
International Journal of Mathematical Archive-6(6), 2015, 29-36 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 6(6), June – 2015                                                                                                                 29 

 
MICRO STIFF FLUID COSMOLOGICAL CONSTANT MODEL  

IN GENERAL RELATIVITY 
 

R. C. SAHU*, B. BEHERA 
 

Department of Mathematics, K. S. U. B. College, Bhanjanagar-761126, Odisha, India. 
 

Department of Mathematics, U. N. College, Soro, Balasore, Odisha, India. 
 

(Received On: 18-05-15; Revised & Accepted On: 17-06-15) 
 

 
ABSTRACT 

In the present paper, Bianchi type-1 micro cosmological model for perfect fluid distribution in the presence of 
cosmological constant is investigated in Einstein’s general relativity. For solving the field equations, the role of 
cosmological constant Λ is studied for three different cases i.e Λ = 0, Λ > 0 and Λ < 0. In first case i.e. when Λ = 0, 
the solutions of the field equations generate a anisotropic micro stiff fluid model of the universe. In second case,         
i.e when  Λ > 0, it is observed that the real physical model of the universe does not survive. However in third case       
i.e when Λ < 0, the perfect fluid characterized by the equation of state p = ρ degenerates homogeneous, inflationary 
and isotropic universe.  
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1. INTRODUCTION  
 
General theory of relativity developed by Einstein (1916) is the only coordinate invariant theory which laid foundation 
for constructing  mathematical models of the universe. In the year 1917, Einstein introduced the cosmological constant 
Λ  to modify his own developed field equations of general relativity. Now this Λ term remains a focal point of interest 
in the context of quantum field theories, quantum gravity, super gravity theories, Kaluza-Klein theories and also in the 
inflationary universe scenario. A number of observations suggest that the universe possess a non-zero cosmological 
constant (Krauss and Turner, 1995). The cosmological term which is a measure of the energy of empty space, provides 
a repulsive force opposing the gravitational pull between the galaxies. If the cosmological term exists, then the energy 
it represents counts as mass because Einstein has shown that mass and energy are equivalent. Further, if  Λ  posses   a 
large value then the energy involved due to the matter in the universe can sum up to the number that inflation predicts. 
In this inflationary era it is quite important to study about the cosmological constant. But recent research suggests that 
the cosmological term corresponds to a very small value of the order 10-58 cm-2 (Jhori and Chandra, 1983).  
 
The scalar meson field which represent matter field with spin less quanta are two types. The first type scalar field is 
zero rest mass scalar field and the second type scalar field is massive scalar field. The zero rest mass scalar field 
describes long range interactions, whereas massive scalar field describes short range interactions. The study of scalar 
meson field in general relativity has drawn the attention of the researchers due to its physical importance in particle 
physics. The massless scalar field in relativistic mechanics yields some significant results as regards to the singularities. 
The scalar meson field being a field of a single variable ‘v’ (say). It is is the special case of general field and the 
expression given by 

( )22
2
1 vmvvgvvT k

kijjiij −−=  

is the energy-momentum tensor of Yukawa (1935) fields (spin zero meson particle) for the metric of (+2)  signature in 
flat space time . 
 
The Klein-Gorden equation takes the form  

02
; =+ vmvg ij

ij

 
where ‘v’ is the real scalar field and m is the rest-mass of scalar meson field. Here (;) semicolon followed by an index 
denotes covariant differentiation. When m = 0, the scalar field ‘v’ is known as massless scalar field or micro matter 
field. 
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To best of our knowledge no author has studied Bianchi type-1 space time in the context of general theory of relativity 
when the gravitational field in presence of cosmological constant is a mixture of massless scalar field and perfect fluid. 
So in the present paper, we are interested to study the role of Λ (cosmological constant) in deriving mesonic perfect 
fluid solutions for the spatially homogeneous and anisotropic Bianchi type-1 space time in general theory of relativity. 
The advantage of introducing Λ here is to reveal the cosmological characters of the nature. In section 2 of this article, 
we have derived the field equations and solved the field equations corresponding to three different cases in section 3. In 
addition to it some physical and geometrical properties of the solutions are studied. In section 4, the conclusion part of 
the article is given. 

 
2. FIELD EQUATIONS     
 
We have considered Bianchi type-I metric in the form  

2 2 2 2 2 2 2 2ds dt A dx B dy C dz= − + + +                                                                                        (1) 
where A, B and C are functions of cosmic time ‘t’ which ensures that the space-time is spatially homogeneous. 
 
The Einstein field equations for gravitating mesonic perfect fluid with cosmological term Λgij may be written as 

1 8
2ij ij ij ij ijG R g R g Tπ≡ − +Λ =−                                                                                         (2) 

 
where the units are chosen such that G= 1 = C and Rij is the Ricci tensor, R  is the Ricci scalar, gij  is the metric tensor 

and  ( )p v
ij ijT +TijT =  is the Energy momentum tensor of the matter.

  
 
The energy momentum tensor p

ijT for perfect fluid distribution is given by   

( )p
ij i j ijT p u u pgρ= + +

                                                                               (3)
 

Together with 
1−=ji

ij uug                                                                               (4) 
 
Here ρ, p and ui are respectively the mass energy density, isotropic pressure and four-velocity vector of the perfect 
fluid. 
 
The energy momentum tensor v

ijT   for a micro matter field representing massless scalar field distribution is taken as  
v

ijT  = vivj – ½ gij vkvk                                                                (5) 
together with  

gij v; ij  = 0 .                                                   (6) 
 
Here the scalar field v is a function of cosmic time. 
 
Using co-moving coordinate system, the field equation (2) and the Klein-Gorden equation (6) for the metric (1) are 
obtained as  

44 44 4 4B C B C
B C BC

+ + +Λ =
2
48
2
vpπ

 
− + 

 
                                                                          (7) 

44 44 4 4C A C A
C A CA

+ + +Λ =
2
48
2
vpπ

 
− + 

 
,                                                                          (8) 

44 44 4 4A B A B
A B AB

+ + +Λ =
2
48
2
vpπ

 
− + 

 
,                                                                          (9) 

4 4 4 4 4 4A B B C C A
AB BC CA

+ + +Λ =
2
48
2
vπ ρ

 
+ 

 
                                                          (10) 

and v44 + [log(ABC)]4 v4 =  0                                                                           (11) 
 
where the subscript  ‘4’ denotes the ordinary differentiation with respect to time. 
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3. COSMOLOGICAL MODEL 
 
Field equations (7) to (11) is an underdetermined system having six equations in seven unknowns viz., A, B, C, p, ρ, Λ 
and v. So, to make the system consistent, two additional conditions are to be considered. 
 
Consider the bartropic equation of state 

10,p ≤γ≤γρ=                                                 (12) 
as first additional condition. 
 
3.1 Mesonic Stiff Fluid Model 
 
Taking  γ = 1, equation (12) reduces to 

ρ=p                                                   (13) 
 
which represents stiff fluid (Zel’dovich, 1962). In this case adding equations (7), (8) and (9) with three times of 
equation (10), we obtained 

( )44( ) 3 12 .ABC p
ABC

π ρ+ Λ = −                                                                           (14) 

 
On integration, eqn. (11) yields 

𝑣𝑣4   =  α
𝐴𝐴𝐴𝐴𝐴𝐴

 ,                                    (15) 
where α ≠ 0  is the constant of integration. 
 
Now use of eqn. (13) in eqn. (14), we get 

0ABC3)ABC( 44 =Λ+ .                                               (16) 
 
In order to get exact and explicit solutions, following three cases i.e., 
 
 (i) Λ = 0 (ii) Λ > 0 (iii) Λ < 0   considered as second additional condition as discussed earlier. 
 
Case-i: For Λ = 0, eqn.(16)  after integration yields  

ABC = (α1t + α2)                                                              (17) 
where  α1 (≠ 0)   and   α2   are constants of integration.  
 
Use of (17), eqn. (15) after integration reduces 

v =
1

α
α

 ln(α1t + α2) + β                                                (18) 

where  β is a constant of integration. 
 
Equation (17) can be written as  

A = (α1t + α2) 1 ,n  B = (α1t + α2) 2n , C = (α1t + α2) 3n                                                                      (19a, b, c) 

where  ni , i = 1,2,3 are real constants such that∑
=

3

1i
ni = 1. 

 
Using equations (19a, b, c) in equation (10), we obtained 

3
2
1 i j

, 1
  

2
1 2

j

 n  

) 

n

(

i j
i

a t a

α
=
≠

+

∑
= 

2
4 v8

2
π ρ
 

+ 
 

.                                                                          (20) 

 
Equation (20) can be written as  

(ρ + 
2
4v

2
)  =   

1

2

2
2 ( )t

q
a a+

                                               (21)  
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where      q2  =  
π

α ∑
≠
=

8

n n 
3

j  i
1j,i

ji
2
1

. 

 
With the help of equations (13), (15) and (19a, b, c), equation (21) yields 

ρ  = p =   
2

2

2
1

22   -  
2  ( )

q
a t a

α
+ .

                                  (22) 

 
Thus the anisotropic homogeneous cosmological micro-stiff fluid model is given by 

ds2 = -dt 2 + 1
1 2

2 ( ) na t a+ dx2 + 2
1 2

2 ( ) na t a+ dy2 + 3
1 2

2 ( ) na t a+ dz2.                                          (23) 
 
This model exhibits singularities at infinite past and future as well. 
 
Some properties of the model (23): 
 
The physical parameters involved in the model behaves as follows: 
(a) as t → 0, the meson field v → a constant and the energy density cum pressure ρ(=p) → a constant, subject to 

the condition ∑
≠
=

α
3

j  i
1j,i

2
1  ninj > 4πα2.   In this case the space-time reduces to a flat space time in Einstein’s 

theory. 
(b) as t → ∞, v → ∞ and ρ(=p) → 0, So in this case the micro-stiff fluid model  of the universe reduces to vacuum 

model of the universe. The same case also arises when q =𝛼𝛼
2
  or ∑

≠
=

α
3

j  i
1j,i

2
1  ninj = 4πα2.    

(c) when  α = 0 then  the  meson field v becomes constant and  ρ = p = 
1

2

2
2  

 
( )  

 
a t a

q
+

.   

(d) the scalar expansion for the model θ =
1

1

2 ( )  a t a
α
+

 shows that the universe is expanding with increase of 

time but the rate of expansion is slow with increase of time. 

(e) the shear scalar σ2 for this model is σ2 = 
3
2

2

1

1

2

( )   a t a
α 

 
 + 
















− ∑
≠
=

ji

3

j  i
1j,i

nn 31 As  t → ∞,  σ2 → 0  and 

as t → 0, σ2 → a constant. Thus it shows that the shape of the universe changes uniformly in x, y and z 
directions depending on the parameters ni, i = 1, 2, 3. However the rate of change of the shape of the universe 
becomes slow with increase of time. Further we obtained  

 
∞→  T

lim







θ
σ

 = 
∞→  T

lim
  



















∑
≠
=

ji

3

j  i
1j,i

nn   3  -  1
3
2

    =  
3
2

 ji

3

j  i
1j,i

nn   3  -  1 ∑
≠
=

  

 which indicates that the universe remains anisotropic throughout the evolution. This can also be seen by 
considering the present day observational limits in the temperature anisotropy. 

(f) the velocity field from geodesic motion is given by acceleration u i. Here we found that there is no 
acceleration i.e. u i = 0 . Hence the mesonic fluid flow is geodesic in nature. Also the vorticity tensor wij 
becomes zero and hence the rotation ‘ω’ turns out to be zero. Hence the model is non-rotating in nature. 

(g) the spatial volume V =  (α1t + α2) clearly shows the anisotropic expansion of the universe with time and the 
universe starts expanding with a constant volume and blows up at infinite future. 
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Case-ii: For Λ > 0, equation (16) after integration yields 

3 4cos 3 sin 3ABC t tα α= Λ + Λ                                               (24) 

where  3α   and  4α   are constants of integration. From eqn. (24), we can write the explicit form for A, B and C as 

 

( )
( )

( )

1

2

3

3 4

3 4

3 4

cos 3 sin 3 ,

cos 3 sin 3

cos 3 sin 3

n

n

n

A t t

B t t

and

C t t

α α

α α

α α

= Λ + Λ 


= Λ + Λ 



= Λ + Λ 

                                             (25) 

where    ni,  i = 1, 2, 3 are real constants and satisfies the relation 

 
1ni

3

1i
=∑

=

.                                                                            (26) 

 
Here the over determinacy for determining three unknowns A, B  and C from four field eqns. (7)-(10) can be settled by 
actual substitution of the values of A, B and C from eqn. (25) in eqn.(10).  
 
Thus we obtain 

2

2
3

3 4

, 1

4

4 3

v8 ( )
2 cos 3 sin 3

3 cos 3 sin 3
i j

i j
i j

t tn n
t t

π ρ
α α
α α

≠
=

 
+ −Λ   Λ + Λ = ⋅ Λ Λ − Λ 

∑ .                                           (27) 

As 3,2,1i,n i =  are real constants, so also ji

3

1j,i
nn

ji

∑
≠
=

 is a real constant. But this relation cannot be hold good in eqn. 

(27) as its L.H.S part is constant but R.H.S part is a function of ‘t’. 
 
Thus for  Λ > 0 and p =ρ, it is not possible to determine real physical model of the universe. 
 

Case-iii: Suppose Λ < 0 i.e., 
3

2ω−
=Λ . In this case eqn. (16) reduces to 

( ) 0ABCABC 2
44 =ω− .                                               (28) 

On integration, eqn. (28) yields 
t

2
t

1 eeABC ω−ω β+β=                                                 (29) 
where  β1 and  β2 are arbitrary constants of integration. From eqn. (29), we can write the explicit form for A, B and C as 

 

( )
( )

( ) 











+=

+=
+=

−

−

−

3

2

1

21

21

21 ,

rtt

rtt

rtt

eeC
and

eeB
eeA

ωω

ωω

ωω

ββ

ββ
ββ

                                               (30) 

where    ri, i = 1, 2, 3 are real constants satisfying the condition 

 1ri

3

1i
=∑

=

.                                                 (31) 

 
Here also the over determinacy for finding three unknowns A,B and C from four eqns. (7) to (10) can be settled by 
putting the values of A,B and C from eqn. (30) in eqn.(10).Thus we get 

2
4

23
1 2

, 1 1 2

8
21

3
i j

t t

i j t t
i j

v
e er r
e e

ω ω

ω ω

π ρ
β β
β β

≠

−

−
=

  
+ −Λ   +   = ⋅ ⋅   − −Λ   

 

∑ .                                                                       (32) 
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Since ri, i = 1, 2, 3 are real constants, so ji

3

1j,i
rr

ji

∑
≠
=

 is also a real constant. But this relation holds good in eqn. (32) only 

when 
2
4

2

8
2

0 1

v

and
π ρ

β

 
+ −Λ 

 = =
−Λ

.                                                           (33) 

 
Thus from eqn. (32) and (33), we obtain 

3
1rr ji

3

1j,i
ji

=∑
≠
=

                                                 (34) 

and 
2
48
2
vπ ρ

 
+ 

 
= 0.                                                             (35) 

 
From eqn. (35), we get 

ρ  = -
2

2
4v

.                                                 (36) 
Thus from (36) and (13), we have 

 ρ  = p = -
2

2
4v

 .                                                (37) 
 
Now putting the value of β2 = 0 from eqn. (33) in eqn. (29), we obtain 

teABC ωβ1= .                                                (38) 
 
Solving (34)  and  (31), one can get 

3/1rrr 321 === .                                                (39) 
 
The explicit expressions of A, B and C in (38) can be expressed as   

( ) 33/1
1 .

t

eCBA
ω

β===  .                                                                             (40) 
  
Using eqn. (40) in eqn. (15), we obtain 

3
1

1
tv

eω
α β

β ω
−

= ⋅ +                                                                                                                                 (41) 

where  3β  is the constant of integration.  
 
With the help of eqn. (41), eqn. (37) yields 

ρ  = p =  -
2

2 2
1

1.
2 te ω
α
β

.                                               (42) 

 
Thus corresponding  to our solution (40) the Bianchi type-1 metric (1) can be expressed as 

( ) ( )2223/2
1

22 dzdydxedtds t +++−= ωβ .                                             (43) 
 
The model obtained as above is the spatially-homogeneous isotropic Bianchi type-1stiff fluid micro model. This model 
does not lead to well known Kasner, (1921) model for Λ < 0. 

     
Some physical and geometrical features of the model (43): 

i. The spatial volume in the model is given by ( )1/2V g= −  = 1
tABC eωβ= . 
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Thus V → β1 as t → 0 and V→ ∞ as t → ∞. Thus the universe starts expanding from a constant volume and 
becomes infinite large volume as t → ∞ .Hence we concluded that the universe may blows up at infinite 
future. 

ii. 
The scalar expansion θ and the anisotropy |σ| are defined by (Roychoudhury, 1955) as 4

;
i
i

Vu
V

θ = =
 

where V  the volume element  and
 




















−+








−+








−=

2

11

4,11

33

4,33
2

33

4,33

22

4,22
2

22

4,22

11

4,112

g
g

g
g

g
g

g
g

g
g

g
g

12
1σ  . 

 
Now the scalar expansion θ  and anisotropy |σ| in the model we found  

0>= ωθ  and 02 =σ . Thus 0lim
t

=
θ∞→

σ
. 

 
The above result shows that the universe is expanding in nature with constant expansion. Also the universe is non-
shearing and isotropic throughout the evolution. Hence the spatially homogeneous anisotropic cosmological model in 
Barber's second theory reduces to homogeneous isotropic model.  

 
i. The Kretschmann curvature invariant defined by L = Rhijk Rhijk\, where Rhijk is the Riemann curvature tensor. 

Here L  is found to be 

( ) 0
3
2L 2 >Λ=

. 
As L is a + ve constant, the result confirms that the model has no geometrical singularity. 

ii. The massless scalar field v in this model is found to be  
 
 

 
Thus v→ a constant as t → 0 and v → 3β    as t→ ∞. If α  = 0, then v = 3β . 
In this case the massless scalar field v does not exist.  

 
iii. The energy density and proper pressure  in the model are given by  

ρ  = p = -
2

2 2
1

1.
2 te ω
α
β

.  

Here  ρ  (= p)→ a –ve constant as t → 0 and ρ  (= p) → 0    as t → ∞. 
Thus it is evident from the result that at initial time the result leads to unphysical situation but at infinite future 
the model shows singularity. If α  = 0, then ρ (= p) will be constant. In this case the space time reduces to flat 
space time. 

iv. The Hubble’s parameter H in the model is found as 
3
ω

=H  . Thus H is not a function of time and hence we 

concluded that the model is of steady-state.      
v. The scale factor S3 in the model can be determined as S3 = 1

tABC eωβ= . 
So, S increases as time increase. 

vi. The deceleration parameter ‘q’ in the model is found to be q = -  𝑉𝑉𝑉𝑉44
𝑉𝑉4

2  = -1. As q = -1, so the model of the 
universe corresponds to an inflationary model. 

 
4. CONCLUSION 
 
In this paper, we studied the role of cosmological constant Λ for deriving mesonic perfect fluid solutions in view of the 
spatially homogeneous anisotropic Bianchi type-1 space time in general relativity corresponding to three distinct cases. 
In first case i.e. when  Λ = 0, it is seen that the anisotropic homogeneous cosmological micro-stiff fluid model of the 
universe exist. The model which exist is uniformly expanding, non-rotating and geodesic. In second case, i.e when       
Λ > 0, it is shown that the real physical model of the universe does not exist. However, in third case i.e when Λ < 0, the 
perfect fluid characterized by the equation of state p = ρ degenerates spatially homogeneous isotropic model of the 
universe in Einstein theory. It is also observed that the model found is inflationary, uniformly expanding, non-shearing 
and has no geometrical singularity.  

3
1

1 .tv
eω

α β
β ω
−

= ⋅ +
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