SOME PROPERTIES OF A CERTAIN CLASS OF ARITHMETICAL FUNCTIONS

P. Sundarayya and S. Kalesha Vali*

Department of Engineering Mathematics, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, India

E-mail: psundarayya@yahoo.co.in, *vali312@gitam.edu

(Received on: 02-06-11; Accepted on: 15-06-11)

ABSTRACT

In this paper, we define a certain class of arithmetical multiplicative functions which are called R-multiplicative functions. Every R-multiplicative function is a multiplicative function but converse need not be true. A necessary and sufficient condition for the Dirichlet product of two R-multiplicative functions to be as R-multiplicative function is given. Some properties on R-multiplicative functions are derived.

Key words: Multiplicative function, R-multiplicative function, completely multiplicative function.

AMS Mathematics subject classification (2010):11A25, 11N37.

1. INTRODUCTION:

An arithmetical function is a mapping from the set of all positive integers \mathbb{Z}^+ to set of all complex numbers \mathbb{C} . The set of all arithmetical functions is denoted by \mathcal{A} . An arithmetical function f is said to be multiplicative if f(1) = 1 and $f(m\,n) = f(m)f(n)$ whenever (m,n) = 1. f is said to be Completely multiplicative function if f(1) = 1 and $f(m\,n) = f(m)f(n)$ for all $m,n \in \mathbb{Z}^+$. The set of all multiplicative functions is denoted by \mathcal{M} and the set of all Completely multiplicative functions is is denoted by \mathcal{C} . In this paper it is defined that Dirichlet $*_{l,k}$ -multiplication of two arithmetical functions. It is proved that the Dirichlet $*_{l,k}$ multiplication of two multiplicative functions is again a multiplicative function. * is a classical Dirichlet convolution that is $f,g \in \mathcal{A}$, $(f * g)(n) = \sum_{d/n} f(d)g(\frac{n}{d})$ or equivalently $\sum_{ab=n} f(a)g(b)$. It is known that $f,g \in \mathcal{M}$ then $f * g \in \mathcal{M}$. Also it is known that $f \in \mathcal{M}$ then $f \in \mathcal{C}$ if and only if $f(p^\alpha) = f(p)^\alpha$ for all prime p, for all positive integers α . We define a certain class of arithmetical multiplicative functions which are called R-multiplicative functions. Every R-multiplicative function is a multiplicative function but converse need not be true. A necessary and sufficient condition for the Dirichlet product of two R-multiplicative functions to be as R-multiplicative function is given. Some properties on R-multiplicative functions are derived.

2. DIRICHLET $*_{lk}$ -MULTIPLICATION OF ARITHMETICAL FUNCTIONS:

In this section we define $*_{l,k}$ -multiplication of two arithmetical functions and prove that the Dirichlet Product $*_{l,k}$ two multiplicative functions is again a multiplicative function. Also prove some properties of completely multiplicative functions.

Theorem 2.1: $f, g \in \mu$ such that f(p)g(p) = 0 for every prime p then $(f * g)(p^i) = f(p)^i + g(p)^i$, for all $i \ge 2$ if and only if $f * g \in \mathcal{C}$

Proof: Suppose $f, g \in \mathcal{M}$ and f(p)g(p) = 0 for every prime p then we have $f * g \in \mathcal{M}$. Assume that $(f * g)(p^i) = f(p)^i + g(p)^i$, for all $i \ge 2$, for all primes p

Now we have to show that $(f * g)(p^i) = (f * g)(p)^i$, for $i \ge 2$. Consider

$$(f * g)(p^{i}) = f(p)^{i} + g(p)^{i}$$

$$= f(p)^{i} + i_{C_{1}}f(p)^{i-1}g(p) + i_{C_{2}}f(p)^{i-2}g(p)^{2} + \dots + i_{C_{i-1}}f(p)^{i}g(p)^{i-1} + g(p)^{i}(\text{since } f(p)g(p) = 0)$$

$$= (f(p) + g(p))^{i}$$

$$= ((f * g)(p))^{i} \text{ (By Dirichlet Convolution)}$$

Conversely assume that $f * g \in \mathcal{C}$.

Now,
$$(f * g)(p^i) = ((f * g)(p))^i$$

= $(f(p) + g(p))^i$
= $f(p)^i + g(p)^i$ (since $f(p)g(p) = 0$)

Definition 2.2: Let f, g be arithmetical functions and l, k be positive integers. Then we define $(f *_{l,k} g)(m) = \sum_{d/n} (f(d^l)g\left(\frac{n}{d}\right)^k)$. This is called Dirichlet $*_{l,k}$ -multiplication.

Now, we prove that Dirichlet $*_{l,k}$ -multiplication of two arithmetical functions are again multiplicative.

Theorem 2.3: f, g are multiplicative functions, then $f *_{l,k} g$ is also multiplicative function

Proof: Let f, g are multiplicative functions, clearly $(f *_{l,k} g)(1) = 1$.

Let m, n be positive integers such that (m, n) = 1. Then every devisor c of mn is in the form c = ab where a/m, b/n. We observe that if (a, b) = 1, $\left(\frac{m}{a}, \frac{n}{b}\right) = 1$ then $(a^l, b^l) = 1$, $\left(\left(\frac{m}{a}\right)^k, \left(\frac{n}{b}\right)^k\right) = 1$.

$$(f *_{l,k} g)(mn) = \sum_{a/m,b/n} f((ab)^l) g(\left(\frac{mn}{ab}\right)^k).$$

$$= \sum_{a/m,b/n} f(a^l) f(b^l) g(\left(\frac{m}{a}\right)^k) (g\left(\frac{n}{b}\right)^k)$$

$$= \sum_{a/m,b/n} f(a^l) f(b^l) g(\left(\frac{m}{a}\right)^k) (g\left(\frac{n}{b}\right)^k)$$

$$= \sum_{a/m} f(a^l) g(\left(\frac{m}{a}\right)^k) \sum_{b/n} f(b^l) (g\left(\frac{n}{b}\right)^k)$$

$$= (f *_{l,k} g)(m) (f *_{l,k} g)(n)$$

Therefore $f *_{l,k} g$ is also multiplicative.

The Dirichlet $*_{l,k}$ product of two completely functions is need not be completely multiplicative. In fact, if l = 1, k = 1 then $*_{l,k}$ is a classical Dirichlet multiplication.

3. R-MULTIPLICATIVE FUNCTIONS:

In this section we define a certain class of arithmetical functions which are called R-multiplicative functions. The set of all R-multiplicative functions is denoted by \mathcal{R} . Every R-multiplicative function is multiplicative but converse need not be true.

Definition 3.1: An arithmetical function f is said to be R-multiplicative function if

(i)
$$f(1) = 1$$

(ii) $f(n) = f(p_1)f(p_2).....f(p_n)$ where $n = p_1^{\alpha_1}p_2^{\alpha_2}....p_n^{\alpha_n}, p_1, p_2,, p_n$ are distinct primes and $\alpha_1, \alpha_2, ..., \alpha_n$ are positive integers.

Note: Every R-multiplicative function satisfies $f(p^{\alpha}) = f(p)$ for all p, for all positive integers α .

The set of all R-multiplicative functions is denoted by \mathcal{R} .

Lemma 3.2: Every R-multiplicative function is multiplicative but converse need not be true.

Proof: Let f be an R-multiplicative function.

Let (m,n) = 1, $m = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, $n = q_1^{\beta_1} q_2^{\beta_2} \dots q_l^{\beta_l}$, where p_i 's, q_i 's are primes, α, β 's are positive integers. There are no common prime factors of m, n.

$$f(mn) = f(p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}, q_1^{\beta_1} q_2^{\beta_2} \dots q_l^{\beta_l})$$

= $f(p_1) f(p_2) \dots f(p_k) f(q_1) f(q_2) \dots f(q_l)$
= $f(m) f(n)$

Therefore every R-multiplicative function is multiplicative.

Definition 3.3[1]: μ : $\mathbb{N} \to \mathbb{C}$ (mobious function) defined by

$$\mu(1) = 1$$
, if $n > 1$ write $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$.
 $\mu(n) = (-1)^k$, if $\alpha_1 = \alpha_2 = \dots = \alpha_k = 1$
 $\mu(n) = 0$ otherwise.

 μ is multiplicative function but it is not R-multiplicative because $\mu(3^2) = 0$, but $\mu(3) = -1$, μ is not completely multiplicative function.

Theorem 3.4: f, g are R-multiplicative functions, then Dirichlet product f * g is also R-multiplicative function if and only if f(p) g(p) = 0 for all primes p.

Proof: Let f, g are R-multiplicative functions then f, g are multiplicative and hence f * g is also multiplicative function

Suppose f * g is R-multiplicative function. Let $\alpha \geq 2$

Now,
$$(f * g)(p^{\alpha}) = \sum_{d/p^{\alpha}} f(d)g(\frac{p^{\alpha}}{d})$$

= $g(p^{\alpha}) + f(p)g(p^{\alpha-1}) + f(p^{2})g(p^{\alpha-2}) + \dots + f(p^{\alpha-1})g(p) + f(p^{\alpha})$
= $g(p) + f(p)g(p) + f(p)g(p) + \dots + f(p)g(p) + g(p)$

$$\begin{array}{ll} (f * g)(p) &= g(p) + f(p) \, g(p) + f(p) \, g(p) + \ldots + f(p) \, g(p) + g(p) \\ f(p) + g(p) &= g(p) + (\alpha - 1) \, f(p) \, g(p) + g(p) \\ \Rightarrow (\alpha - 1) \, f(p) \, g(p) &= 0 \\ \Rightarrow f(p) \, g(p) &= 0 \end{array}$$

Therefore f(p)g(p) = 0 for all primes p. Conversely assume that f(p)g(p) = 0 for all primes p. Since f, g are multiplicative functions then f * g is also multiplicative. Therefore (f * g)(1) = 1.

First we prove $(f * g)(p^{\alpha}) = (f * g)(p)$

$$(f * g)(p^{\alpha}) = \sum_{d/p^{\alpha}} f(d)g(\left(\frac{p^{\alpha}}{d}\right))$$

$$= f(1)g(p^{\alpha}) + f(p)g(p^{\alpha-1}) + f(p^{2})g(p^{\alpha-2}) + \dots + f(p^{\alpha-1})g(p) + f(p^{\alpha})g(1)$$

$$= g(p) + f(p) g(p) + f(p) g(p) + \dots + f(p) g(p) + f(p) \text{ (since } (p^{\alpha}) = f(p))$$

$$= f(p) + g(p) \text{ (since } f(p)g(p) = 0)$$

$$= (f * g)(p)$$

Now for $m = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$

$$(f * g)(m) = (f * g)(p_1^{\alpha_1}p_2^{\alpha_2}....p_n^{\alpha_n})$$

= $(f * g)(p_1^{\alpha_1})(f * g)(p_2^{\alpha_2})....(f * g)(p_n^{\alpha_n})$
= $(f * g)(p_1)(f * g)(p_2)....(f * g)(p_n)$

Hence f * g is R-multiplicative function.

Definition 3.5[1]: An arithmetical function I is given by $I(n) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$

Then I(n) is both R-multiplicative and completely multiplicative.

Definition 3.6[1]: The arithmetical function U(n) = 1 for all $n \in \mathbb{Z}^+$ then U is both R-multiplicative and completely multiplicative.

Example 3.7: Example of a R-multiplicative function which is not completely multiplicative is given below. An arithmetical function h is defined by h(1) = 1, $h(p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}) = 2^n$ then

$$h(p_1), h(p_2), \dots, h(p_n) = 2.2, \dots, 2(n \text{ times }) = 2^n$$

Therefore h is R-multiplicative function.

But *h* is not completely multiplicative function.

P. Sundarayya and S. Kalesha Vali*/ Some properties of a certain class of arithmetical functions / IJMA- 2(6), June-2011, Page: 931-934

$$h(2^2.3.2^5.3^2.7^4) = h(2^7.3^3.7^4) = 2^3$$
 and $h(2^2.3).h(2^5.3^2.7^4) = 2^2.2^3 = 2^5$

Therefore $h(mn) \neq h(m)h(n)$ for all $m, n \in \mathbb{Z}^+$.

Therefore h is not completely multiplicative function.

Theorem 3.8: An arithmetical function f which is both R-multiplicative and completely multiplicative functions then f(n) = 0 or 1 for all positive integers n.

Proof: Let *f* be an arithmetical function which is both R-multiplicative and completely multiplicative.

Therefore f(1) = 1 for any prime p and $n \in \mathbb{Z}^+$.

$$f(p^a) = f(p)^a$$
 (since f completely multiplicative)
 $\Rightarrow f(p) = f(p)^a$ (since f is R-multiplicative)
 $\Rightarrow f(p) (f(p)^{a-1} - 1) = 0$
 $\Rightarrow f(p) = 0$ or $f(p)^{a-1} = 1$ for all positive integers $a \ge 2$.
 $\Rightarrow f(p) = 0$ or $f(p) = 1$ for all primes.

However for n > 1, $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$

$$f(n) = f(p_1)f(p_2).....f(p_n)$$

If one $f(p_i) = 0$ then $f(n) = 0$
If all $f(p_i) = 1$ then $f(n) = 1$.

Lemma 3.9: A multiplicative function is R-multiplicative if and only if $f(p^n) = f(p)$ for all primes p, all positive integers n.

Proof: Let *f* is multiplicative function.

Suppose f is R-multiplicative then $f(p^n) = f(p)$ for all primes p

Conversely assume that $f(p^n) = f(p)$ for all primes $p, n \in \mathbb{Z}^+$.

Let
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$$

$$f(n) = f(p_1^{\alpha_1})f(p_2^{\alpha_2})....f(p_n^{\alpha_n})$$
 (since f is multiplicative)
 $f(n) = f(p_1)f(p_2).....f(p_n)$

Hence *f* is R-multiplicative function.

Corollary 3.10: g, f * g are R-multiplicative then f is also R-multiplicative if and only if $f(p^n) = f(p)$ for all primes $p, n \in \mathbb{Z}^+$.

Proof: Let g, f * g are R-multiplicative functions then g, f * g are multiplicative functions. Then f is also multiplicative function.

Therefore by above lemma 3.9, f is R-multiplicative if and only if $f(p^n) = f(p)$ for all primes p, $n \in \mathbb{Z}^+$.

Example 3.11[1]: A completely multiplicative but not R-multiplicative. Consider N(n) = n for all $n \in \mathbb{Z}^+$. Clearly \mathbb{N} is completely multiplicative but not R-multiplicative.

Note: The set of all R-multiplicative function does not form a semi group under Dirchilet convolution.

REFERENCES:

- [1] T.M. Apostol: *Introduction to Analytic Number Theory*, Undergraduate Texts in Mathematics- Springer verlag, New York 1976.
- [2] Vichian Laohakosol and Nittiya Pabhapote: Completely multiplicative functions arising from simple operations, International Journal of Mathematics and mathematical Sciences, 2004:9, 431-441.
- [3] Pentti Haukkanan: *Some Characterizations of Specially multiplicative functions*, International Journal of Mathematics and Mathematical Sciences, 2003: 37, 2335-2344.