definition: 4.11

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be
(1) \hat{g}-continuous [32] if $f^{-1}(V)$ is \hat{g}-closed in X for each closed set V of Y.
(2) perfectly continuous [30] (resp. contra \hat{g}-continuous [32]) if $f^{-1}(V)$ is clopen (resp. \hat{g}-closed) in X for each open set V of Y .

Since every regular open set is open, it is obvious that every contra $\hat{\mathrm{g}}$-continuous function is almost contra $\hat{\mathrm{g}}$ continuous. But the converse of this implication is not true in general as shown by the following example.

Example: 4.12

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \tau=\{\varnothing, \mathrm{X},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$ and $\sigma=\{\emptyset, \mathrm{Y},\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined by $f(a)=b, f(b)=a, f(c)=(c)$. Then f is almost contra \hat{g}-continuous but it is not contra \hat{g}-continuous, since $f^{-1}(\{c\})=\{c\}$ is not \hat{g}-closed X.

Theorem: 4.13

For two functions $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \gamma)$, let $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \gamma)$ is a composition function. Then the following properties hold:
(1) If f is almost contra $\hat{\mathrm{g}}$-continuous and g is an R -map, then $\mathrm{g} \circ \mathrm{f}$ is almost contra $\hat{\mathrm{g}}$-continuous.
(2) If f is almost contra \hat{g}-continuous and g is perfectly continuous, then $g \circ f$ is \hat{g}-continuous and contra \hat{g}-continuous.
(3) If f is contra \hat{g}-continuous and g is almost continuous, then $g \circ f$ is almost contra \hat{g}-continuous.

Proof: (1) Let V be any regular open set in Z. Since g is an $R-m a p, g^{-1}(V)$ is regular open. Since f is almost contra $\hat{g}-$ continuous, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $\hat{\mathrm{g}}$-closed. Therefore, $\mathrm{g} \circ \mathrm{f}$ is almost contra $\hat{\mathrm{g}}$-continuous.
(2) and (3). These proofs are obtained similarly as the proof of (1).

To give the following two theorems, we define two functions.

Definition: $\mathbf{4 . 1 4}$

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be $\hat{\mathrm{g}}^{*}$-open [33] (resp. $\hat{\mathrm{g}}^{*}$-closed [33]) if $\mathrm{f}(\mathrm{U})$ is $\hat{\mathrm{g}}$-open (resp. $\hat{\mathrm{g}}$-closed) in Y for each \hat{g}-open (resp. \hat{g}-closed) set U of X.

Theorem: 4.15

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is surjective $\hat{\mathrm{g}}$-open (or $\hat{\mathrm{g}}$-closed) and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is a function such that $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is almost contra $\hat{\mathrm{g}}$-continuous, then $\hat{\mathrm{g}}$ is almost contra $\hat{\mathrm{g}}$-continuous.

Proof: Let V be any regular closed (resp. regular open) set in Z. Since $g \circ f$ is almost contra \hat{g}-continuous, we have $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is $\hat{\mathrm{g}}$-open (resp. \hat{g}-closed). Since f is surjective and $\hat{\mathrm{g}}$-open (or \hat{g}-closed) we have $\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)\right)$ $=g^{-1}(\mathrm{~V})$ is $\hat{\mathrm{g}}$-open ($\hat{\mathrm{g}}$-closed). Therefore, g is almost contra $\hat{\mathrm{g}}$-continuous.

Lemma: 4.16. [33]
If $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{X}$ where A is $\hat{\mathrm{g}}$-closed relative to B and B is open and $\hat{\mathrm{g}}$-closed relative to X , then A is $\hat{\mathrm{g}}$-closed relative to X.

Theorem: 4.17

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function and $\mathrm{x} \in \mathrm{X}$. If there exists $\mathrm{A} \in \hat{\mathrm{G} O}(\mathrm{X})$ such that $\mathrm{x} \in \mathrm{A}$ and the restriction of f to A is almost contra \hat{g}-continuous at x , then f is almost contra \hat{g}-continuous at x .

Proof: Suppose that $F \in R C(Y)$ containing $f(x)$. Since $f l_{A}:\left(A, \tau I_{A}\right) \rightarrow(Y, \sigma)$ is almost contra \hat{g}-continuous at x, there exists $V \in \hat{G} O(A)$ containing x such that $f(V)=f I_{A}(V) \subset F$. Since $A \in \hat{G O}(X)$ containing x, we obtain that $V \in$ $\hat{G} O(X)$ containing x by using Lemma 4.16.

Theorem: 4.18 [33]
A set A is $\hat{\mathrm{g}}$-open if and only if $\mathrm{F} \subseteq \operatorname{int}(\mathrm{A})$ whenever F is semi-closed and $\mathrm{F} \subseteq \mathrm{A}$.

Theorem: 4.19

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is an almost contra $\hat{\mathrm{g}}$-continuous function and A is closed subset of X , then the restriction function of f to A is almost contra \hat{g}-continuous.

Proof: Let $F \in R O(Y)$. Since f is almost contra \hat{g}-continuous, then we have $f^{-1}(F) \in \hat{G} C(X)$. Since A is closed in X, we obtain that $\left(A \cap f^{-1}(F)\right) \in \hat{G} C(X)$. Since A is closed in $X,\left(f I_{A}\right)^{-1}(F)=\left(A \cap f^{-1}(F)\right) \in \hat{G} C\left(A, \tau_{A}\right)$ by using the definition of subspaces. Therefore, $f \mathrm{I}_{\mathrm{A}}$ is almost contra $\hat{\mathrm{g}}$-continuous.

Theorem: $\mathbf{4 . 2 0}$

For a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$, the following properties are equivalent:
(1) f is almost contra \hat{g}-continuous;
(2) For each $x \in X$ and each regular closed F in Y containing $f(x)$, there exists a \hat{g}-open set U in X containing x such that $f(U) \subset F$;
(3) For each $x \in X$ and each regular open V in Y non-containing $f(x)$, there exists a \hat{g}-closed set K in X non-containing x such that $f^{-1}(V) \subset K$.

Definition: 4.21

A filterbase B is said to be \hat{g}-convergent (resp. rc-convergent [14]) to a point $x \in X$ if for any $A \in \hat{G} O(X)$ containing x (resp. $A \in R C(X)$ containing x), there exists a $B \in B$ such that $B \subset A$.

Theorem 4.22

If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is almost contra $\hat{\mathrm{g}}$-continuous, then for each point $\mathrm{x} \in \mathrm{X}$ and each filterbase \mathbf{B} in $\mathrm{X} \hat{\mathrm{g}}$ converging to x, the filterbase $f(\mathbf{B})$ is re-convergent to $f(x)$.

Proof: Let $x \in X$ and \mathbf{B} be any filterbase in $X \hat{g}$-converging to x. Since f is almost contra \hat{g}-continuous, then for any V $\in R C(Y)$ containing $f(x)$, there exists $U \in \hat{G} O(X)$ containing x such that $f(U) \subset V$. Since \mathbf{B} is \hat{g}-convergent to x, there exists a $B \in \mathbf{B}$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filterbase $f(B)$ is rc-convergent to $f(x)$.

Recall that
(1) a space X is said to be weakly Hausdorff [37] if each element of X is an intersection of regular closed sets.
(2) a space X is said to be $\hat{g}-T_{1}[32]$ if for each pair of distinct points x and y of X, there exist \hat{g}-open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Theorem: 4.23.
If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is an almost contra $\hat{\mathrm{g}}$-continuous injection and Y is weakly Hausdorff, then X is $\hat{\mathrm{g}}-\mathrm{T}_{1}$.
Proof: Suppose that Y is weakly Hausdorff. For any distinct points x and y in X, there exist $V, W \in R C(Y)$ such that $f(x) \in V, f(y) \notin V, f(y) \in W$ and $f(x) \notin W$. Since f is almost contra \hat{g}-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are \hat{g}-open subsets of X such that $x \in f^{-1}(V), y \notin f^{1}(V), y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that X is $\hat{g}-T_{1}$.

Recall that a space X is said to be $\hat{\mathrm{g}}$-connected [32] if X cannot be expressed as the union of two distinct non-empty \hat{g} open subsets of X .

Theorem: 4.24

The almost contra $\hat{\mathrm{g}}$-continuous image of a $\hat{\mathrm{g}}$-connected space is connected.

${ }^{1}$ O. Ravi et al. / Almost contra- \hat{g}-continuous functions/IJMA- 2(6), June-2011, Page: 894-903

Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an almost contra $\hat{\mathrm{g}}$-continuous function of a $\hat{\mathrm{g}}$-connected space X onto a topological space Y. Suppose that Y is not a connected space. There exist non-empty disjoint open sets V_{1} and V_{2} such that
$Y=V_{1} \cup V_{2}$. Therefore, V_{1} and V_{2} are clopen in Y. Since f is almost contra \hat{g}-continuous, $f^{1}\left(V_{1}\right)$ and $f^{1}\left(V_{2}\right)$ are \hat{g}-open in X. Moreover, $f^{-1}\left(V_{1}\right)$ and $f^{-1}\left(V_{2}\right)$ are non-empty disjoint and $X=f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right)$. This shows that X is not \hat{g} connected. This is a contradiction and hence Y is connected.

Definition: 4.25

A topological space X is said to be \hat{g}-ultra-connected if every two non-empty \hat{g}-closed subsets of X intersect.
We recall that a topological space X is said to be hyperconnected [39] if every open set is dense.

Theorem: 4.26.

If X is $\hat{\mathrm{g}}$-ultra-connected and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is an almost contra $\hat{\mathrm{g}}$-continuous surjection, then Y is hyperconnected.
Proof: Suppose that Y is not hyperconnected. Then, there exists an open set V such that V is not dense in Y . So, there exist non-empty regular open subsets $B_{1}=\operatorname{int}(c l(V))$ and $B_{2}=Y-c l(V)$ in Y. Since f is almost contra \hat{g}-continuous, f ${ }^{1}\left(B_{1}\right)$ and $f^{1}\left(B_{2}\right)$ are disjoint \hat{g}-closed. This is contrary to the \hat{g}-ultra-connectedness of X. Therefore, Y is hyperconnected.

Definition: 4.27

A space X is said to be
(1) $\hat{\text { G}}$-closed (resp. nearly compact [35]) if every \hat{g}-closed (resp. regular open) cover of X has a finite subcover;
(2) countably \widehat{G}-closed (resp. nearly countably compact [16], [36]) if every countable cover of X by \hat{g}-closed (resp. regular open) sets has a finite subcover;
(3) \hat{G}-Lindelof (resp. nearly Lindelof [14]) if every cover of X by ĝ-closed (resp. regular open) sets has a countable subcover.

Now, we obtain the following theorem by using the definitions above.

Theorem: 4.28

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an almost contra $\hat{\mathrm{g}}$-continuous surjection. Then, the following properties hold:
(1) If X is \hat{G}-closed, then Y is nearly compact;
(2) If X is countably $\hat{\mathrm{G}}$-closed, then Y is nearly countably compact;
(3) If X is $\hat{\mathrm{G}}$-Lindelof, then Y is nearly Lindelof.

Proof: As the proofs of (2) and (3) are completely similar to the proof of (1), we will prove only (1). Let $\left\{\mathrm{V}_{\alpha}: \alpha \in \mathrm{I}\right\}$ be any regular open cover of Y. Since f is almost contra \hat{g}-continuous, then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a \hat{g}-closed cover of X. Since X is \hat{G}-closed, there exists a finite subset I_{0} of I such that $X=U\left\{f^{1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\}$. Thus we have $Y=U\left\{V_{\alpha}: \alpha \in\right.$ $\left.I_{0}\right\}$ and Y is nearly compact.

Definition: 4.29

A space X is said to be
(1) ĜO-compact (resp. S-closed [42]) if every \hat{g}-open (resp. regular closed) cover of X has a finite subcover;
(2) countably- \hat{g}-compact (resp. countably S-closed [1]) if every countable cover of X by \hat{g}-open (resp. regular closed) sets of X has a finite subcover.
(3) \hat{g}-Lindelof [32] (resp. S-Lindelof [24]) if every ĝ-open (resp. regular closed) cover of X has a countable subcover.

Theorem: 4.30

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an almost contra $\hat{\mathrm{g}}$-continuous surjection. Then, the following properties hold:
(1) If X is $\hat{G} O$-compact, then Y is S-closed;
(2) If X is countably- \hat{g}-compact, then Y is countably S-closed;
(3) If X is $\hat{\mathrm{g}}$-Lindelof, then Y is S-Lindelof.

Proof: Since the proofs of (2) and (3) are completely similar to the proof of (1), we will prove only (1). Let $\left\{\mathrm{V}_{\alpha}\right.$: $\left.\alpha \in \mathrm{I}\right\}$ be any regular closed cover of Y. Since f is almost contra \hat{g}-continuous, then $\left\{\mathrm{f}^{1}\left(\mathrm{~V}_{\alpha}\right): \alpha \in \mathrm{I}\right\}$ is a $\hat{\mathrm{g}}$-open cover of X and hence there exists a finite subset I_{0} of I such that $X=U\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\}$. So, we have $Y=U\left\{V_{\alpha}: \alpha \in I_{0}\right\}$ and Y is Sclosed.
${ }^{1}$ O. Ravi et al. / Almost contra- \hat{g}-continuous functions/IJMA- 2(6), June-2011, Page: 894-903
Recall that a space X is said to be semi-regular [40] if for any open set U of X and each point $x \in U$, there exists a regular open set V of X such that $x \in V \subset U$.

Definition: 4.31 [33]
Let (X, τ) be a topological space and A be any subset of X . The intersection (resp. union) of all $\hat{\mathrm{g}}$-closed (resp. $\hat{\mathrm{g}}$-open) sets containing (resp. contained in) a set A is called $\hat{\mathrm{g}}$-closure (resp. $\hat{\mathrm{g}}$ - interior) of A and is denoted by $\hat{\mathrm{g} c l}(\mathrm{~A})$ (resp. gint(A)).

Definition: 4.32

A topological space X is said to be
(1) Ultra Hausdorff [38] if for each pair of distinct points x and y in X there exist $U \in C O(X, x)$ and $V \in C O(X, y)$ such that $\mathrm{U} \cap \mathrm{V}=\varnothing$.
(2) $\hat{g}_{-} T_{2}$ [32] if for each pair of distinct points x and y in X there exist $U \in \hat{G} O(X, x)$ and $V \in \hat{G} O(X, y)$ such that $U \cap$ $\mathrm{V}=\varnothing$.

Theorem: 4.33

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is an almost contra $\hat{\mathrm{g}}$-continuous injection and Y is Ultra Hausdorff, then X is $\hat{\mathrm{g}}-\mathrm{T}_{2}$.
Proof: Let x_{1} and x_{2} be any distinct points of X. Then since f is injective and Y is Ultra Hausdorff, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ and there exist V_{1} and $V_{2} \in C O(Y)$ such that $f\left(x_{1}\right) \in V_{1}, f\left(x_{2}\right) \in V_{2}$ and $V_{1} \cap V_{2}=\emptyset$. Hence V_{1} and $V_{2} \in R C(Y)$ and then, since f is almost contra \hat{g}-continuous, $x_{1} \in f^{-1}\left(V_{1}\right) \in \hat{G O}(X), x_{2} \in f^{-1}\left(V_{2}\right) \in \hat{G} O(X)$ and $f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right)=\emptyset$. This shows that X is $\hat{\mathrm{g}}-\mathrm{T}$.

Definition: 4.34

Let A be a subset of a topological space X . The $\hat{\mathrm{g}}$-frontier of $\mathrm{A}, \hat{\mathrm{g} F r}(\mathrm{~A})$, is defined by $\hat{\mathrm{g} F r}(\mathrm{~A})=\hat{\mathrm{g} c l}(\mathrm{~A}) \cap \hat{\mathrm{g} c l}(\mathrm{X}-\mathrm{A})=$ $\hat{g} c l(A) \cap(X-$ gint $(A))$.

Theorem: $\mathbf{4 . 3 5}$

The set of all points $\mathrm{x} \in \mathrm{X}$ at which a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is not almost contra $\hat{\mathrm{g}}$-continuous is identical with the union of the \hat{g}-frontier of the inverse images of regular closed sets of Y containing $f(x)$.

Proof: Assume that f is not almost contra \hat{g}-continuous at $x \in X$. Then, there exists a regular closed set F of Y containing $f(x)$ such that $f(U) \cap(Y-F) \neq \emptyset$ for every $U \in \hat{G O}(X, x)$. Therefore, $x \in \hat{g c l}\left(f^{1}(Y-F)\right)=\hat{g c l}\left(X-f^{11}(F)\right)$. On the other hand, we obtain $x \in f^{-1}(F) \subset \hat{g} c l\left(f^{-1}(F)\right)$ and so $x \in \hat{g} \operatorname{Fr}(F)$.

Conversely, suppose that f is almost contra \hat{g}-continuous at $x \in X$ and let F be any regular closed set of Y containing $f(x)$. By Theorem 3.3, there exists $U \in \hat{G} O(X, x)$ such that $x \in U \subset f^{-1}(F)$. Therefore, $x \in \hat{g} \operatorname{int}\left(f^{-1}(F)\right)$. This contradicts that $\mathrm{x} \in \hat{\mathrm{g} F r}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)$. Thus, f is not almost contra $\hat{\mathrm{g}}$-continuous.

Definition: $\mathbf{4 . 3 6}$

A topological space X is said to be
(1) Ultra normal [38] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets;
(2) \hat{g}-normal if each pair of non-empty disjoint closed sets can be separated by disjoint \hat{g}-open sets.

Theorem: 4.37

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is an almost contra $\hat{\mathrm{g}}$-continuous closed injection and Y is Ultra normal, then X is $\hat{\mathrm{g}}$-normal.
Proof: Let F_{1} and F_{2} be disjoint closed subsets of X. Since f is closed and injective, $f\left(F_{1}\right)$ and $f\left(F_{2}\right)$ are disjoint closed and hence they are separated by disjoint clopen sets V_{1} and V_{2}, respectively. Since $V_{1}, V 2 \in R C(Y), F_{i} \subset f^{-1}\left(V_{i}\right) \in$ $\hat{G} O(X)$ for $i=1,2$ and $f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right)=\emptyset$. This shows that X is \hat{g}-normal.

5. \hat{g}-REGULAR GRAPHS AND STRONGLY CONTRA- \hat{g}-CLOSED GRAPHS:

In this section, we define the notions of \hat{G}-regular graphs and strongly contra- \hat{g}-closed graphs and investigate the relationships between the graphs and almost contra \hat{g}-continuous functions.

Recall that a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the subset $G_{f}=\{(x, f(x)): x \in X\} \subset X \times Y$ is said to be graph of f.

Definition: 5.1

A graph G_{f} of a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be $\hat{\mathrm{G}}$-regular (resp. strongly contra- $\hat{\mathrm{g}}$-closed) if for each $(\mathrm{x}, \mathrm{y}) \in$ $(\mathrm{X} \times \mathrm{Y}) \backslash \mathrm{G}_{\mathrm{f}}$, there exist a $\hat{\mathrm{g}}$-closed (resp. $\hat{\mathrm{g}}$-open) set U in X containing x and $\mathrm{V} \in \mathrm{RO}(\mathrm{Y})$ (resp. $\mathrm{V} \in \mathrm{RC}(\mathrm{Y})$) containing y such that $(\mathrm{U} \times \mathrm{V}) \cap \mathrm{G}_{\mathrm{f}}=\varnothing$.

Lemma: 5.2

For a graph G_{f} of a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$, the following properties are equivalent:
(1) G_{f} is $\hat{\mathrm{G}}$-regular (resp. strongly contra- $\hat{\mathrm{g}}$-closed);
(2) For each point $(x, y) \in(X \times Y) \backslash G_{f}$, there exist a \hat{g}-closed (resp. \hat{g}-open) set U in X containing x and $V \in R O(Y)$ (resp. $V \in R C(Y)$) containing y such that $f(U) \cap V=\emptyset$.

Proof: This is a direct consequence of Definition 5.1 and the fact that for any subsets $A \subset X$ and $B \subset Y,(A \times B) \cap G_{f}$ $=\varnothing$ if and only if $f(A) \cap B=\varnothing$.

Theorem: 5.3

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is almost contra $\hat{\mathrm{g}}$-continuous and Y is T_{2}, then G_{f} is $\hat{\mathrm{G}}$-regular in $\mathrm{X} \times \mathrm{Y}$.
Proof: Let $(x, y) \in(X \times Y) \backslash G_{f}$. It is obvious that $f(x) \neq y$. Since Y is T_{2}, there exist $V, W \in R O(Y)$ such that $f(x) \in V$, $y \in W$ and $V \cap W=\emptyset$. Since f is almost contra \hat{g}-continuous, $f^{-1}(V)$ is a \hat{g}-closed set in X containing x. If we take $U=$ $f^{1}(V)$. We have $f(U) \subset V$. Therefore, $f(U) \cap W=\emptyset$ and G_{f} is \hat{G}-regular.

Definition: 5.4 A space X is said to be $\hat{g}-T_{0}$ if for each pair of distinct points in X, there exists a \hat{g}-open set of X containing one point but not the other.

Theorem: 5.5

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ have a $\hat{\mathrm{G}}$-regular graph G_{f}. If f is injective, then X is $\hat{\mathrm{g}}-\mathrm{T}_{0}$.
Proof: Let x and y be any two distinct points of X. Then, we have $(x, f(y)) \in(X \times Y) \backslash G_{f}$. Since G_{f} is \hat{G}-regular, there exist a \hat{g}-closed set U of X and $V \in R O(Y)$ such that $(x, f(y)) \in(U \times V)$ and $f(U) \cap V=\varnothing$ by Lemma 5.2. and hence $\mathrm{U} \cap \mathrm{f}^{-1}(\mathrm{~V})=\varnothing$. Therefore, we have $\mathrm{y} \notin \mathrm{U}$. Thus, $\mathrm{y} \in(\mathrm{X}-\mathrm{U})$ and $\mathrm{x} \notin(\mathrm{X}-\mathrm{U})$. We obtain $(\mathrm{X}-\mathrm{U}) \in \hat{G} O(\mathrm{X})$. This implies that X is $\hat{\mathrm{g}}-\mathrm{T}_{0}$.

Theorem: 5.6

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ have a \hat{G}-regular graph G_{f}. If f is surjective, then Y is weakly Hausdorff.

Proof: Let y_{1} and y_{2} be any distinct points of Y. Since f is surjective, $f(x)=y_{1}$ for some $x \in X$ and $\left(x, y_{2}\right) \in(X \times Y) \backslash$ G_{f}. By Lemma 5.2. there exist a \hat{g}-closed set U of X and $F \in R O(Y)$ such that $\left(x, y_{2}\right) \in(U \times F)$ and $f(U) \cap F=\emptyset$; hence $y_{1} \notin F$. Then $y_{2} \notin(Y-F) \in R C(Y)$ and $y_{1} \in(Y-F)$. This implies that Y is weakly Hausdorff.

Theorem: 5.7

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ have a strongly contra \hat{g}-closed graph G_{f}. If f is an almost contra $\hat{\mathrm{g}}$-continuous injection, then X is $\hat{\mathrm{g}}-\mathrm{T}_{2}$.

Proof: Let x and y be the two distinct points of X. Since f is injective, we have $f(x) \neq f(y)$. Then, we have $(x, f(y)) \in(X$ $\times Y) \backslash G_{f}$. Since G_{f} is strongly contra \hat{g}-closed, by Lemma 5.2 , there exists $U \in \hat{G} O(X, x)$ and a regular closed set V containing $f(y)$ such that $f(U) \cap V=\emptyset$. Therefore, $U \cap f^{-1}(V)=\emptyset$. Since f is almost contra \hat{g}-continuous, $f^{-1}(V) \in$ $\hat{\mathrm{G} O}(\mathrm{X}, \mathrm{y})$. This shows that X is $\hat{\mathrm{g}}-\mathrm{T}_{2}$.

REFERENCES:

[1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assist. Univ., 12 (1983), 77-90.
[2] D. Andrijevic, semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
[3] C. W. Baker, On contra-almost β-continuous functions, Kochi J. Math., 1 (2006), 1-8.
[4] N. Bourbaki, General topology, Part-1. Reading, MA: Addison Wesley, 1996.
[5] M. Caldas, S. Jafari, T. Noiri and M. Simoes, A new generalization of contra continuity via Levine's g-closed sets, Chaos, Solitons \& Fractals, 32(2007), 1597-1603.
[6] D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D thesis, University of Arkansas, 1973.
[7] H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351-360.

${ }^{1}$ O. Ravi et al. / Almost contra- \hat{g}-continuous functions/IJMA- 2(6), June-2011, Page: 894-903

[8] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99-112.
[9] J. Dontchev and T. Noiri, Contra-semi-continuous functions, Math. Pannonica, 10 (1999), 159-168.
[10] J. Dontchev, Contra continuous functions and strongly S-closed mappings, Int. J. Math. Math. Sci., 19 (1996), 303-310.
[11] J. Dontchev, M. Ganster and I. L. Reilly, More on almost s-continuity, Indian J. Math., 41 (1999), 139-146.
[12] E. Ekici, (δ-pre, s)-continuous functions, Bull. Malays Math. Sci. Soc., 27(2) (2004), 237-251.
[13] E. Ekici, On (LC, s)-continuous functions, Choas, Solitions \& Fractals 38 (2008), 430-438.
[14] E. Ekici, Almost contra-precontinuous functions, Bull. Malays Math. Sci. Soc., 27(1) (2004), 53-65.
[15] E. Ekici, Another form of contra-continuity, Kochi J. Math., 1 (2006), 21-29.
[16] N. Ergun, On nearly paracompact spaces, Istanbul Univ. Fen. Mec. Ser. A, 45 (1980), 65-87.
[17] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Int. J. Math. Sci., 3 (1989), 417-424.
[18] S. Jafari, On semi-preirresolute functions, Far East J. Math. Sci., 6 (1998), 1003-1010.
[19] S. Jafari and T. Noiri, On β-quasi-irresolute functions, Mem Fac Kochi Univ. Ser. Math., 21 (2000), 53-62.
[20] J. K. Joseph and M. K. Kwak, On S-closed spaces, Proc Am Math. Soc., 80 (1980), 341-348.
[21] A. Keskin and T. Noiri, Almost contra-g-continuous functions, Chaos, Solitons and Fractals, 42 (1)(2009), 238246.
[22] N. Levine, Semi -open sets and semi - continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36 -41.
[23] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
[24] G. D. Maio, S-closed spaces, S-sets and S-continuous functions, Accad. Sci. Torino, 118 (1984), 125-134.
[25] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 51 (1982), 47-53.
[26] A. S. Mashhour, M. E. Abd El-Monsef and I. A. Hasanein, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983) 213-218.
[27] B. M. Munshi and D. S. Bassan, Almost semi-continuous mappings, Math. Student, 49 (1981), 239-248.
[28] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
[29] T. Noiri and V. Popa, A unified theory of almost contra-continuity for functions, Kochi J. Math., 3 (2008), 125138.
[30] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16 (1980), 161-166.
[31] T. Noiri and S. Jafari, Properties of (θ, s)-continuous functions, Topol. Appl., 123 (2002), 167-179
[32] O. Ravi, M. L. Thivagar and R. Latha, (g, s)-continuous functions between topological spaces, Fasciculi Mathematici, 46 (2011), 115-130.
[33] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
[34] M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968), 63-73.
[35] M. K. Singal, A. R. Singal and A. Mathur, On nearly compact spaces, Bol. Unione. Mat. Ital., 4(2) (1969), 702710.

${ }^{1}$ O. Ravi et al. / Almost contra- \hat{g}-continuous functions/IJMA- 2(6), June-2011, Page: 894-903

[36] M. K. Singal and A. Mathur, A note on mildly compact spaces, Kyungpook Math. J., 9 (1979), 165-168.
[37] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces. In: General Topology and its relation to modern analysis and algebra, Proc. Conf. Kanpur 1968, Vol. III. Prague: Academia, (1971), 301-306.
[38] R. Staum, The algebra of bounded continuous functions into a nonarchimedian field, Pacific J. Math., 50 (1974), 169-185.
[39] L. A. Steen and J. A. Jr Seebach, Counter examples in topology, Holt. New York: Rienhart and Winston, 1970.
[40] M. H. Stone, Application of the theory of Boolean rings to general topology, TAMS. 41 (1937), 375-381.
[41] A. H. Stone, Absolutely FG spaces, Proc. Am. Math. Soc., 80 (1980), 515-520.
[42] T. Thompson, S-closed spaces, Proc. Am. Math. Soc., 60 (1976), 335-338.
[43] N. V. Velicko, H-closed topological spaces, Am. Math. Soc. Trans., 78 (1968), 103-118.
[44] M. K. R. S. Veerakumar, ĝ-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
[45] M. K. R. S. Veerakumar, ĝ-closed sets and ĜLC functions, Indian J. Math., 43(2) (2001), 231-247.

