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ABSTRACT 
The present work is devoted to investigate the effect of thermal radiation on unsteady two – dimensional oscillatory 
flow of a polar electrically conducting viscous incompressible Bossinesq fluid past an infinite vertical plate whose 
temperature varied periodically about a mean constant non – zero value with time in presence of couple stresses and 
viscous dissipation. The Rosseland approximation is used to describe radiative heat transfer in the limit of optically 
thick fluids. The governing equations of this class of polar fluids are known to exhibit a boundary layer phenomenon. 
The dimensionless governing equations for this investigation are reduced to a system of coupled partial differential 
equations using an efficient finite difference method, and equations are solved numerically. The influence of various 
flow parameters of the flow field has been discussed and explained graphically. Further, the results obtained under the 
limiting conditions were found to be in good agreement with the existing one. 
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NOMENCLATURE: 
 
( )yx ′′, Distances along and perpendicular to 
 the plate respectively 
t′  Dimensional time 
g  Acceleration due to gravity 

u′  Dimensional velocity 
T ′  Dimensional temperature 

wT ′  Temperature at the wall 

∞′T  Temperature far away from the plate 

oB  Strength of a magnetic field 

j′  Dimensional micro – inertia 

rq  The radiative heat flux 

n′  Dimensional frequency of Oscillation 
*k  The mean absorption coefficient 

( )vu,  Components of velocities along and 
 perpendicular to the plate respectively 
y  Depth of the fluid  
t  Dimensionless time 

∞U  Non – dimensional free stream velocity 

pu′  Dimensional plate velocity 

K ′  Dimensional Permeability of the porous 
 medium 
K  Non – dimensional Permeability of the 
 porous medium 

pU  Non – dimensional plate velocity 

j  Non dimensional micro – inertia 

I  Scalar constant  
 
Pr  Prandtl number 
M  Hartmann number 
Ec  Eckert number 

pC  Specific heat at constant pressure 

Gr  Thermal Grashof number 
R  Thermal radiation parameter 

fC  Skin friction coefficient at the surface of 
 the plate 
Nu  Rate of heat transfer (or) Nusselt number 
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Greek Symbols: 
Ω  Angular velocity component σ  Electrical conductivity 
ξ   Thermal diffusivity 
ρ  Fluid Density 
ν  Fluid kinematic viscosity 

rν  Fluid kinematic rotational viscosity 
*β  Coefficient of volumetric expansion of 

 the working fluid 
α  Fluid thermal diffusivity 
ω′  Dimensional angular velocity vector 
κ  Thermal conductivity 
 

 
ε  Scalar constant ( )1≤  

σ  Stefan – Boltzmann constant 
ω  Angular velocity vector 
θ  Non dimensional temperature 
µ  Fluid dynamic Viscosity 
 
Superscript: 
' Differentiation w.r.t. to y  
 
Subscripts: 
w  Wall condition 
∞  Free stream condition 

 
1. INTRODUCTION 
 
The problem of micropolar fluids through porous media has many applications, such as porous rocks, foams and 
foamed solids, aerogels, alloys, polymer blends, and micro emulsions. In recent years, many authors have studied 
unsteady free convection flow of a micropolar fluid with or without a magnetic field through a porous medium. For 
example, Agarwal and Dhanapal [1] obtained a numerical solution to study the fully developed free convective flow 
between two parallel walls with suction (or injection) embedded in a micropolar fluid. Chamkha et al. [2] analyzed the 
fully developed free convective flow of a micropolar fluid in vertical parallel plate channel with asymmetric heating by 
numerically and analytically. The closed form analytic solutions for the flow and heat transfer characteristics of 
micropolar fluid in a vertical channel are given by Cheng [3]. Prathap Kumar et al. [4] studied the problem of fully 
developed free convective flow in a vertical channel, partially filled with micropolar fluid. Muthuraj and Srinivas [5] 
investigated fully developed MHD flow of a micropolar and viscous fluid in a vertical porous space using HAM. 
Damesh et al. [6] have studied the combined effect of heat generation or absorption and first order chemical reaction to 
micropolar fluid flows over a uniform stretched surface. Rahman and Al – Lawatia [6] studied the effect of higher order 
chemical reaction on micropolar fluid flow on a power law permeable stretched sheet with variable concentration in a 
porous medium. 
 
At high temperature, thermal radiation can be significantly affect the heat transfer and the temperature distribution of a 
micropolar fluid in a channel. Heat transfer by simultaneous free convection and thermal radiation in the case of a 
micropolar fluid has not gained as much attention. This is unfortunate because thermal radiation plays an important role 
in determining the overall surface heat transfer in situations where convective heat transfer coefficients are small, as is 
the case in free convection where such situations are common in space technology [8]. Dulal Pal and Babulal Talukdar 
[9] studied the effect of thermal radiation on an unsteady hydromagnetic convective heat and mass transfer for a 
viscous fluid past a semi – infinite vertical moving plate embedded in a porous media in the presence of heat absorption 
and first – order chemical reaction of the species by using Perturbation technique. Yanhai Lin et al. [10] examined 
radiation effects on Marangoni convection flow and heat transfer in pseudo – plastic non – Newtonian nanofluids 
driven by a temperature gradient. The surface tension is assumed to vary linearly with temperature and the solutions are 
obtained numerically by the shooting method. The steady laminar natural convection along a vertical isothermal plate 
with linear or non – linear Rosseland radiation is investigated by Asterios Pantokratoras [11]. Hall effects on natural 
convection of participating MHD with thermal radiation are investigated numerically by Jing – Kui Zhang et al. [12]. 
An external uniform magnetic field is applied on a square cavity which is filled with participating magnetic fluid. The 
full filled fluid has characteristics of gray, absorbing, emitting, scattering and electrically conducting. All walls of the 
cavity are opaque and diffusively reflection. Seth et al. [13] investigated the effects of Hall current and rotation on 
unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, 
incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid 
saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution 
of the governing equations is obtained in closed form by Laplace transform technique. The effect of thermal radiation 
on a steady two – dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a 
vertical flat plate with streamwise sinusoidal surface temperature has been investigated by Mamun Molla et al. [14] 
using the appropriate variables, the basic governing equations are transformed to convenient form and then solved 
numerically employing two efficient methods, namely, the Implicit Finite Difference method (IFD) together with the 
Keller box scheme and Straight Forward Finite Difference (SFFD) method. Combined effects of Soret (thermal – 
diffusion) and Dufour (diffusion – thermo) on mixed convection over a stretching sheet embedded in a saturated porous 
medium in the presence of thermal radiation and first – order chemical reaction are studied by Dulal Pal and Hiranmoy 
Mondal [15]. 
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In the above non – Newtonian MHD studies, couple stress fluids have not been considered. Couple stress fluid theory 
was introduced by Stokes [16] and is among the polar non – Newtonian fluid theory which considers couple stresses in 
addition to the classical Cauchy stresses in viscous fluid dynamics. It is the simplest generalization of the classical 
theory of fluids which allows for polar effects such as the presence of couple stresses and body couples. Recently, a 
number of researchers have investigated couple stress fluid flows owing to the significance of such fluids in chemical 
engineering applications including polymer–thickened oils, liquid crystals, polymeric suspensions[17] and 
physiological fluid mechanics [18]. Couple stress fluids are also important in the tribology of thrust bearings [19] and 
the lubrication of engine rod bearings [20]. Couple stress fluids are much simpler than micropolar fluids [21], since 
they possess no microstructure at the kinematic level and therefore the kinematics of such fluids is totally described 
using the velocity field. A transport phenomenon in couple stress fluids has received considerable attention. Umavathi 
et al. [22] studied mathematically the steady laminar fully developed flow and heat transfer in a horizontal channel 
consisting of a couple – stress fluid sandwiched between two clear viscous fluids, showing that the effect of the couple 
stress parameter is to promote the motion of the fluid. Srinivasacharyulu and Odelu [23] used the quasilinearization 
method to investigate numerically the incompressible laminar flow of a couple stress fluids in a porous channel with 
expanding or contracting walls, assuming symmetric injection or suction along the walls. Patil and Kulkarni [24] used a 
volume–averaging technique to examine the two–dimensional oscillatory natural convection flow of an incompressible 
polar fluid through a porous medium bounded by an infinite vertical porous plate with oscillating suction and 
temperature at the wall, identifying a multiple boundary layer structure near the wall. Zueco and Anwar Beg [25] 
studied the pulsatile flow of couple stress fluid and Eyring – Powell fluid in a rigid channel with wall transpiration, 
using the network electrical method. Hydromagnetic flows of couple stress fluids have also stimulated some interest 
owing to the facility of controlling such flows with transverse magnetic fields. Ramana Murthy et al. [26] examined the 
steady hydromagnetic flow of a conducting, incompressible couple stress fluid in an annular region between two 
concentric rotating vertical circular cylinders, with porous lining inside the outer cylinder, imposing an external radial 
magnetic field.  
 
The purpose of the present paper is to report numerical results for the problem of the micropolar fluid behaviour on 
unsteady two – dimensional oscillatory electrically conducting viscous incompressible Bossinesq fluid flow past an 
infinite vertical plate whose temperature varied periodically about a mean constant non – zero value with time. Thermal 
radiation, couple stresses and viscous dissipation have been considered for high speed fluid. The governing equations 
of the problem contain the non – partial differential equations which are transformed by similarity technique into 
dimensionless coupled partial differential equations. The obtained dimensionless equations are solved numerically by 
finite difference technique. In general, this study is very complicated to solve. Therefore, it is necessary to investigate 
in detail the distributions of velocity, microrotation and temperature across the boundary layer in addition to the surface 
skin friction. Such a study has important applications in the manufacture of electro – conductive polymers and other 
electrically conducting non – Newtonian liquids and has thus far not appeared in the literature. 
 
2. MATHEMATICAL FORMULATION 

 
Figure-1. Physical Model and coordinate system of the problem 

 
Consider an unsteady, incompressible, two – dimensional free convective micropolar Bossinesq thermal radiating fluid 
flow past an infinite vertical plate whose temperature varied periodically about a mean constant non – zero value with 
time in presence of couple stresses and viscous dissipation. Choose the coordinate system such that −′x  axis is along 
the vertical plate and −′y axis normal to the plate. The physical model and coordinate system are shown in figure 1. 

The plate is maintained at temperature wT ′ . It is assumed that there is no applied voltage which implies the absence of 

electric field. A uniform magnetic field of magnitude oB  is applied normal to the plate. The magnetic Reynolds 
number is assumed to be small so that the induced magnetic field can be neglected in comparison with the applied 
magnetic field. Viscous and Darcy's resistance terms are taken into account with constant permeability of the porous 
medium. Using the Boussinesq’s and boundary layer approximations, the governing equations for the micropolar fluid 
are given by 
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Equation of Continuity: 
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Equation of Angular momentum: 
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Equation of Energy: 
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Under these assumptions, the appropriate boundary conditions for the velocity and temperature fields are: 
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We assume the velocity v′ depends on time like  

( )ti
o AeVv ′Ω′+−=′ ε1                                                                                            (6) 

Where A is a real positive constant, ε and Aε  small less than unity and oV  is a scale of suction velocity which has 
non – zero positive constant. Further, we invoke the Rosseland approximation [27], for the radiative flux in equation 
(4) where 

y
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It is assumed that the temperature differences within the flow are sufficiently small so that 4T ′ can be expressed as a 
linear function of T ′  after using Taylor’s series to expand 4T ′ about the free stream temperature ∞′T  and neglecting 
higher – order terms. This results in the following approximation: 

434 34 ∞∞ ′−′′≅′ TTTT                                                   (8) 
 
On the strength of equations (7) and (8), equation (4) becomes 
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We now introduce the dimensionless variables, as follows: 
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Furthermore, the spin – gradient viscosity γ  which defines the relationship between the coefficients of viscosity and 
micro – inertia, is given by 
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Where β  denotes the dimensionless viscosity ratio, defined as follows: 

µ
β
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=                                     (12) 

in which *A is the coefficient of gyro – viscosity (or vortex viscosity). On account of equation (10), our governing 
equations (2), (3) and (9) become 
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Where 
K

MN 1
+= . The boundary conditions (5) are then given by the following dimensionless form: 
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Where all the variables have been given in the nomenclature. For practical engineering applications and the design of 
chemical engineering systems, quantities of interest include the following Skin friction coefficient, Nusselt number and 
Sherwood number are useful to compute. By virtue of equations (13) – (15), we obtain the streamwise velocity, 
microrotation, temperature and concentration in the boundary layer. We can now calculate the skin friction coefficient 
at the surface of the porous plate, which is given by  
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We can also calculate the heat transfer coefficient at the wall of the plate in terms of Nusselt number as follows: 
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Where ν
xVo

x
′

=−1Re  is Reynolds number.  

 
The mathematical formulation of the problem is now completed. Equations (13)–(15) present a coupled non – linear 
system of partial differential equations and are to be solved by using initial and boundary conditions (16). However, 
exact solutions are difficult, whenever possible. Hence, these equations are solved by the Crank – Nicholson method. 
 
3. METHOD OF SOLUTION 
 
We shall solve the system of partial differential equations numerically using the finite difference technique and 
equations (13) – (15) yield. 
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Where tiAeB Ω+= ε1 , the indices i  and j  refer to y  and t  respectively.  
 
The initial and boundary conditions (16) yield. 
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The term consistency applied to a finite difference procedure means that the procedure may in fact approximate the 
solution of the partial differential equation under study and not the solution of any other partial differential equation. 
The consistency is measured in terms of the difference between a differential equation and a difference equation. Here, 
we can write 
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For consistency of equation (19), we estimate 
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For consistency of equation (20), we estimate 
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Similarly with respect to equation (21), we estimate 
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Here, the right hand side of equations (23) – (25) represents truncation error as 0→∆t  with 0→∆y , the truncation 
error tends to zero. Hence our explicit scheme is consistent. Here y∆ , t∆  are mesh sizes along    y  and time 
direction respectively.  The infinity taken as =i 1 to n  and the equations (23), (24) and (25) are solved under the 
boundary conditions (22), following the tri diagonal system of equations are obtained.   

iii BXA =  ( =i 1 to n )                            (26)   
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Where iA  is the tri diagonal matrix of order nn×  and iX , iB are the column matrices having n  components. The 
above system of equations has been solved by Thomas Algorithm (Gauss elimination method), for velocity, 
microrotation and temperature. In order to prove the convergence of the finite difference scheme, the computations are 
carried out for different values of t∆ . But the Crank – Nicholson method is unconditionally stable. By changing the 
value of t∆  there is no change in the study state condition.  So, the finite difference scheme is convergent and stable. 
 
4. RESULTS AND DISCUSSIONS 
 

 
Figure-2. The effect of Thermal radiation parameter on velocity profiles 

 
Figure-3. The effect of Viscous dissipation (Eckert number) on velocity profiles 

 
The formulation of the problem that accounts for the effect of thermal radiation on unsteady two–dimensional 
oscillatory flow of a polar electrically conducting viscous incompressible Bossinesq fluid past an infinite vertical plate 
whose temperature varied periodically about a mean constant non – zero value with time in presence of couple stresses 
and viscous dissipation. The Rosseland approximation is used to describe radiative heat transfer in the limit of optically 
thick fluids. The dimensionless governing equations for this investigation are reduced to a system of c oupled partial 
differential equations using an efficient finite difference method, and equations are solved numerically. In the 
calculations, the boundary condition for ∞→y  is approximated by 4max =y , which is sufficiently large for the 
velocity to approach the relevant stream velocity. Figs. (2) – (7) show representative plots of the streamwise velocity 
and microrotation as well as temperature profiles  and surface skin - friction for a micropolar fluid with the fixed flow 
conditions =Pr 0.71, =K 2.0, =β 0.2, =ε 0.1, =A 0.5 and =t 1.0, while ,Gr ,M R and Ec  are varied over a 
range, which are listed in the figured legend. From figure (2) we observe a decrease in the velocity with increase in the 
radiation parameter. Generally we observe that the velocity increases rapidly starting from the plate, attains a peak 
value before decreasing almost exponentially away from the plate. From figure (3), we observe the same pattern as the 
previous figure except here we see that increase in the viscous dissipation heating leads to an increase in the velocity. 
Figures (4) and (5) depict the effects of free convection and Hartmann number on the angular velocity profile from 
where we observe a decrease in the angular velocity when either the free convection parameter or the Hartmann 
number is increased.  
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Figure-4. Effect of free convection parameter (Grashof number) on the angular velocity profiles 

 
Figure-5. Effect of Hartmann number (Magnetic field) on the angular velocity profiles 

 
Figures (6) and (7), respectively, show the temperature distribution and the skin – friction, where we observe an 
increase in temperature with increase in radiation and an increase in skin – friction with increase in viscous dissipation 
heating. These cases are for (Gr > 0) which will correspond to cooling of the plate by free convection currents. In the 
other case of heating of the plate by free convection currents (Gr < 0), these observed effects are reversed (graphs not 
shown). Our observations are in agreement with the findings of Raptis [28] and Cookey et al. [29], and they 
compliment the findings of Ogulu et al. [30] where the effect of rotation on the velocity is not discussed, and in Jain 
and Tanja [31].  

 
Figure-6. The effect of Thermal radiation parameter on temperature profiles 
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Figure-7. Surface skin friction against suction parameter A for different values of the thermal radiation parameter 
 

Table-1: Skin – friction results ( )fC  for the values of ,Gr ,M Pr, ,R ,K ,Ec ,β ,ε A  and t  

Gr  M  Pr  R  K  Ec  β  ε  A  t  fC  

2.0 2.0 0.71 2.0 2.0 0.001 0.2 0.1 0.5 1.0 2.10365987 
4.0 2.0 0.71 2.0 2.0 0.001 0.2 0.1 0.5 1.0 2.22481532 
2.0 4.0 0.71 2.0 2.0 0.001 0.2 0.1 0.5 1.0 1.99826501 
2.0 2.0 7.0 2.0 2.0 0.001 0.2 0.1 0.5 1.0 1.98036547 
2.0 2.0 0.71 4.0 2.0 0.001 0.2 0.1 0.5 1.0 1.99065841 
2.0 2.0 0.71 2.0 4.0 0.001 0.2 0.1 0.5 1.0 2.19605778 
2.0 2.0 0.71 2.0 2.0 0.100 0.2 0.1 0.5 1.0 2.11480695 
2.0 2.0 0.71 2.0 2.0 0.001 0.4 0.1 0.5 1.0 2.09158711 
2.0 2.0 0.71 2.0 2.0 0.001 0.2 0.2 0.5 1.0 1.99268122 
2.0 2.0 0.71 2.0 2.0 0.001 0.2 0.1 1.0 1.0 2.15611478 
2.0 2.0 0.71 2.0 2.0 0.001 0.2 0.1 0.5 2.0 2.14302871 

 

Table-2: Rate of heat transfer ( )( )1RexNu − values for different values of Pr, ,R ,Ec ,ε A  and t  

Pr  R  Ec  ε  A  t  ( )1Re−
xNu  

0.71 2.0 0.001 0.1 0.5 1.0 1.55497842 
7.00 2.0 0.001 0.1 0.5 1.0 1.45136921 
0.71 4.0 0.001 0.1 0.5 1.0 1.60493215 
0.71 2.0 0.100 0.1 0.5 1.0 1.57220492 
0.71 2.0 0.001 0.2 0.5 1.0 1.47016524 
0.71 2.0 0.001 0.1 1.0 1.0 1.61305478 
0.71 2.0 0.001 0.1 0.5 2.0 1.59302641 

 
The profiles for skin – friction )( fC  due to velocity under the effects of ,Gr ,M Pr, ,R ,K ,Ec ,β ,ε A  and t  

are presented in table – 1. From this table, it is to note that an increase in ,Gr ,K ,R ,Ec A  and t  leads to exert 
greater skin – friction on the boundary whereas ,M Pr, β  and ε  reduce it. The profiles for Nusselt number 

( )( )1Re−
xNu  due to temperature under the effects of Pr, ,R ,Ec ,ε A  and t  are presented in the table – 2. From 

this table – 2, it is seen that an increase in Pr  and ε  to decrease in ( )1Re−
xNu  and an increase in ,R ,Ec A  and t  

lead to increase in ( )1Re−
xNu .   

 
5. CONCLUSIONS 
 
In this study numerical solutions are obtained for the problem of the flow of a micropolar fluid past a vertical porous 
plate in the presence of couple stresses and radiation, where the temperature of the plate is assumed to oscillate about a 
mean value. We have done the analysis and discussion of the effect of material parameters on the temperature, velocity 
distributions, the skin – friction at the plate and the angular velocity. It is seen that the skin friction is greatly affected  
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by viscous dissipation heat as well as the radiative heat transfer. Increase in the radiation parameter results in a decrease 
in the velocity while an increase in the viscous dissipation heat leads to an increase in the velocity. We also conclude 
that increases in free convection and the magnetic parameters both lead to a decrease in the angular velocity. 
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