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ABSTRACT 
In the present paper we prove a common fixed point theorem for a pair of compatible self maps of a G metric space 
which satisfy a rational inequality.    
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1. INTRODUCTION 
 
In an attempt to generalize fixed point theorems a metric space, Gahler [2, 3] introduced the notion of 2-metric spaces 
while Dhage [1] initiated the notion of D  - metric spaces. Subsequently several researchers have proved that most of 
their claims made are not valid. As a probable modification to D - metric spaces Shaban Sedghi, Nabi Shobe and 
Haiyun Zhou [4] introduced *D  metric spaces. In 2006, Zead Mustafa and Brailey Sims [5] initiated G  - metric spaces 
of these two generalizations, the G -metric space seen evinced interest in many researchers.  
                 
The purpose of this paper is to prove a common fixed point theorem for a pair of compatible self maps of a G -metric 
space. Now we recall some basic definitions and lemmas which will be useful in our later discussion. 
 
2 . PRELIMINARIES 
 
We begin with  
Definition2.1: ([5], Definition 3) Let X be a non-empty set and 3: [0, )G X → ∞  be a function satisfying: 
(G1)  ( , , ) 0G x y z =  if  x y z= =   
(G2)  0 ( , , )G x x y< for all , Xx y∈   with x y≠  
(G3)  ( , , ) ( , , )G x x y G x y z≤ for all , , z Xx y ∈ with z y≠  
(G4)  ( , , ) ( ( , , ))G x y z G x y zσ=  for all , , z Xx y ∈ , where ( , , )x y zσ  is a permutation of the set 

{ }, ,x y z  and 

(G5) ( , , ) ( , , ) ( , , )G x y z G x w w G w y z≤ +  for all , , , .x y z w X∈  
               Then G is called a G - metric on X and the pair ( , )X G  is called a G - metric Space.  
 
Definition 2.2: ([5], Definition 4) A G-metric Space ( , )X G  is said to be symmetric if 

(G6)  ( , , ) ( , , )G x y y G x x y=  for all ,x y X∈   
 
The example given below is a non-symmetric G-metric space. 
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Example 2.3: ([5], Example1): Let { , }.X a b=  Define 3: [0, )G X → ∞ by ( , , ) ( , , ) 0;G a a a G b b b= =

( , , ) 1, ( , , ) 2G a a b G a b b= =  and extend G  to all of 3X by using (G4). Then it is easy to verify that (X, G) is 
a G - metric space. Since ( , , ) ( , , )G a a b G a b b≠ , the space ( , )X G  is non-symmetric, in view of (G6). 
 
Remark 2.4: Suppose (X, G) is symmetric G-metric space. Then for any ,x y X∈ define ( , ) ( , , )d x y G x y y=  
and note that d is a metric on X. In fact for any ,x y X∈   

(i) ( , ) ( , , ) 0d x y G x y y= ≥   and  ( , ) 0 ( , , ) 0d x y G x y y x y= ⇔ = ⇔ =  
(ii)  ( , ) ( , , ) ( , , ) ( , )d x y G x y y G y x x d y x= = =  
(iii)  ( , ) ( , , ) ( , , ) ( , , ) ( , ) ( , )d x y G x y y G x z z G z y y d x z d z y= ≤ + = +   

  
Thus every symmetric G-metric space X has a metric defined on it. From now onwards (X, G) is a G-metric space. We 
begin with some examples of G-metric spaces. 

 
Example 2.5: Let (X, d) be a metric space. Define 3: [0, )d

sG X → ∞  by 
  

[ ]1( , , ) ( , ) ( , ) ( , )
3

d
sG x y z d x y d y z d z x= + + for , ,x y z X∈ . Then (X, d

sG ) is a G-metric Space. 

 
Lemma 2.6: ([5], p.292) If (X, G) is a G-metric space then ( , , ) 2 ( , , )G x y y G y x x≤  for all ,x y X∈  
 
Example 2.7 ([5], p.291): Suppose (X, G) is a G-metric space. Define 2: [0, )Gd X → ∞  by  

( , ) ( , , ) ( , , )Gd x y G x y y G x x y= +  for 2( , )x y X∈ . Then  Gd  is a metric on X giving a metric space (X, dG). 
 
Remark 2.8: Using dG, we can construct 3: [0, )Gd

sG X → ∞   as given in Example 2.5. It has been proved in ([15], 

p.292]) that ( , , ) ( , , ) 2 ( , , )Gd
sG x y z G x y z G x y z≤ ≤  for all 3( , , )x y z X∈  

 
Definition 2.9: ([5], Definition 5) Let (X, G) be a G-metric space then for 0 , 0x X r∈ > , the G-ball  with centre 0x   

and radius r is given by 0 0( , ) { : ( , , ) }GB x r y X G x y y r= ∈ < . 
 
Lemma 2.10: ([15], Proposition 5) Let (X, G) be G-metric space, then for all 0x X∈ , and r > 0, we have 

0 0 0
1( , ) ( , ) ( , )
3 GG d GB x r B x r B x r   

 
Consequently, the G-metric topology τ (G) coincides with the metric topology arising from dG .  
 
Definition 2.11: Let (X, G) be a G-metric Space. A sequence { }nx in X is said to be G-convergent if there is a 

0x X∈  such that to each 0ε >  there is a natural number N for which 0( , , )n nG x x x ε< for all n N≥ . 
 
Lemma 2.12: ( [5], Proposition 6) : Let (X, G) be a G-metric Space, then for a sequence{ }nx X⊆ and point x X∈
the following are equivalent. 

1. { }nx  is G- convergent to x . 

2. ( , ) 0G nd x x as n→ →∞ (that is { }nx converges to x  relative to the metric dG) 

3. ( ), 0n nG x x x as n→ →∞   

4. ( , , ) 0nG x x x as n→ →∞   
5. ( , , ) 0 ,m nG x x x as m n→ →∞   

 
Definition 2.13 :([5],Definition 8) Let (X, G) be a G-metric space, then a sequences { }nx X⊆ is said to be G-Cauchy 

if for each   > 0, there exists a natural number N such that ( , , )n m lG x x x ε<  for  all , ,n m l N≥ .  
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Note that every G-convergent sequence in a G-metric space (X, G) is G-Cauchy.  
 
Definition 2.14: ([15], Definition 9) A G-metric space (X, G) is said to be G-complete if every G Cauchy sequence in 
(X, G) is G-convergent in (X, G). 
  
Definition 2.15: Suppose f and g are self maps of a G-metric space (X, G) such that  

( )lim , , 0n n nn
G fgx gfx gfx

→∞
=  for every sequence { }nx X⊆ ith lim lim ,n nn n

fx gx t
→∞ →∞

= =  for some t X∈  , 

then the pair f and g is said to be a compatible pair  .                                                                                                                        
 
Definition 2.16:   Let  ( , )X G be an G -metric space and g , f  be two selfmaps of X such that ( ) ( )g X f X⊆
.For any 0x X∈ ,there is a sequence{ }nx  in X  such that 1n nfx gx −= for 1n ≥ . (In fact, 0x X∈  then

0 ( ) ( )gx g X f X∈ ⊆  so that   there is a 1x X∈  with 0 1gx fx= ; now 1 ( ) ( )gx g X f X∈ ⊆  gives a 2x X∈
with 1 2gx fx= ;and repeat this to obtain  the  sequence{ }nx ) We shall call this sequence { }nx  as an associated 

sequence of 0x  relative to g  and f ). 

Example 2.14:If :f →   and :g →  are defined by 
2

2 ,
3
xfx x gx= =  then ( ) ( )g f⊆  .For 0x ∈  

we can find 1x ∈  with 0 1gx fx=  is given by 0
1 3

xx = ± .Again 2x ∈  with 1 2gx fx= is given by 

0
2 2( 3)

xx = ± .More generally 0

( 3)n n

xx = ±  for 1n ≥  .Therefore associated sequence 1 2 3, , ,... ,...nx x x x  for a 

given 0x ∈  are infinitely many since each nx  has two choices 0

( 3)n

x
, 0

( 3)n

x
− for 1n ≥  .Thus there may be 

more than one associated sequence of 0x relative to g and f if ( ) ( )g X f X⊆ .   
 
3. MAIN RESULTS 
 
We now state our main theorem. 
 
Theorem 3.1: Let f and g be selfmaps of a G- metric space (X, G) satisfying  
(3.1.1)   ( ) ( )g X f X⊂  

(3.1.2) 
. ( , , )[1 ( , , )]( , , ) ( , , )

[1 ( , , )]
G fx gy gy G fx gx gxG gx gy gy G fx fy fy

G fx fy fy
α β+

≤ +
+

  for all , ,x y X∈   

               where , 0α β ≥ ; 1α β+ < . 
(3.1.3)    one of f and g is continuous 
(3.1.4)    f and g are compatible and 
(3.1.5) an associated sequence { }nx  of a point 0x X∈  relative to the self maps f  and  g  is such that { }nfx  

converges to t  for some point t X∈  , then t  is the unique  common fixed point of f and g . 
  
To prove the theorem, we need the following lemma. 
Lemma 3.2: Let f  and g  be compatible selfmaps of a G- metric space (X, G). Suppose that 

lim limn nn n
fx gx x

→∞ →∞
= =  for some x X∈  and some sequence { }nx  in X. Then lim nn

gfx fx
→∞

=  , if f is continuous.                              

 
Proof: Suppose f  and g  are compatible mappings and lim limn nn n

fx gx x
→∞ →∞

= =   for some x X∈ .Then 

lim ( , , )n n nn
G fgx gfx gfx

→∞
 = 0, this implies    

 
(3.2.1) (lim , lim , lim )n n nn n n

G fgx gfx gfx
→∞ →∞ →∞

= 0, 
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Since f  is continuous and ngx x→  as n →∞  we have  
 
(3.2.2) lim nn

fgx fx
→∞

= .  

 
From (3.2.1) and (3.2.2), we get ( , lim , lim ) 0n nn n

G fx gfx gfx
→∞ →∞

= , this implies  

lim nn
gfx fx

→∞
= , proving the lemma. 

 
Proof: From (3.1.5), the sequence { }nx of 0x  relative to the selfmaps f and g  such that 

1n nfx gx −=  for 1, 2,3,......n =  and nfx t→  as ,n →∞  it follows that ngx t→  as n →∞ . 
 
Case-(i): Suppose that f  is continuous. Then we have by Lemma 3.2 that  

(3.2.3)   lim nn
gfx ft

→∞
=  and also  

(3.2.4)   2lim ,nn
f x ft

→∞
=  

  
Now from (3.1.2) we get   

2 2
21 1

1 1 1 12
1 1

. ( , , )[1 ( , , )]( , , ) ( , , )
[1 ( , , )]

n n n n n n
n n n n n n

n n n

G f x gx gx G f x gfx gfxG gfx gx gx G f x fx fx
G f x fx fx

α β− −
− − − −

− −

+
≤ +

+  
where , 0α β ≥ ; 1α β+ < ,by letting  n →∞  in the above inequality and using (3.2.3) and (3.2.4), we get  

. ( , , )[1 ( , , )]( , , ) ( , , )
[1 ( , , )]

G ft t t G ft ft ftG ft t t G ft t t
G ft t t

α β+
≤ +

+
 

                  

( , , ) ( , , )
[1 ( , , )]

( , , ) ( , , )

( ) ( , , )

G ft t t G ft t t
G ft t t

G ft t t G ft t t

G ft t t

α β

α β

α β

= +
+

≤ +

= +

 

Which implies ( , , ) 0G ft t t =  and hence ft = t. 

(Since   1 ( , , ) 1G ft t t+ > ⇒ 1 1
1 ( , , )G ft t t

<
+

 and 1α β+ < )  

Again from (3.1.2), we get  

1 1
1 1 1 1

1 1

. ( , , )[1 ( , , )]( , , ) ( , , )
[1 ( , , )]

n n
n n n n

n n

G ft gx gx G ft gt gtG gt gx gx G ft fx fx
G ft fx fx

α β− −
− − − −

− −

+
≤ +

+
  

where , 0α β ≥ ; 1.α β+ <  
 
Letting  n →∞  in the above inequality, we obtain               

. ( , , )[1 ( , , )]( , , ) ( , , ).
[1 ( , , )]

G ft t t G ft gt gtG g tt t G ft t t
G ft t t

α β+
≤ +

+
 

Since ft t= , we get ( , , ) 0G g tt t =  which implies that gt t= , showing that t  is a common fixed point of f and g  
 
Case-(ii): Suppose that g  is continuous. Then we have by Lemma 3.2, that  

(3.2.5)  lim nn
fgx gt

→∞
=  and also  

(3.2.6) 2lim .nn
g x gt

→∞
=   
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Now from (3.1.2) we get 

2 1 1
1 1 1 1

1 1

. ( , , )[1 ( , , )]( , , ) ( , , )
[1 ( , , )]

n n n n n n
n n n n n n

n n n

G fgx gx gx G fgx ggx ggxG g x gx gx G fgx fx fx
G fgx fx fx

α β− −
− − − −

− −

+
≤ +

+
 

where , 0α β ≥ ; 1α β+ < , by letting n →∞  in the above inequality and using (3.2.5) and (3.2.6), we get 
. ( , , )[1 ( , , )]( , , ) ( , , )

[1 ( , , )]
G gt t t G gt gt gtG g tt t G g tt t

G g tt t
α β+

≤ +
+

 

                   

( , , ) ( , , )
[1 ( , , )]

( , , ) ( , , )
( ) ( , , )

G g tt t G g tt t
G g tt t

G g tt t G g tt t
G g tt t

α β

α β
α β

= +
+

≤ +
= +

 

Which implies ( , , ) 0G g tt t =  and hence .gt t=  

(Since  1 ( , , ) 1G g tt t+ > ⇒ 1 1
1 ( , , )G g tt t

<
+

 and 1)α β+ <  

 
From (3.1.1), we can find a w X∈  such that gt fw= . Now from (3.1.2) we have 

           
2 2

2 . ( , , )[1 ( , , )]( , , ) ( , , )
[1 ( , , )]

n n n n
n n

n

G fgx gw gw G fgx g x g xG g x gw gw G fgx fw fw
G fgx fw fw

α β+
≤ +

+
 

where , 0α β ≥ ; 1α β+ < .Letting  n →∞  in the above inequality and using (3.2.5) and (3.2.6), we obtain

 
. ( , , )[1 ( , , )]( , , ) ( , , ),

[1 ( , , )]
G gt gw gw G gt gt gtG gt gw gw G gt fw fw

G gt fw fw
α β+

≤ +
+

 

Since 
t gt fw= = , we obtain ( , , ) . ( , , ),G gt gw gw G fw gw gwα≤  that is ( , , ) . ( , , )G gt gw gw G gt gw gwα≤ , 
which implies that ( , , ) 0G gt gw gw =  
 
Since (0, 1),α ∈  hence gt gw= , thus t gt fw gw= = = . 
 
Now put ny w=  for 1, 2,3n = ,… then nfy fw→  and ngy gw→  as n →∞ . Since fw gw= ,   f  and g
are compatible, lim ( , , ) 0.n n nn

G fgx gfx gfx
→∞

=  

Since  ny w=  for 1, 2,3n = ,… we have  lim ( , , ) 0
n

G fgw gfw gfw
→∞

=  , that is ( , , ) 0,G fgw gfw gfw = which 

implies that fgw gfw= ,  since fw gw t= = , we get ft gt= . Since gt t= , it follows that 
,ft gt t= =  Showing that t  is a common fixed point of f and g . 

 
Finally to prove the uniqueness of common fixed point of f  and g, suppose  u fu gu= =  and  v fv gv= =  for 
some ,u v X∈ . From (3.1.2), we get  

. ( , , )[1 ( , , )]( , , ) ( , , ) ( , , )
[1 ( , , )]

G fu gv gv G fu gu guG u v v G gu gv gv G fu fv fv
G fu fv fv

α β+
= ≤ +

+
 

where , 0α β ≥ ; 1α β+ < ; 
. ( , , )[1 ( , , )]( , , ) ( , , )

[1 ( , , )]
G u v v G u u uG u v v G u v v

G u v v
α β+

≤ +
+

 

                  

( , , ) ( , , )
[1 ( , , )]

G u v v G u v v
G u v v

α β= +
+

 

                  ( , , ) ( , , )G u v v G u v vα β≤ +  

                  ( ) ( , , )G u v vα β= +  
which implies that ( , , ) 0G u v v = ,  
 



K. Rajani Devi, V. Kiran* / Common Fixed Point Theorem for a Pair of Compatible Selfmaps of a G –Metric Space with Rational 
Inequality / IJMA- 6(6), June-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                         68   

 

Since 
1 1

1 ( , , )G u v v
<

+
 and ( ) 1α β+ < , hence  u v= ,  proving  the theorem. 

 
Example 3.3: Let X= [0, 1) and ( , , ) max{| |,| |,| |}G x y z x y y z z x= − − − for , ,x y z X∈ . Then (X, G) is a 
G- metric space. 
 

Define :f X X→  and :g X X→  by fx x=  and 
2
xgx =  for all x X∈ . Then 

1( ) [0, ) [0,1) ( )
2

g X f X= ⊂ =  

 
Clearly fg gf= , so that f and g  are compatible. Also an associated sequence of 0 0x =  relative to the selfmaps 

f and g  is given by 0nx =  for  0,1, 2,...n =  and since { }nfx  is a constant sequence converging to 0, which is a 

point in X. Take 0α = ,
1
2

β = , then f and g  satisfies the inequality (3.1.2). Thus the conditions (3.1.3) to (3.1.5) 

of Theorem 3.1 are satisfied. Hence by Theorem 3.1, ‘0’ is the unique common fixed point of f and g .     
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