International Journal of Mathematical Archive-2(6), June - 2011, Page: 982-987

CHARACTERIZATIONS OF SOME GENERALIZED OPEN SETS

K. Thanalakshmi*

Department of Mathematics Kamaraj College of Engineering and Technology Virudhunagar – 626 001, P. B. No: 12, Tamil Nadu, India

E-mail: thanalakshmi_kasi@yahoo.co.in

(Received on: 26-05-11; Accepted on: 07-06-11)

ABSTRACT

We discuss the properties of δ - preopen sets and the relations of δ - preclosure and δ - preinterior operators with the closure and interior operators of some well known generalized topologies. Also, we characterize regular open sets, δ - open sets, semiopen sets, preopen sets, b- open sets and β - open sets.

Key words and Phrases: δ - preopen, δ - open, semiopen, preopen, b- open and β - open sets, δ - preclosure and δ - preinterior.

2000 AMS subject Classification: Primary: 54 A 05, 54 A 10

1. INTRODUCTION AND PRELIMINARIES:

In 1993, Raychaudhuri and Mukherjee [11] introduced and studied δ - preopen sets in topological spaces. In 1997, A.Császár [4] introduced and studied generalized open subsets of a set X defined in terms of monotonic functions from $\mathcal{P}(X)$ to $\mathcal{P}(X)$. δ - preopen set is a particular kind of generalized open set introduced by A.Császár [4] but different from the well known generalized open sets, namely semiopen set, preopen set, b- open set and β -open set. In this paper, we further study these sets and discuss the relation between the interior and closure operators of these generalized open sets.

Let X be any nonempty set. Denote by Γ , the collection of all mappings $\gamma: \mathscr{D}(X) \to \mathscr{D}(X)$ such that $A \subset B$ implies $\gamma(A) \subset \gamma(B)$. As defined in [4], we mention here the following sub collections of Γ .

$$\begin{split} &\Gamma_{0} = \{ \gamma \in \Gamma \mid \gamma(\emptyset) = \emptyset \}, \\ &\Gamma_{1} = \{ \gamma \in \Gamma \mid \gamma(X) = X \}, \\ &\Gamma_{2} = \{ \gamma \in \Gamma \mid \gamma^{2}(A) = \gamma(A) \text{ for every subset } A \text{ of } X \}, \\ &\Gamma_{-} = \{ \gamma \in \Gamma \mid \gamma(A) \subset A \text{ for every subset } A \text{ of } X \} \text{ and } \\ &\Gamma_{+} = \{ \gamma \in \Gamma \mid A \subset \gamma(A) \text{ for every subset } A \text{ of } X \} \end{split}$$

Let $\gamma \in \Gamma$. A subset A of X is said to be γ – open [4] if $A \subset \gamma(A)$. B is said to be γ – closed [4] if its complement is γ - open. The smallest γ - closed set containing A is called the γ - closure of A [4] and is denoted by $c_{\gamma}(A)$. The largest γ - open set contained in A is called the γ - *interior* of A [4] and is denoted by $i_{\gamma}(A)$. If $\gamma_1, \gamma_2 \in \Gamma$, then we will denote γ_1° γ_2 by $\gamma_1 \gamma_2$. For $\gamma \in \Gamma$, define $\gamma^*: \mathscr{O}(X) \to \mathscr{O}(X)$ by $\gamma^*(A) = X - \gamma(X - A)$ [4] for every subset A of X. Also, in Proposition 1.7 of [4], it is established that $(\gamma^*)^* = \gamma$, $(i_{\gamma})^* = c_{\gamma}$ and $(c_{\gamma})^* = i_{\gamma}$. We say that $i \in \Gamma$ is a *dual* of $\kappa \in \Gamma$ if $i^* = \kappa$ and clearly, if t is a dual of κ , then κ is a dual of t. If I is a collection of some of the symbols 0, 2, -, + and 1, then $\Gamma_I = \{\gamma \in I \}$ $\Gamma \mid \gamma \in \Gamma_i$ for every $i \in I$. For example, $\gamma \in \Gamma_{012}$ means that $\gamma \in \Gamma_0$, $\gamma \in \Gamma_1$ and $\gamma \in \Gamma_2$. A subfamily \mathcal{A} of $\mathcal{P}(X)$ is called a generalized topology [6] if $\phi \in \mathcal{A}$ and \mathcal{A} is closed under arbitrary union. By a space (X, τ) , we will always mean the topological space (X, τ) . If (X, τ) is a space, then $\Gamma_3(\tau) = \{ \gamma \in \Gamma \mid G \cap \gamma(A) \subset \gamma(G \cap A) \text{ for every } G \in \tau \text{ and } A \subset X \}$. subset A of a space (X, τ) is said to be regular open if A=int(cl(A)) where int and cl are the interior and closure operators. The family of all regular open sets is a base for a topology τ_{δ} , coarser than τ , which is called the semiregularization of the topology τ . dint and dcl are the interior and closure operators in (X, τ_{δ}) . A subset A of X is said to be α –open [9](resp. semiopen [7], preopen [8], b – open [2], β – open [3]) if $A \subset int(cl(int(A)))$ (resp. $A \subset A \subset A$) $cl(int(A)), A \subset int(cl(A)), A \subset int(cl(A)) \cup cl(int(A)), A \subset cl(int(cl(A))))$. A subset A of X is said to be α – closed (resp. semiclosed, preclosed, β - closed, β - closed) if X - A is α - open (resp. semiopen, preopen, b- open, β - open). The family of all α - open (resp. semiopen, preopen, b - open, β - open) sets of a space will be denoted by $\alpha(X)$ (resp. $\sigma(X)$, $\pi(X)$, b(X), $\beta(X)$). These families are generalized topologies whose closure and interior operators are denoted by c_a , i_a , c_{σ} , i_{σ} , c_{π} , i_{π} , c_{b} , i_{b} , c_{β} and i_{β} , respectively. We use the following lemmas without mentioning it explicitly.

K. Thanalakshmi/ Characterizations of some generalized open sets / IJMA- 2(6), June-2011, Page: 982-987* Lemma: 1.1 Let (X, τ) be a space, $A \subset X$ and $\mathscr{Q} = \{$ int cl int, cl int, int cl, cl int cl $\}$. If $\kappa \in \mathscr{Q}$, then the following hold [1, 2].

(a) $i_{\kappa}(A) = A \cap \kappa(A)$. (b) $c_{\kappa}(A) = A \cup \kappa^{*}(A)$. (c) $i_{b}(A) = i_{\sigma}(A) \cup i_{\pi}(A)$. (d) $c_{b}(A) = c_{\sigma}(A) \cap c_{\pi}(A)$.

Lemma: 1.2 Let (X,τ) be a space and $A \subset X$. Then the following hold.

(a) If *A* is open, then cl(*A*) = δcl(*A*) [12].
(b) If *A* is closed, then int(*A*) = δint(*A*) [12].
(c) *A* is regular open if and only if *A* = δint(δcl(*A*)).

2. δ – PREOPEN SETS:

Let $\lambda = int \,\delta cl$, the composition of the operators *int* and δcl . Since $int \in \Gamma_{012}$ and $\delta cl \in \Gamma_{012+}$, by Theorem 1.11 of [4], $\lambda \in \Gamma_{01}$ and by Corollary 1.14 of [4], $\lambda \in \Gamma_2$. If $\mu = \{A \mid A \subset \lambda(A)\}$, then μ is the family of all λ – open sets which is nothing but the family of all δ – *preopen sets* [11] and so λ – closed sets are nothing but δ – *preclosed sets*. Clearly, $\emptyset \in \mu$, $X \in \mu$ and by Proposition 2 of [11], arbitrary union of elements of μ is in μ . Therefore, μ is a generalized topology with $X \in \mu$. Moreover, one can easily prove that $\operatorname{RO}(X) \subset \tau_{\delta} \subset \tau \subset \tau^{\alpha} \subset \pi(X) \subset \mu$, where $\operatorname{RO}(X)$ (resp. τ^{α}) is the family of all regular open (resp. α – open) sets in (X, τ) . The following Theorem 2.1 gives some properties of δ – preopen sets.

Theorem: 2.1 Let (X, τ) be a space and $\lambda = \text{int } \delta \text{cl}$. Then the following hold.

(a) $\lambda \in \Gamma_3(\tau_{\delta})$, or equivalently, $G \cap \operatorname{int}(\delta \operatorname{cl}(A)) \subset \operatorname{int}(\delta \operatorname{cl}(G \cap A))$ for every δ - open set G and every subset A of X. (b) $A \in \mu$ if and only if $A \cap V \in \mu$ for every δ -open (resp. *regularopen*) set V [11, Theorem 3]. (c) $\lambda^* \in \Gamma_{012}$ and $\lambda^* = cl \delta int$.

Proof: (a) In any space (X, τ) , *cl* and *int* $\in \Gamma_3(\tau)$. Therefore, *int* $\in \Gamma_3(\tau)$ and $\delta c \in \Gamma_3(\tau_{\delta})$. Since int $\in \Gamma_3(\tau)$, int $\in \Gamma_3(\tau_{\delta})$ and so by Proposition 2.1 of [4], $\lambda \in \Gamma_3(\tau_{\delta})$.

(b) If $A \in \mu$, then $A \subset \lambda(A)$ and so $V \cap A \subset V \cap \lambda(A) \subset \lambda(V \cap A)$, by (a), for every δ – open set *V*. Therefore, $V \cap A \in \mu$. Converse follows from the fact that *X* is both regular open and δ – open.

(c) Since $\lambda \in \Gamma_{012}$, by Proposition 1.7 of [4], $\lambda^* \in \Gamma_{012}$. Since *int* and *cl* (resp. δint and δcl) are dual to each other, $\lambda^* = (int \delta cl)^* = cl \delta int$.

Theorem: 2.2 Let (X, τ) be a space. Then a subset A of X is a δ – preclosed set if and only if $\lambda^*(A) = cl(\delta int(A)) \subset A$.

Proof: A is δ – preclosed if and only if A is λ – closed if and only if $X - A \subset \lambda(X - A)$ if and only if $\lambda^*(A) = cl(\delta int(A)) \subset A$.

Theorem: 2.3 Let (X, τ) be a space. Then $\tau_{\lambda} = \{V \mid A \cap V \in \mu \text{ for every } A \in \mu\}$ is a topology and $\tau_{\delta} \subset \tau_{\lambda} \subset \mu$.

Proof: Since $\lambda \in \Gamma$, τ_{λ} is a topology by Theorem 2.16 of [4]. $\tau_{\delta} \subset \tau_{\lambda}$ follows from Theorem 2.1(b). That $\tau_{\lambda} \subset \mu$ is clear, since $X \in \mu$.

For the generalized topology $\mu = \{A \subset X \mid A \subset \lambda(A)\}$ and a subset *A* of *X*, define $i_{\mu}(A) = \bigcup \{U \in \mu \mid U \subset A\}$ and $c_{\mu}(A) = \bigcap \{X-U \mid U \in \mu, A \subset X-U\}$. Then $i_{\mu} = \delta$ -*Pint* [10] and $c_{\mu} = \delta$ -*Pcl* [10]. i_{μ} and c_{μ} will also be denoted by i_{λ} and c_{λ} , respectively. The following Theorem 2.4 and Corollary 2.5 give properties of the operators i_{μ} and c_{μ} . Also, note that Theorem 2.1(b) can be deduced from Theorem 2.4(c) as well as from Corollary 2.5(c).

Theorem: 2.4 Let (X, τ) be a space. Then the following hold.

(a) $c_{\mu} \in \Gamma_{012+}$ and $i_{\mu} \in \Gamma_{012-}$. (b) $c_{\mu} \in \Gamma_{3}(\tau_{\delta})$ [11, Lemma 1(a)]. (c) $i_{\mu} \in \Gamma_{3}(\tau_{\delta})$. (d) $i_{\mu}(A) = A \cap int(\delta cl(A))$ for every subset *A* of *X* [10, Theorem 8(d)]. (e) $c_{\mu}(A) = A \cup cl(\delta int(A))$ for every subset *A* of *X* [11, Theorem 2]. (f) If $A \in \tau_{\delta}$, then $c_{\mu}(A) = cl(A)$ [11, Theorem 4]. (g) If *A* is τ_{δ} - closed, then $i_{\mu}(A) = int(A)$. K. Thanalakshmi*/ Characterizations of some generalized open sets / IJMA- 2(6), June-2011, Page: 982-987 **Proof:** (a) The proof follows from the definition.

(b) By Theorem 2.1(a), $\lambda \in \Gamma_3(\tau_{\delta})$ and so by Corollary 2.6 of [4], $c_{\mu} \in \Gamma_3(\tau_{\delta})$.

(c) By Theorem 2.1(a), $\lambda \in \Gamma_3(\tau_{\delta})$ and so by Proposition 2.4 of [4], $i_{\mu} \in \Gamma_3(\tau_{\delta})$.

(d) Since *int* is a decreasing idempotent monotonic operator, δcl is an increasing monotonic operator and $\mu = int \delta cl$, by Theorem 1.3 of [5], $i_{\mu}(A) = A \cap int(\delta cl(A))$ for every subset A of X.

The proof of (e) follows from (d). The proof of (f) follows from (e). The proof of (g) follows from (d).

Corollary: 2.5 Let (X, τ) be a space. Then the following hold.

(a) c_µ(G ∩ c_µ(A)) = c_µ(G ∩ A) for every δ-open (resp. *regular open*) set G and every subset A of X.
(b) c_µ(G) = c_µ(G ∩ A) for every δ-open (resp. *regular open*) set G and every subset A of X such that c_µ(A) = X.
(c) G ∩ i_µ(A) ⊂ i_µ(G ∩ A) for every δ-open set G and every subset A of X.
(d) If A ∈ µ and G is δ-open, then G ∩ A ∈ µ.

Proof: (a) Let *G* be δ -open and $A \subset X$. By Theorem 2.4(b), $G \cap c_{\mu}(A) \subset c_{\mu}(G \cap A)$ and so $c_{\mu}(G \cap c_{\mu}(A)) \subset c_{\mu}(G \cap A)$. Clearly, $c_{\mu}(G \cap A) \subset c_{\mu}(G \cap c_{\mu}(A))$ and so the proof follows.

(b) The proof follows from (a).

(c) Since $i_u \in \Gamma_3(\tau_{\delta})$, by Theorem 2.4(c), $G \cap i_u(A) \subset i_u(G \cap A)$ for every δ -open set G and every subset A of X.

(d) If $A \in \mu$, by (c), $G \cap A \subset i_u(G \cap A)$ for every δ -open set G and every subset A of X and so $G \cap A = i_u(G \cap A)$.

Therefore, $G \cap A \in \mu$.

3. IDENTITIES INVOLVING i_µ AND c_µ:

In the rest of the section, we discuss the relation between the operators δint , δcl , c_{μ} , i_{μ} , c_{σ} , i_{σ} , c_{π} , i_{π} , c_{b} , i_{b} , c_{β} and i_{β} . Throughout this section, the dual of an identity is denoted by the corresponding alphabet with the suffix "1 " and written almost in the same line.

Theorem: 3.1 *Let* (X, τ) *be a space and* $A \subset X$ *. Then the following hold.*

(a) $\delta int(c_{\sigma}(A)) = \delta int(cl(A))$. (a) $\delta cl(i_{\sigma}(A)) = \delta cl(int(A))$. (b) $\delta cl(c_{\pi}(A)) = \delta cl(c_{\mu}(A)) = \delta cl(c_{\sigma}(A)) = \delta cl(A)$. (b) $\delta int(i_{\pi}(A)) = \delta int(i_{\mu}(A)) = \delta int(i_{\sigma}(A)) = \delta int(A)$. (c) $c_{\sigma}(\delta int(A)) = int(\delta cl(\delta int(A)))$. (c) $i_{\sigma}(\delta cl(A)) = cl(\delta int(\delta cl(A)))$. (d) $c_{\pi}(\delta int(A)) = \delta cl(\delta int(A)$. (d) $i_{\pi}(\delta cl(A)) = \delta int(\delta cl(A))$.

Proof:

(a) $\delta \operatorname{int}(c_{\sigma}(A)) = \delta \operatorname{int}(A \cup \operatorname{int}(cl(A)))$, by Lemma 1.1(b) and so $\delta \operatorname{int}(c_{\sigma}(A)) \supset \delta \operatorname{int}(\operatorname{int}(cl(A))) = \delta \operatorname{int}(cl(A))$. Also, $\delta \operatorname{int}(c_{\sigma}(A)) = \delta \operatorname{int}(cl(A)) \supset \delta \operatorname{int}(A \cup cl(A)) = \delta \operatorname{int}(cl(A))$. Hence $\delta \operatorname{int}(c_{\sigma}(A)) = \delta \operatorname{int}(cl(A))$.

(b) $\delta cl(c_{\pi}(A)) = \delta cl(A \cup cl(int(A)))$, by Lemma 1.1(b) and so $\delta cl(c_{\pi}(A)) = \delta cl(A) \cup \delta cl(cl(int(A))) = \delta cl(A) \cup \delta cl(\delta cl(int(A)))$, since $cl(int(A)) = \delta cl(int(A))$ and so $\delta cl(c_{\pi}(A)) = \delta cl(A)$. Again, $\delta cl(A) \subset \delta cl(c_{\mu}(A)) \subset \delta cl(c_{\pi}(A)) = \delta cl(A)$ and so $\delta cl(A) = \delta cl(c_{\mu}(A))$. $\delta cl(c_{\sigma}(A)) = \delta cl(A \cup int(cl(A)))$, by Lemma 1.1(b) and so $\delta cl(c_{\sigma}(A)) = \delta cl(A) \cup \delta cl(int(cl(A))) = \delta cl(A) \cup \delta cl(c_{\pi}(A)) = \delta cl(A) \cup \delta cl(int(cl(A))) = \delta cl(A)$.

(c) $c_{\sigma}(\delta int(A)) = \delta int(A) \cup int(cl(\delta int(A)))$, by Lemma 1.1(b) and so $c_{\sigma}(\delta int(A)) = int(\delta cl(\delta int(A)))$.

(d) $c_{\pi}(\delta int(A)) = \delta int(A) \cup cl(int(\delta int(A)))$, by Lemma 1.1(b) and so $c_{\pi}(\delta int(A)) = cl(\delta int(A))$.

Theorem: 3.2 *Let* (X, τ) *be a space and* $A \subset X$ *. Then the following hold.*

(a) $cl(int(c_{\mu}(A))) = cl(c_{\mu}(int(A))) = i_{\sigma}(c_{\mu}(A)) = cl(int(A)).$ (a₁) $int(cl(i_{\mu}(A))) = int(i_{\mu}(cl(A))) = c_{\sigma}(i_{\mu}(A)) = int(cl(A)).$ (b) $i_{\pi}(i_{\mu}(A)) = i_{\mu}(i_{\beta}(A)) = i_{\pi}(A).$ (b₁) $c_{\pi}(c_{\mu}(A)) = c_{\mu}(c_{\beta}(A)) = c_{\pi}(A).$ (c) $c_{\mu}(c_{b}(A)) = c_{\pi}(A).$ (c₁) $i_{\mu}(i_{b}(A)) = i_{\pi}(A).$ (d) $c_{\mu}(c_{\sigma}(A)) = c_{\alpha}(A).$ (d₁) $i_{\mu}(i_{\sigma}(A)) = i_{\alpha}(A).$

K. Thanalakshmi*/ Characterizations of some generalized open sets / IJMA- 2(6), June-2011, Page: 982-987

(a) $cl(int(c_{\mu}(A))) = cl(int(A \cup cl(\delta int(A)))) \supset cl(int(A))$. Also, $cl(int(c_{\mu}(A))) = cl(int(A \cup cl(\delta int(A)))) \subset cl(int(A) \cup cl(\delta int(A))) = cl(int(A)) \cup cl(\delta int(A)) = cl(int(A))$. Therefore, $cl(int(c_{\mu}(A))) = cl(int(A))$. Also, $cl(c_{\mu}(int(A))) = cl(int(A)) \cup cl(\delta int(A)) \cup cl(\delta int(A)) \cup cl(\delta int(A)) = cl(int(A)) \cup cl(\delta int(A)) \cup$

(b) $i_{\pi}(i_{\mu}(A)) = i_{\mu}(A) \cap int(cl(i_{\mu}(A))) = i_{\mu}(A) \cap int(cl(A))$, by Theorem 3.2(a₁) and so $i_{\pi}(i_{\mu}(A)) = A \cap int(\delta cl(A)) \cap int(cl(A)) = A \cap int(cl(A)) = i_{\pi}(A)$.

(b) $i_{\mu}(i_{\beta}(A)) = i_{\beta}(A) \cap \operatorname{int}(\delta \operatorname{cl}(i_{\beta}(A))) = i_{\beta}(A) \cap \operatorname{int}(\delta \operatorname{cl}(A \cap \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))))) \subset i_{\beta}(A) \cap \operatorname{int}(\delta \operatorname{cl}(\operatorname{cl}(\operatorname{cl}(A))))) \subset i_{\beta}(A) \cap \operatorname{int}(\delta \operatorname{cl}(A \cap \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A)))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A)))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A)))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A)))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A))) \subset i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A))) = i_{\beta}(A) \cap \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{int}(\operatorname{cl}(A) \cap \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{int}(\operatorname{$

(c) $c_{\mu}(c_{b}(A)) = c_{\mu}(c_{\sigma}(A) \cap c_{\pi}(A))$, by Lemma 1.1(d) and so $c_{\mu}(c_{b}(A)) = c_{\mu}(A \cup int(cl(A))) \cap (A \cup cl(int(A)))) = c_{\mu}(A \cup (int(cl(A)) \cap cl(int(A)))) \supset c_{\mu}(A) \cup c_{\mu}(int(cl(A)) \cap cl(int(A))) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(\delta int(int(cl(A))) \cap cl(int(A)))) \cup cl(\delta int(int(cl(A))) \cap \delta int(cl(int(A)))) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(\delta int(int(cl(A))) \cap \delta int(cl(int(A)))) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(\delta int(cl(A))) \cap \delta int(cl(int(A)))) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(\delta int(cl(A))) \cup cl(\delta int(cl(int(A)))) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(\delta int(cl(A))) \cup cl(\delta int(cl(int(A)))) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(int(A))) \cup cl(int(A)) = c_{\mu}(A) \cup (int(cl(A)) \cap cl(int(A))) \cup cl(int(A)) = c_{\mu}(A) \cup cl(int(A)) \cap c_{\mu}(c_{\mu}(A) \cup c_{\mu}(c_{\mu}(A)) \cup c_{\mu}(c_{\mu}($

(d) $c_{\mu}(c_{\sigma}(A)) = c_{\sigma}(A) \cup cl(\delta int(c_{\sigma}(A))) = c_{\sigma}(A) \cup cl(\delta int(cl(A)))$, by Theorem 3.1(a) and so $c_{\mu}(c_{\sigma}(A)) = A \cup int(cl(A)) \cup cl(\delta int(cl(A))) = A \cup cl(\delta int(cl(A))) = A \cup cl(\delta int(cl(A))) = c_{\alpha}(A)$.

4. CHARACTERIZATIONS OF GENERALIZED OPEN SETS:

In this section, we characterize regular open sets, δ - open sets, α - open sets, semiopen sets, preopen sets, β - open sets, δ - preopen sets and δ - semiopen sets in terms of the compositions of generalized interior and closure operators.

Theorem: 4.1 Let (X, τ) be a space and $A \subset X$. Then the following are equivalent.

(a) $A \in \tau_{\delta}$. (b) $\delta int(i_{\pi}(A)) = A$. (c) $\delta int(i_{\mu}(A)) = A$. (d) $\delta int(i_{\sigma}(A)) = A$.

Proof:

Proof: (a), (b), (c) and (d) are equivalent by Theorem 3.1(b₁).

Theorem: 4.2 *Let* (X, τ) *be a space and* $A \subset X$ *. Then the following are equivalent.*

(a) *A* is regular open. (b) $i_{\pi}(\delta cl(A)) = A$. (c) $\delta int(c_{\sigma}(A)) = A$. (d) $int(i_{\mu}(cl(A))) = A$. (e) $int(cl(i_{\mu}(A))) = A$. (f) $c_{\sigma}(i_{\mu}(A)) = A$.

Proof: (a) and (b) are equivalent by Theorem $3.1(d_1)$. (a) and (c) are equivalent by Theorem 3.1(a). (a), (d), (e) and (f) are equivalent by Theorem $3.2(a_1)$.

Theorem: 4.3 *Let* (X, τ) *be a space and* $A \subset X$ *. Then the following are equivalent.*

(a) A is α -open. (b) $A \subset int(cl(c_{\mu}(int(A)))).$ (c) $A \subset int(\delta cl(i_{\sigma}(A))).$ (d) $A \subset int(cl(int(c_{\mu}(A))).$ (e) $i_{\mu}(i_{\sigma}(A)) = A.$ (f) $A \subset int(i_{\sigma}(c_{\mu}(A))).$

Proof: (a), (b), (c), (d) and (f) are equivalent by Theorem 3.2(a). (a) and (c) are equivalent by Theorem $3.1(a_1)$. (a) and (e) are equivalent by Theorem $3.2(d_1)$.

Theorem: 4.4 *Let* (X, τ) *be a space and* $A \subset X$ *. Then the following are equivalent.*

(a) A is semiopen. (b) $A \subset cl(c_{\mu}(int(A))).$ (c) $A \subset \delta cl(i_{\sigma}(A)).$ (d) $cl(A) = cl(int(c_{\mu}(A))).$ (e) $A \subset i_{\sigma}(c_{\mu}(A)).$

Proof: (a), (b), (d) and (e) are equivalent by Theorem 3.2(a). (a) and (c) are equivalent by Theorem 3.1(a₁).

Theorem: 4.5 Let (X, τ) be a space and $A \subset X$. Then the following are equivalent.

(a) A is preopen. (b) $A \subset int(i_{\mu}(cl(A)))$. (c) $A \subset int(cl(i_{\mu}(A)))$. (d) $i_{\pi}(i_{\mu}(A)) = A$. (e) $i_{\mu}(i_{b}(A)) = A$. (f) $i_{\mu}(i_{\beta}(A)) = A$. (g) $A \subset c_{\sigma}(i_{\mu}(A))$. (h) $A \subset \delta int(c_{\sigma}(A))$.

Proof: (a), (b), (c) and (g) are equivalent by Theorem $3.2(a_1)$. (a), (d) and (f) are equivalent by Theorem 3.2(b). (a) and (e) are equivalent by Theorem $3.2(c_1)$. (a) and (h) are equivalent by Theorem 3.1(a).

Theorem: 4.6 Let (X, τ) be a space and $A \subset X$. Then the following are equivalent.

(a) A is β - open. (b) $A \subset cl(\delta int(c_{\sigma}(A)))$. (c) $A \subset cl(int(cl(i_{\mu}(A))))$. (d) $A \subset cl(c_{\sigma}(i_{\mu}(A)))$. (e) $A \subset cl(int(i_{\mu}(cl(A))))$.

Proof: (a), (c), (d) and (e) are equivalent by Theorem 3.2(a₁). (a) and (b) are equivalent by Theorem 3.1(a).

Theorem: 4.7 Let (X, τ) be a space and $A \subset X$. Then the following are equivalent.

(a) A is δ – preopen. (b) $A \subset \delta int(\delta cl(c_{\pi}(A)))$. (c) $A \subset \delta int(\delta cl(c_{\mu}(A)))$. (d) $A \subset i_{\pi}(\delta cl(A))$. (e) $A \subset \delta int(\delta cl(c_{\sigma}(A)))$.

Proof: (a), (b), (c) and (e) are equivalent by Theorem 3.1(b). (a) and (d) are equivalent by Theorem 3.1(d₁).

Theorem: 4.8 *Let* (X, τ) *be a space and* $A \subset X$ *. Then the following are equivalent.*

(a) A is δ -semiopen. (b) $A \subset cl(\delta int(i_{\pi}(A)))$. (c) $A \subset cl(\delta int(i_{\mu}(A)))$. (d) $A \subset cl(\delta int(i_{\sigma}(A))$. (e) $A \subset c_{\pi}(\delta int(A))$.

Proof: (a), (b), (c) and (d) are equivalent by Theorem 3.1(b₁). (a) and (e) are equivalent by Theorem 3.1(d).

REFERENCES:

[1] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38(1986), 24 – 32.

[2] D. Andrijević, On b- open sets, Mat. Vesnik, 48(1996), 59 - 64.

[3] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β - open sets and β -continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12 (1983), 77 – 90.

[4] Á. Császár; Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65 – 87.

[5] Á. Császár; On the γ - interior and γ -closure of a set, Acta Math. Hungar., 80(1-2)(1998), 89 – 93.

K. Thanalakshmi*/ Characterizations of some generalized open sets / IJMA- 2(6), June-2011, Page: 982-987

[6] Á. Császár; Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351 – 357.

[7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[8] A. S. Mashhour, M.E. Abd El-Monsef and S.N. El-deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phy. soc. Egypt*, 53(1982), 47 – 53.

[9] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961 – 970.

[10] J. H. Park, B.Y. Lee and M.J. Son, On δ - semiopen sets in topological space, *J. Indian Acad. Math.*, 19(1)(1997), 59 – 67.

[11] S. Raychaudhuri and M.N. Mukherjee, On δ - almost continuity and δ - preopen sets, *Bull. Ins. Math. Acad. Sinica*, 21(4)(1993), 357 – 366.

[12] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., (2)78(1968), 103 – 118.
