BALANCED DOMINATION NUMBER OF SOME GRAPHS

${ }^{1}$ S. CHRISTILDA*, ${ }^{2}$ P. NAMASIVAYAM
1Department of Mathematics, Sadakathullah Appa college, Tirunelveli - 627011, Tamil Nadu, India.
${ }^{2}$ PG and Research Department of Mathematics, The MDT Hindu College, Tirunelveli - 627010, Tamil Nadu, India.

(Received On: 30-04-15; Revised \& Accepted On: 18-06-15)

Abstract

Let $G=(V, E)$ be a graph. A Subset D of V is called a dominating set of G if every vertex in V - D is adjacent to atleast one vertex in D. The Domination number $\gamma(G)$ of G is the cardinality of the minimum dominating set of G. Let $G=(V, E)$ be a graph and let f be a function that assigns to each vertex of V to a set of values from the set $\{1,2, \ldots \ldots . . k\}$ that is, $f: V(G) \rightarrow\{1,2, \ldots . . k\}$ such that for each $u, v \in V(G), f(u) \neq f(v)$, if u is adjacent to v in G. Then the dominating set $D \subseteq V(G)$ is called a balanced dominating set if $\sum_{u \in D} f(u)=\sum_{v \in V-D} f(v)$. In this paper, we determine the balanced domination number for complete graph, complete bipartite graph and wheels.

Keywords: Balanced domination, Bipartite, Complete, Independent.
Mathematics Subject Classification: 05C69.

1. BALANCED DOMINATION

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and let f be a function that assigns to each vertex of V to a set of values from the set $\{1,2, \ldots \ldots . . \mathrm{k}\}$ that is, $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots \ldots \mathrm{k}\}$ such that for each $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{f}(\mathrm{u}) \neq \mathrm{f}(\mathrm{v})$, if u is adjacent to v in G . Then the set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called a balanced dominating set if $\sum_{u \epsilon D} f(u)=\sum_{v \in V-D} f(v)$

The balanced domination number $\gamma_{b d}(G)$ is the minimum cardinality of the balanced dominating set.
The set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called strong balanced dominating set if $\sum_{u \in D} f(u) \geq \sum_{v \in V-D} f(v)$. Also the set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called weak balanced dominating set if $\sum_{u \in D} f(u) \leq \sum_{v \in V-D} f(v)$.

The sum of the values assigned to each vertex of G is called the total value of G .
Hence Total value $=\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$.
Theorem 1.1: Let G be a graph with n vertices. Then G has a balanced dominating set $\operatorname{iff} \mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is even. Proved in [6].

Theorem 1.2: Let G be a graph with n vertices. Then G has no balanced dominating set $\mathrm{iff} \mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is odd. Proved in [6].

Note: Since we divide the graph G into 2 sets of vertices having equal values, we get two balanced dominating set for every graph G.

Theorem 1.3: For a graph $\mathrm{G}, 0 \leq \gamma_{b d}(G) \leq \frac{n}{2}$.

Proof:

Case (i): if $f(V)$ is odd, then G has no balanced dominating set.

> Corresponding Author: ${ }^{1}$ S. Christilda*, 1 Department of Mathematics,
> Sadakathullah Appa college, Tirunelveli - 627011, Tamil Nadu, India.

${ }^{1}$ S. Christilda*, ${ }^{2}$ P. Namasivayam / Balanced Domination Number of Some Graphs / IJMA- 6(6), June-2015.

Therefore, $\gamma_{b d}(G)=0$.
Case (ii): if $f(V)$ is even, then G has balanced dominating set.
Also every graph G has 2 balanced dominating sets say D_{1} and D_{2}. $\left|D_{1}\right|+\left|D_{2}\right|=n$

If $\left|D_{1}\right|=\left|D_{2}\right|$, we get $2\left|D_{1}\right|=n,\left|D_{1}\right|=\frac{n}{2}$
Therefore, $\gamma_{b d}(G)=\frac{n}{2}$.
If $\left|D_{1}\right|>\left|D_{2}\right|$, then D_{2} is the minimal balanced dominating set.
If $\left|D_{1}\right|=\left|D_{2}\right|$, we get $\left|D_{1}\right|=\frac{n}{2}$
Since D_{2} is minimal, $\left|\mathrm{D}_{2}\right|<\frac{n}{2}$, therefore $\gamma_{b d}(G)=\left|\mathrm{D}_{2}\right|<\frac{n}{2}$.
If $\left|D_{1}\right|<\left|D_{2}\right|$, then D_{1} is the minimal balanced dominating set.
Since D_{1} is minimal, $\left|\mathrm{D}_{1}\right|<\frac{n}{2}$, therefore $\gamma_{b d}(G)=\left|\mathrm{D}_{1}\right|<\frac{n}{2}$.
In three cases, we get $\gamma_{b d}(G) \leq \frac{n}{2}$. Hence the theorem.

2. BALANCED DOMINATION NUMBER OF COMPLETE GRAPH

Complete graph	Labeling of vertices	$\gamma_{b d}$
K_{2}	\{1,2\}	1
K_{3}	\{1,2,3\}	1
K_{4}	\{1,2,3,4\}	2
K_{5}	\{1,2,3,4,5\}	0
K_{6}	\{1,2,3,4,5,6\}	0
K_{7}	\{1,2,3,4,5,6,7\}	3
K_{8}	\{1,2,3,4,5,6,7,8 \}	3
K_{9}	\{1,2, 3,4,5,6,7,8, 9\}	0
K_{10}	\{1,2, 3,4,5,6,7,8 ,9,10\}	0
K_{11}	\{1,2, 3,4,5,6,7,8,9,10,11\}	4
K_{12}	\{1,2, 3,4,5,6,7,8 ,9,10,11,12\}	4
K_{13}	\{1,2, 3,4,5,6,7,8, ,9,10,11,12,13\}	0
K_{14}	\{1,2, 3,4,5,6,7,8 ,9,10,11,12,13,14\}	0
K_{15}	\{1,2,3,4,5,6,7,8 ,9,10,11,12,13,14,15\}	5
K_{16}	\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}	5
K_{17}	$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17\}$	0
K_{18}	$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$	0
K_{19}	\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19\}	6
K_{20}	\{1,2,3,4,5,6,7,8 ,9,10,11,12,13,14,15,16,17,18,19,20\}	6

Table-2.1.1

Theorem 2.1: For a complete graph G with n vertices, if $\sum_{v \in V(G)} f(v)$ is even then $\sum_{u \in D} f(u)=\frac{n(n+1)}{4}$.
Proved in [6].
Result 2.2: For complete graphs $\mathrm{K}_{2 \mathrm{n}+1}$ and $\mathrm{K}_{2 \mathrm{n}+2}(\mathrm{n}=2,4,6,8, \ldots \ldots \ldots), \gamma_{b d}=0$.

3. BALANCED DOMINATION NUMBER OF COMPLETE BIPARTITE GRAPH

The complete bipartite graphs can be partitioned into 2 sets of non-adjacent vertices, so we can assign values to vertices of each partition by one value. That is, we have the values $\{1,2\}$ and there are exactly 2 possible labeling of vertices.

But we get a balanced dominating set for complete bipartite graph only if $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is even.

Complete bipartite graph	Labeling of vertices	$\gamma_{b d}$
$\mathrm{K}_{1,1}$	\{1,2\}	0
$\mathrm{K}_{1,2}$	$\mathrm{L}_{1}:\{1,2,2\}$	1
	L_{2} : $\{1,1, \mathbf{2}\}$	
$\mathrm{K}_{1,3}$	$\mathrm{L}_{1}:\{1,2,2,2\}$	0
	$\mathrm{L}_{2}:\{1,1,1,2\}$	
: $\mathrm{K}_{1,4}$	$\mathrm{L}_{1}:\{1,2,2,2,2\}$	2
	$\mathrm{L}_{2}:\{\mathbf{1 , 1 , 1 , 1 , 2 \}}$	
$\mathrm{K}_{2,1}$	$\mathrm{L}_{1}:\{1,1,2\}$	1
	$\mathrm{L}_{2}:\{1,2,2\}$	
$\mathrm{K}_{2,2}$	L: $\{1,1,2,2\}$	2
$\mathrm{K}_{2,3}$	$\mathrm{L}_{1}:\{1,1,2,2,2\}$	2
	$\mathrm{L}_{2}:\{1,1,1,2,2\}$	
$\mathrm{K}_{3,3}$	L: $\{1,1,1,2,2,2\}$	0
$\mathrm{K}_{3,4}$	$\mathrm{L}_{1}:\{1,1,1,2,2,2,2\}$	3
	$\mathrm{L}_{2}:\{1,1,1,1,2,2,2\}$	
$\mathrm{K}_{4,2}$	$\mathrm{L}_{1}:\{1,1,1,1,2,2\}$	2
	$\mathrm{L}_{2}:\{1,1,2,2,2,2\}$	
$\mathrm{K}_{4,4}$	L: $\{1,1,1,1,2,2,2,2\}$	3
$\mathrm{K}_{5,1}$	$\mathrm{L}_{1}:\{1,1,1,1,1,2\}$	0
	$\mathrm{L}_{2}:\{1,2,2,2,2,2\}$	
$\mathrm{K}_{5,2}$	$\mathrm{L}_{1}:\{1,1,2,2,2,2,2\}$	3
	$\mathrm{L}_{2}:\{1,1,1,1,1,2,2\}$	
$\mathrm{K}_{5,3}$	$\mathrm{L}_{1}:\{1,1,1,1,1,2,2,2\}$	0
	$\mathrm{L}_{2}:\{1,1,1,2,2,2,2,2\}$	

Table-3.1.1
Theorem 3.2: Let G be a complete bipartite graph $K_{m, n}(m, n \geq 1)$, Then G has balanced dominating set if
i) m is odd $\& n$ is even
ii) m is even $\& n$ is odd
iii) both m and n are even.

Proof: Let G be a complete bipartite graph $K_{m, n}$.
i) m is odd $\& n$ is even

For a complete bipartite graph, $\mathrm{f}(\mathrm{u}),(\mathrm{u} \in \mathrm{V}(\mathrm{G}))$ must be 1 or 2 .
Therefore, there must be m 1's and n 2's (or) n 1's and m 2's.
Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)=\mathrm{n} 1$'s +m 2 's

$$
=\text { even }+ \text { even }=\text { even }
$$

Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is even.
By theorem 1.1, G has balanced dominating set.
ii) m is even $\& n$ is odd

For a complete bipartite graph, $\mathrm{f}(\mathrm{u}),(\mathrm{u} \in \mathrm{V}(\mathrm{G}))$ must be 1 or 2 .
Therefore, there must be m 1's and n 2's (or) n 1's and m 2's.
Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)=\mathrm{m} 1$'s +n 2 's
= even + even =even

Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is even.
By theorem 1.1, G has balanced dominating set.
iii) both m and n are even

For a complete bipartite graph, $\mathrm{f}(\mathrm{u}),(\mathrm{u} \in \mathrm{V}(\mathrm{G}))$ must be 1 or 2 .

${ }^{1}$ S. Christilda*, ${ }^{2}$ P. Namasivayam / Balanced Domination Number of Some Graphs / IJMA- 6(6), June-2015.

Therefore, there must be m 1's and n 2's (or) n 1's and m 2's.
Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)=\mathrm{m} 1$'s +n 2 2's (or) n 1's +m 2 's
= even + even =even

Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is even.
By theorem 1.1, G has balanced dominating set.
Theorem 3.3: Let G be a complete bipartite graph $K_{m, n}(m, n \geq 1)$, Then G has no balanced dominating set if both m and n are odd.

Proof: Let G be a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$.
Let both m and n be odd.
For a complete bipartite graph, $f(u),(u \in V(G))$ must be 1 or 2.Therefore, there must be m 1's and $n 2$'s (or) $n 1$'s and m 2's.

We know that odd number of 1's gives odd number and any number of 2's must be even.
Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)=\mathrm{m} 1$'s +n 2 's (or) n 1's +m 2 's
= odd + even =odd

Therefore, $\mathrm{f}(\mathrm{V})=\sum_{v \in V(G)} f(v)$ is odd.
By theorem 1.2, G has no balanced dominating set.

4. WHEELS

A Wheel on n vertices W_{n} is a graph with n vertices $x_{1}, x_{2}, \ldots \ldots x_{n}$ with x_{1} having degree $n-1$ and all the other vertices having degree 3 .

Wheel graph	Labeling of vertices	$\gamma_{b d}$
W_{3}	\{1,2,3\}	1
W_{4}	\{1,2,3,4\}	2
W_{5}	$\mathrm{L}_{1}:\{1,2,2,3,3\}$	2
	$\mathrm{L}_{2}:\{1,1,2,3, \mathbf{3}\}$	
	$\mathrm{L}_{3}:\{1,1,2,2,3\}$	
W_{6}	$\mathrm{L}_{1}:\{1,2,2,3,3,4\}$	2
	$\mathrm{L}_{2}:\{1,2,3,3,4,4\}$	
	$\mathrm{L}_{3}:\{1,1,2,3,4,4\}$	
	$\mathrm{L}_{4}:\{1,2,2,3,4,4\}$	
W_{7}	$\mathrm{L}_{1}:\{1,2,2,2,3,3,3\}$	3
	$\mathrm{L}_{2}:\{1,1,1,2,3,3,3\}$	
	$\mathrm{L}_{3}:\{1,1,1,2,2,2,3\}$	
W_{8}	$\mathrm{L}_{1}:\{1,2,2,2,3,3,3,4\}$	3
	$\mathrm{L}_{2}:\{1,2,3,3,3,4,4,4\}$	
	$\mathrm{L}_{3}:\{1,2,2,2,3,4,4,4\}$	
	$\mathrm{L}_{4}:\{1,1,1,2,3,4,4,4\}$	
	$L_{5}:\{1,1,1,2,3,3,3,4\}$	
	$\mathrm{L}_{6}:\{1,1,1,2,2,2,3,4\}$	
W_{9}	$\mathrm{L}_{1}:\{1,2,2,2,2,3,3,3,3\}$	4
	$\mathrm{L}_{2}:\{1,1,1,1,2,3,3,3,3\}$	
	$\mathrm{L}_{3}:\{1,1,1,1,2,2,2,2,3\}$	
W_{10}	$\mathrm{L}_{1}:\{1,2,2,2,2,3,3,3,3,4\}$	4
	$\mathrm{L}_{2}:\{1,1,1,1,2,2,2,2,3,4\}$	
	$\mathrm{L}_{3}:\{1,1,1,1,2,3,3,3,3,4\}$	
	$\mathrm{L}_{4}:\{1,2,3,3,3,3,4,4,4,4\}$	
	$\mathrm{L}_{5}:$ \{1,2,2,2,2,3,4,4,4,4\}	
	$\mathrm{L}_{6}:\{1,1,1,1,2,3,4,4,4,4\}$	
W_{11}	$\mathrm{L}_{1}:\{1,2,2,2,2,2,3,3,3,3,3\}$	5

Table-4.1.1

${ }^{1}$ S. Christilda*, ${ }^{2}$ P. Namasivayam / Balanced Domination Number of Some Graphs / IJMA- 6(6), June-2015.

Result 4.2: For Wheel graph $\mathrm{W}_{\mathrm{n}}, \gamma_{b d}(G)=\frac{\Delta}{2}$ if n is odd.
Example 4.3: Consider the wheel graph $\mathrm{W}_{11}(\mathrm{n}$ is odd)

5. INDEPENDENT BALANCED DOMINATION

A set S of vertices in a graph G is a independent balanced dominating set if S is a balanced dominating set and the set of vertices S is independent.

The independent balanced domination number $\gamma_{i b d}(G)$ is the minimum cardinality of the independent balanced dominating set.

Theorem 5.1: Let G be a complete bipartite graph $K_{m, n}(m>n)$, then G has two independent balanced dominating sets if $m=2 n$.

Proof: Let G be a complete bipartite graph. G can be partitioned into 2 sets S_{1} and S_{2} with $\left|S_{1}\right|=m,\left|S_{2}\right|=n$ \& each set of vertices have labeling 1 and 2.

Also S_{1} and S_{2} are independent.
If $m=2 n$, give the labeling 1 to each of vertices of S_{2} and 2 to each of vertices of S_{1}.
Therefore, we get $\sum_{u \epsilon S 1} f(u)=\sum_{v \in S 2} f(v)$ and both the set S_{1} and S_{2} are independent.
Therefore G has two independent balanced dominating sets.
Theorem 5.2: Let G be a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ and if $\mathrm{m}=2 \mathrm{n}$ then $\gamma_{i b d}(G)=\mathrm{n}$.
Proof: Let $\mathrm{m}=2 \mathrm{n}$.
By theorem 5.1, G has 2 independent balanced dominating set S_{1} and S_{2}. And $\left|S_{1}\right|=m,\left|S_{2}\right|=n$.
Since $\gamma_{i b d}(G)$ is the minimum cardinality of the independent balanced dominating set, $\gamma_{i b d}(G)=\min \{\mathrm{m}, \mathrm{n}\}$.

Since $\mathrm{m}>\mathrm{n}, \gamma_{i b d}(G)=\mathrm{n}$.

REFERENCES

1. B.Bresar, Tadeja Kraner Sumenjak ,On the 2 rainbow domination in graphs, Discrete Applied Mathematics, 155(2007), 2394-2400.
2. D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).
3. E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga, and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19-32.
4. F. Haray , Graph Theory, Adison Wesley, reading Mass(1972).
5. Henning, M. A. and S. T. Hedetniemi, Defending the Roman empire-A new strategy, Discrete Mathematics 266, (2003), pp. 239-251.
6. S. Christilda and P. Namasivayam, The Balanced Domination Number of Some Standard Graphs, Proceedings on Recent Trends in Mathematical Sciences(2015) 92-96 .
7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

