International Journal of Mathematical Archive-2(6), June - 2011, Page: 919-923

ON THE C-ALGEBRA CX

S. Kalesha Vali* and P. Sundarayya

Department of Engineering Mathematics, GITAM University, Visakhapatnam, Andhra Pradesh, India

E-mail: *vali312@gitam.edu, psundarayya@yahoo.co.in

(Received on: 30-05-11; Accepted on: 09-06-11)

It is known that in a Boolean algebra, every prime ideal is maximal. It is under investigation that whether every prime ideal is maximal in a C-algebra. In this paper we discuss an important example of a C-algebra namely C^X containing sufficiently many prime and maximal ideals and in which every prime ideal is maximal ideal.

Key words: C-algebra, Ideal, Prime ideal, Maximal ideal.

AMS Mathematics subject classification (2010): 03G25(03G05, 08G05.

INTRODUCTION:

In [1] Fernando Guzman and Craig C. Squier introduced the variety of C-algebras as the variety generated by the three element algebra $C = \{T, F, U\}$ with the operations Λ , V and 'of type (2, 2, 1), which is the algebraic form of the three valued conditional logic. They proved that C and the two element Boolean algebra $B = \{T, F\}$ are the only subdirectly irreducible C-algebras and that the variety of C-algebras is a minimal cover of the variety of Boolean algebras. In [4] U. M. Swamy et. al., have worked on three valued logic and introduced the concept of the Centre $\mathcal{B}(A)$ of a C-algebra A and proved that the centre of a C-algebra is a Boolean algebra. Later in [2], [3] S. Kalesha Vali et.al. Introduced the notion of an ideal, prime and maximal ideal of a C-algebra and discussed various properties of these. In [3] there is an open problem "whether every prime ideal is maximal in a C-algebra?". The answer is still under investigation. In the way of investigation we come across an example C^X , which contain sufficiently many prime ideals and maximal ideals and in which every prime ideal is maximal ideal.

1. C-ALGEBRA:

In this section we recall the definition of a C-algebra and some results from [1], [4] and [5]. Let us start with the definition of a C-algebra.

Definition 1.1: [1] By a C-algebra we mean an algebra of type (2, 2, 1) with binary operations \land and \lor and unary operation 'satisfying the following identities.

(1)
$$x'' = x$$

(3) $(x \land y) \land z = x \land (y \land z)$

$$(2) (x \wedge y)' = x' \vee y'$$

$$(4) x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$(5) (x \lor y) \land z = (x \land z) \lor (x' \land y \land z)$$

$$(6) x \lor (x \land y) = x$$

 $(7) (x \wedge y) \vee (y \wedge x) = (y \wedge x) \vee (x \wedge y).$

Example 1.2: [1] The three element algebra C= {T, F, U} with the operations given by the following

Tables are a C-algebra.

Λ	T	F	U
T	T	F	U
F	F	F	F
U	U	U	U

V	Т	F	U
Т	Т	Т	Т
F	Т	F	U
U	U	U	U

,	
X	x'
T	F
F	T
U	U

Note 1.3: [1] The identities 1.1(1), 1.1(2) imply that the variety of C-algebras satisfies all the dual statements of 1.1(2) to 1.1(7). Λ and V are not commutative in C. The ordinary distributive law of Λ over V fails in C. Every Boolean algebra is a C-algebra.

Now we recall some results on C-algebra collected from [1], [4] and [5].

Lemma 1.4: Every C-algebra satisfies the following identities:

```
(1) x \wedge x = x \qquad (2) x \wedge x' = x' \wedge x 

(3) x \wedge y \wedge x = x \wedge y \qquad (4) x \wedge x' \wedge y = x \wedge x' 

(5) x \wedge y = (x' \vee y) \wedge x \qquad (6) x \wedge y = x \wedge (y \vee x') 

(7) x \wedge y = x \wedge (x' \vee y) \qquad (8) x \wedge y \wedge x' = x \wedge y \wedge y' 

(9) (x \vee y) \wedge x = x \vee (y \wedge x) \qquad (10) x \wedge (x' \vee x) = (x' \vee x) \wedge x = (x \vee x') \wedge x = x.
```

Duals of the statements in the above lemma are also true in a C-algebra.

Definition 1.5: [4] Let A be a C-algebra with T (T is the identity element for Λ in A). Then the Boolean centre of A is defined as the set $\mathcal{B}(A) = \{ a \in A \mid a \lor a' = T \}$. $\mathcal{B}(A)$ is known to be a Boolean algebra under the operations induced by those on A.

2. Ideals of a C-algebra:

In this section we recall the definition of an ideal, prime ideal and maximal ideal of a C-algebra and some results from [2], [3] which are useful in proving the results in the forthcoming sections. Let us start with the definition of an ideal of a C-algebra.

Definition 2.1: [2] A nonempty subset I of a C-algebra A is said to be an ideal of A if it satisfies

- (i) $a, b \in I$ implies that $a \lor b \in I$ and
- (ii) $a \in I$ implies that $x \land a \in I$, for each $x \in A$.

Theorem 2.2: [2] Let $A = A_1 \times A_2 \times ... \times A_n$ be the product of the C-algebras $A_1, A_2, ..., A_n$ and each C-algebra A_i is with T and $I \subseteq A$. Then I is an ideal of A if and only if I is of the form $I = I_1 \times I_2 \times ... \times I_n$, where I_i is an ideal of A_i .

Definition 2.3: [3] Let A be a C-algebra. A proper ideal P of A is called a prime ideal if, for any $a, b \in A$, $a \land b \in P$ implies that either $a \in P$ or $b \in P$.

Definition 2.4: [3] A proper ideal M of a C-algebra A is said to be a Maximal ideal of A if M is maximal among all the proper ideals of A.

Lemma 2.5: [3] Let A be a C-algebra. Every maximal ideal in A is a prime ideal.

The validity of the converse of the above theorem is not known. In Boolean algebras every prime ideal is maximal but in C-algebras, we do not know that every prime ideal is maximal, it is under investigation.

Theorem 2.6: [3] Let I be an ideal of a C-algebra and $a \in A \setminus I$. Then there exists a prime ideal P containing I and not containing a.

3. THE C-ALGEBRA C^{X} :

In the following we discuss an important example of a C-algebra containing sufficiently many prime ideals and maximal ideals.

Definition 3.1: Let X be a nonempty set and $C = \{T, F, U\}$ be the three-element C-algebra. Let C^X be the set of all mappings of X into C. Then C^X is a C-algebra under the point wise operations. For any

$$Y \subseteq X$$
, let $f_Y \in C^X$ be defined by $f_Y(x) = \begin{cases} T, & \text{if } x \in Y \\ F, & \text{if } x \notin Y \end{cases}$ and, for any $x \in X$, let $f_X = f_{\{x\}}$. Also, for any $f \in C^X$,

let $|f| = \{x \in X \mid f(x) = T\}$. |f| is called the support of X.

Theorem 3.2: The following hold for any $g \in C^X$ and $Y \subseteq X$.

(1)
$$f_Y ' = f_{X \setminus Y}$$
 (2) $f_Y \wedge f_Y ' = \overline{F}$, the constant map.
(3) $f_Y \in \mathcal{B}(C^X)$ (4) $g \wedge f_{|g|} = g$.

Proof: Define $\overline{F}: X \to C$ by $\overline{F}(x) = F$, for all $x \in X$.

(1) This follows from the facts that T' = F and f'(x) = f(x)' for all $x \in X$ and for all $f \in C^X$.

(2) If
$$z \in Y$$
, $(f_Y \land f_Y)(z) = T \land F = F$ and if $z \notin Y$, $(f_Y \land f_Y)(z) = F \land T = F$.

Therefore $f_Y \wedge f_{Y'} = \overline{F}$.

(3) Since
$$f_Y \wedge f_{Y'} = \overline{F}$$
, $(f_Y \wedge f_{Y'})' = (\overline{F})'$, and hence $f_{Y'} \vee f_{Y'} = \overline{T}$, so that $f_Y \vee f_{Y'} = \overline{T}$.

Therefore $f_v \in \mathcal{B}(C^X)$.

(4) For
$$x \in |g|$$
, $f_{|g|}(x) = T$ and $g(x) \wedge f_{|g|}(x) = g(x) \wedge T = T \wedge T = T = g(x)$.
For $x \notin |g|$, $f_{|g|}(x) = F$ and $g(x) \wedge f_{|g|}(x) = g(x) \wedge F = g(x)$, (since $g(x) = U$ or $F, g(x) \wedge F = g(x)$).

Therefore $g \wedge f_{|g|} = g$.

Theorem 3.3: Every prime ideal of C^X is a maximal ideal.

Proof: Let P be a prime ideal of C^X . Let Q be any ideal of C^X such that $P \subset Q$.

Then there exists $g \in Q$ such that $g \notin P$. Since $g \in C^X$, $g \land f_{|g|} = g$. Then $f_{|g|} \notin P$ (since $g \notin P$). Since $f_{|g|} \land f_{|g|}' = \overline{F} \in P$ and P is a prime ideal, $f_{|g|}' \in P \subseteq Q$.

We shall prove that $f_{|g|} \vee g = \overline{T}$.

If
$$x \in |g|$$
 then $g(x) = T$ and $f_{|g|}(x) = F$ and hence $(f_{|g|}(x)) = F \lor T = T = g(x)$.
If $x \notin |g|$ then $g(x) = U$ or F and $f_{|g|}(x) = T$ and hence $(f_{|g|}(x)) = T \lor U$ or $T \lor F = T$.

Therefore $f_{|g|}^{'} \lor g = \overline{T}$. Since $f_{|g|}^{'} \in Q$, and $g \in Q$, $f_{|g|}^{'} \lor g \in Q$ (since Q is an ideal).

Therefore $\overline{T} \in Q$ which implies that $Q = C^X$. Therefore P is maximal ideal of C^X .

In theorem 3.2 we have proved that $f_Y \in \mathcal{B}(C^X)$ for any subset Y of X. In fact, every element of $\mathcal{B}(C^X)$ must be of the form f_Y for a suitable $Y \subseteq X$. This is proved in the following.

Theorem 3.4: For any $a \in C^X$, the following are equivalent

(1)
$$a(x) \neq U$$
, for all $x \in X$ (2) $a \vee a' = \overline{T}$; that is, $a \in \mathcal{B}(C^X)$ (3) $a = f_{|A|}$ (4) $a = f_{|Y|}$ for some $Y \subseteq X$.

Proof: (1) \Rightarrow (2): Suppose that $a(x) \neq U$, for all $x \in X$. Then a(x) = T or F, for all $x \in X$ and hence a'(x) = F or T. Now, $(a \lor a')(x) = T \lor F$ or $F \lor T = T$. Therefore $a \lor a' = \overline{T}$.

 $(2) \Rightarrow (3)$: Suppose $a \lor a' = \overline{T}$. If $x \in |a|$, then $f_{|a|}(x) = T = a(x)$.

If $x \notin |a|$ then a(x) = U or F and hence a(x) = F (otherwise if a(x) = U, $(a \lor a')(x) = U \ne \overline{T}(x)$, a contradiction). Therefore $f_{|a|}(x) = F = a(x)$, if $x \notin |a|$. Thus $a = f_{|a|}$.

 $(3) \Rightarrow (4)$ is trivial, since $|a| \subseteq X$.

(4) ⇒ (1): $a = f_{|Y|}$ for some $Y \subseteq X$. Since $f_{|Y|}(x) = T$ or F according as $x \in Y$ or $x \notin Y$, a(x) = T or F for any $x \in X$. Thus $a(x) \neq U$ for any $x \in X$.

Theorem 3.5: The map $\phi: \mathcal{D}(X) \to \mathcal{B}(C^X)$, defined by $\phi(Y) = f_Y$ is an isomorphism of Boolean algebras, where $\mathcal{D}(X)$ is the Boolean algebra of all subsets of X.

S. Kalesha Vali* and P. Sundarayya/On the C-algebra C^X/IJMA- 2(6), June-2011, Page: 919-923

Proof: If
$$Y \subseteq X$$
, then $f_Y(z) = \begin{cases} T, & \text{if } z \in Y \\ F, & \text{if } z \notin Y \end{cases}$

We shall prove that $f_{Y \cap Z} = f_Y \land f_Z$, $f_{Y \cup Z} = f_Y \lor f_Z$ and $f_Y^{'} = f_{X \setminus Y}$ for any subsets Y and Z of X, so that ϕ becomes a homomorphism of Boolean algebras.

Let Y and $Z \subseteq X$. Let $x \in Y \cap Z$. Then $x \in Y$ and $x \in Z$ and $f_{Y \cap Z}(x) = T = T \wedge T = f_Y(x) \wedge f_Z(x) = (f_Y \wedge f_Z)(x)$.

Suppose $x \notin Y \cap Z$. Then $x \notin Y$ or $x \notin Z$

$$x \notin Y \Rightarrow f_Y(x) = F \text{ and } x \notin Z \Rightarrow f_Z(x) = F$$

Since, $x \notin Y \cap Z$, we have that $f_{Y \cap Z}(x) = F = f_Y(x) \wedge f_Z(x)$ (since at least one of $f_Y(x)$ and $f_Z(x)$ is F).

Therefore $f_{Y \cap Z} = f_Y \wedge f_Z$.

Let $x \in Y \cup Z$. Then $x \in Y$ or $x \in Z$.

 $f_{Y \cup Z}(x) = T = (f_Y \vee f_Z)(x)$ (since at least one of $f_Y(x)$ and $f_Z(x)$ is T)

Suppose $x \notin Y \cup Z$. Then $x \notin Y$ and $x \notin Z$.

Therefore $f_Y(x) = F$ and $f_Z(x) = F$

Now $f_{Y \cup Z}(x) = F = F \lor F = f_Y(x) \lor f_Z(x)$.

Therefore $f_{Y \cup Z} = f_Y \vee f_Z$.

We have, by theorem 4.2(1), $f'_Y = f_{X \setminus Y}$.

Thus, ϕ is a homomorphism of Boolean algebras.

Let $Y, Z \in \mathcal{D}(X)$ such that $\phi(Y) = \phi(Z)$ that is $f_Y = f_Z$.

Let $x \in Z$. Then $T = f_Y(x) = f_Z(x)$ and hence $x \in Y$.

Therefore $Z \subseteq Y$. Similarly, $Y \subseteq Z$. Thus Y = Z. Therefore ϕ is an injection map.

By theorem 3.4, the map $\phi: \mathcal{D}(X) \to \mathcal{B}(C^X)$ is a surjection map too.

Thus, $\phi: \wp(X) \to \mathcal{B}(C^X)$ is an isomorphism.

Theorem 3.6: For any $g \in C^X$ there exists a smallest $a \in \mathcal{B}(C^X)$ such that $g = g \land a$ and $a' \lor g = \overline{T}$

Proof: Let $g \in C^X$. We know that $f_Y \in \mathcal{B}(C^X)$, for any $Y \subseteq X$.

Put $a = f_{|a|}$. Then $f_Y \in \mathcal{B}(C^X)$.

By theorems 3.2, 3.4, we have $g = g \wedge a$ and $a' \vee g = \overline{T}$.

Further, let $b \in \mathcal{B}(C^X)$, such that $g = g \land b$ and $b' \lor g = \overline{T}$ Then $|g| \subseteq |b|$ and,

by theorem 3.5, we have that $f_{|g|} \wedge f_{|b|} = f_{|g| \cap |b|} = f_{|g|}$ so that $a = f_{|g|} \le f_{|b|} = b$. Thus a is the smallest element of $\mathcal{B}(\mathcal{C}^X)$ such that $g = g \wedge a$.

Theorem 3.7: For any $x \in X$, let $P_x = \{ f \in C^X \mid f(x) \neq T \}$. Then P_x is a prime (maximal) ideal of C^X .

Proof: Clearly P_x is a nonempty subset of C^X . Let $f, g \in P_x$. Then

 $(f \lor g)(x) = f(x) \lor g(x) \neq T$ (Since, if f(x) = U then $f(x) \lor g(x) = U$ and if f(x) = F, g(x) = F, then $f(x) \lor g(x) = F$ also, if f(x) = F, g(x) = U, then $f(x) \lor g(x) = U$).

Therefore $f \lor g \in P_x$.

Let $f \in P_x$ and $h \in C^X$.

S. Kalesha Vali* and P. Sundarayya/On the C-algebra C^X/IJMA- 2(6), June-2011, Page: 919-923

Now
$$(h \land f)(x) = h(x) \land f(x) = \begin{cases} f(x), & \text{if } h(x) = T \\ h(x), & \text{if } h(x) \neq T \end{cases}$$

Therefore $(h \wedge f)(x) \neq T$ and hence $h \wedge f \in P_x$. Thus P_x is an ideal of C^X .

Let $f, g \in C^X$ such that $f \wedge g \in P_x$. Then $f(x) \wedge g(x) \neq T$.

If
$$f(x) = T$$
 and $g(x) = T$ then $f(x) \wedge g(x) = (f \wedge g)(x) = T$.

Therefore $f(x) \neq T$ or $g(x) \neq T$. Therefore $f \in P_x$ or $g \in P_x$.

Thus P_x is a prime ideal and hence a maximal ideal of C^X .

Note that all the prime ideals of C^X need not be of the form P_X . For this, consider the following example

Example 3.8: Let X be an infinite set and $I = \{ f \in C^X \mid |f| \text{ is finite} \}$. Then I is a proper ideal of C^X and hence, by theorem 3.4, there exists a prime ideals P of C^X containing I. We observe that $P \neq P_X$ for all $X \in X$; for any $X \in X$, the element f_X of C^X defined in the definition 3.1 is in I and hence in P but not in P_X . However, when X is a finite set, we do prove that every prime ideal of C^X of the form P_X for some $X \in X$.

Theorem 3.9: Let X be a nonempty finite set and P a prime ideal of C^X . Then there exists unique $x \in X$ such that $P_x = P$.

Proof: Let $X = \{ x_1, x_2, \dots, x_n \}$ where *n* is a positive integer. First we observe that

 $C^X \cong C_1 \times C_2 \times \times C_n$. Let P be a prime ideal of C^X . Then by theorem 2.2, we can assume that $P = I_1 \times I_2 \times \times I_n$ where each I_i is an ideal of A. Recall that each I_i is either {U, F} or C (since these two are the only ideals of C).

We argue that $I_i = \{U, F\}$, for unique i. Suppose $i \neq j$ such that $I_i = \{U, F\} = I_j$. Then consider the elements a and b defined by a = (F, ..., F, T, F, ..., F) (ith place is T and F elsewhere) and b = (F, ..., F, T, F, ..., F) (jth place is T and F elsewhere).

Now, $a \wedge b = (F, ... F, F)$ (since $i \neq j$) and hence $a \wedge b$ is a left zero which is in P. But neither a nor b belongs to P which is a contradiction to the prime ideal of P.

Also, if each $I_i \neq \{U, F\}$, then $I_i = C$ for all i and hence $P \cong C_1 \times C_2 \times \times C_n$, which is again a contradiction, since P is a prime ideal. Thus there is exactly one i, $(1 \leq i \leq n)$ such that $I_i = \{U, F\}$. From this it follows that $P = P_{x_i}$ for some $x_i \in X$.

REFERENCES:

- [1] Guzman, F. and Squier, C.C.: The algebra of Conditional Logic, Algebra Universalis 27, 88-110 (1990)
- [2] Kalesha Vali, S., Sundarayya, P., and Swamy, U. M.: *Ideals of C-algebras*, Asian-European Journal of Mathematics, Vol.3, No.3, 501-509(2010).
- [3] Kalesha Vali, S., Sundarayya, P., and Swamy, U. M.: *Prime Spectrum of a C-algebra*, International Journal of Open Problems in Computer Science and Mathematics, Vol. 4, No. 1, 24-35 (2011).
- [4] Swamy, U.M., Rao, G.C. and RaviKumar, R. V. G.: Centre of a C-algebra, Southeast Asian Bulletin of Mathematics 27,357-368(2003).
- [5] Swamy, U.M., Rao, G.C., Sundarayya, P. and Kalesha Vali, S.: *Semilattice structures on a C-algebra*, Southeast Asian Bulletin of Mathematics 33,551-561(2009).

Corresponding author: S. Kalesha Vali, *E-mail: vali312@gitam.edu