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ABSTRACT

The aim of this paper is to connect 3- structure metric, 3-structure almost Sasakian or 3-structure contact Riemannian,

K- contact 3- structure metric, Sasakian 3- structure metric,3- structure co-symplectic and 3 — structure nearly co-
symplectic manifolds by an algebraic relations.

Index Terms- 3- structure metric, Sasakian, Co-Symplectic, Contact Riemannian, K- contact.

1. INTRODUCTION

X

Let us consider an n-dimensional manifold V, with three vector fieldsU , three 1-forms U and three tensor fields F of
X

X
the type (1,1), such that

y

£xF =FE-UBY 21, e

EL;,' :8xyszJ' (L.Db

uOlj =&Y (1.1)c

U(U):ﬁ. (1.1)d
y y

X
Where Eve = 1 or — 1 according as xyz is an even or odd permutation of 123 and 0 otherwise. Then {F,U,u},
X X

where x = 1,2,3 are said to define an almost contact 3 — structure on V, or almost co- quaternian Riemannian structure

on V, and the manifold is called an almost contact 3 — structure manifold.

Let a metric tensor g be defined on an almost contact 3 — structure V, , satisfying

9(FX,FY)=s,9(F x,Y)—G(x)G(Y)+X5g(x,Y), (L.2)a
Where y
G(X):g(x,tg). (1.2)b

X
Then the system {F,U ,u, g} is said to give to Vn a metric 3- structure and the manifold Vn is called 3- structure
X X

metric manifold.
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If on the three structure metric manifold

2'F(X,Y)=du(X,Y) 13)

Then V,, is called 3- structure almost Sasakian manifold or 3- structure contact Riemannian manifold.

On this manifold, we have
d'F=o0. (1.4)
X

If on a 3- structure almost Sasakian manifold, U are a set of mutually orthogonal unit killing vectors:
X

g(u,u)za, (L5)a

Xy Xy

(Dx ij -0. (L5

Satisfying

[U U } =2¢,,U, (1.6)a
Xy z

4U = Exy l:U ,U } (1.6)b
z Xy

Then V,, is called a K- contact 3- structure metric manifold.

On such a manifold

(DXU):FX, (17)a
X X

(DXF)Y:K(X,U,Y), (L.7)b

Where K is Riemannian-Christoffel curvature tensor.

If on a K- contact 3- structure metric manifold

[F, F:|+d u®U =0. x not summed, (49

Then V, is called Sasakian 3 - structure metric manifold.

A 3 - structure metric manifold V, is called a 3- structure co-symplectic manifold if the following relations hold:

y
(DXF)Y:A(X)FY, (19a
X X y
y X
A+A=0. (1.9)b
x oy
In consequence of equations (1.9), we have
X X y
(DXUJ(Y):—A(X)U(Y), L.10)a
y
The equation (1.10)a may be replaced by
y
(DXU):A(X)U. (1.10)b
X X y
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A 3 - structure metric manifold V, is called a 3 — structure nearly co-symplectic manifold, if

(DXF)X:A(X)F X, (L11)a
X X y

y
A+ A=0. (1.11)b
X oy

The equation (1.11)a implies
X X X |
(DX UJ(Y)—(DFY UJ(F X) =—A(X)U(Y)+8qu K(FY)G(X), X not summed. (1.12)

| X

ALGEBRAIC RELATIONS BETWEEN 3- STRUCTURE METRIC MANIFOLDS

Theorem 2.1: If we put

F(XY) = g(FXY)=="F(Y,X). (2.1)
Then
'F(FX,FY):'F(X,Y), (2.2)a

i.e. 'F ishybridin Xand Y.
X

F(EXY)=="F(X.FY), (2.2)b

X

Proof: Applying F on X and Y in equation (2.1) and using equations (1.1) a, (1.1) ¢ and (1.2) a, we get the equation
X

(2.2)a. Applying F on X in equation (2.1) and using equation (1.1) a then comparing the resulting equation with the
X

equation obtained by applying F on Y in equation (2.1) with the use of equation (1.2)a, we get the equation (2.2)b.
X

Theorem 2.2: For a 3 — structure almost Sasakian manifold, we have

g(X,DYLg):g(Y,DXLg—ZEX), (2.3)a
g(EY,DXg)—zgmg(f x,Y)=g[x,DEYL{—zﬂw)LXHzXéyY), 2.3)b
D, GJLXJ =(DUX ij, @3¢
DEXG Y+(DX GJEY:(DYGJEX+(DEYGJX, (2.3)d
DXGJY+[DEYGJEX:(DEXGJEY+(DYGJX, 230
g(LJ,DYlg):g(Y,DL;Lg—ngyzlgj. 2.3)f

Proof: From equations (1.2)b and (1.3), we have

2g(|§x,Y)=g(Y,DXL3)—g(x,DYL3). (2.4)
Equation (2.4) gives the equation (2.3)a. Applying 5 on Y in equation (2.4) and using equation (1.2) in the resulting
equation, we get the equation (2.3)b. Replacing Y by Lﬂ in equation (2.1), we get

Fx)-o. “
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Putting Y= U in equation (1.3) and using equation (2.5), we get the equation (2.3)c. Applying F on X and Y
X X

alternatively in equation (1.3) and using equation (2.2)b, we get the equation (2.3)d. Applying Fon X and Y in
X
equation (1.3) and using equations (2.1) and (2.2)a, we get the equation (2.3)e. Putting X= U in equation (2.3)a and
y
using equation (1.1)b, we get the equation (2.3)f.

Theorem 2.3: For a K- contact 3- structure manifold, we have

2FU =[U,U] 26)a
Xy Xy

g(U,U):ngZF—F F+u®U , 26)
Xy z Xy X

(Dx GJLXJ -0, 26)c

(DU ij —0, 26)d

g(U,DYU):g(Y,DUU—[U,UD, 26)e
y X y X x oy

(DY GMU,UD: ngyz(DU G]Y +2(DU GJFY —Z(DFY Gju , 26)f
X Yy 7 y X X y

Proof: From equations (1.6)a and (1.1)b, we get the equation (2.6)a. Using (1.5)a in equation (1.1)a, we get the
equation (2.6)b. Using equation (2.3)c in equation (1.5)b, we get the equations (2.6)c and (2.6)d. Using equation (1.6)a

in equation(2.3)f, we get the equation (2.6)e. Putting X= U in equation (2.3)d and using equations (2.6)a and (1.1)c,
y
we get the equation (2.6)f.

Theorem 2.4: For a Sasakian 3 — structure metric manifold, we have

[5,5J+2(DXGJ(Y)9 _0, (27)a
[E,EJ+2'E(X,Y)L3 -0, (2.7)b
ngyz(éLXJ—BLZJj+((DL£LXle3—(DL3 Gjl{jLXJ —0, 2.7
[DLUEY =DV (X YU-F D ULY [-F[ X Y +2'F (X, Y)U =0, (2.7)d
(o ]=uxu o] e

(e X)) S0x )= [ ] ([xmv 3 x5 e
gxyza([DxLXJ’LXJJ)Z%G([X’LXJJ)_J([XHD' (2.7)9

Proof: From equations (1.3) and (1.5)b, we have
X X
'F(X,Y):(Dxqu:—(DYqu, (2.8)
X
Using equation (2.8) in equation (1.8), we get the equations (2.7)a and (2.7)b .

From equation (1.8), we have

['f X,EY}—[X,Y]H?([X,Y])[Q—E[E X,Y}—E[X,FY}{(DX GJY—(DY ij]LXJ ~0. (9)

X
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Putting X = U and Y = U in equation (2.9) and then using equations (1.1)b, (1.1)d and (1.6), we get the equation
X y

(2.7)c. using equations (1.7)a and (1.3) in equation (2.9) , we get the equation (2.7)d. Putting Y =U in equation (2.7)d
X

y
and using equations (1.1)b and (2.5), we get the equation (2.7)e. Applying U on equation (2.9) and using equations

y
(2.8), (1.1)c and (1.1)d, we get the equation (2.7)f. Applying U on equation (2.7)e and and using equations (1.1)c and
(1.1)d, we get the equation (2.7)g.

Theorem 2.5: A 3- structure co-symplectic manifold is 3- structure almost Sasakian manifold, if

A(X)'F(Y,Z)+ A(Y)'F(Z,X)+A(Z) F(X,Y)=0. (210)

X

Proof: From equations (1.9)a, we have

(DX'E)(Y,Z):A(X)‘E(Y,Z). (2.11)

X

Writing similar equations by cyclic permutations of X, Y and Z in the equation (2.11), adding the resulting equations,
we get

(D F)(v.2)+(p, 'E)(z,x)+(DZ'E)(x,v):/yx(x)'lj(Y,z)+/yA(Y)'5(z,x)+/yx(z)'5(x,Y).

X X X

(2.12)
Using equation (2.10) in equation (2.12), we get
(DxFJ(v.2)+(Dy F)(z.X)+ (D, F)(x.Y)=0 (2.13)
X X X
Differentiating equation (1.3), we get equation (2.13). Hence the statement.
Theorem 2.6: A 3- structure co-symplectic manifold is 3- structure almost Sasakian manifold, if
X y X y
AY)u(X)=A(X)u(Y)=2"F(X,Y). (2.14)
y y X

Proof: Interchanging X and Y in equation (1.10)a and then subtracting the resulting equation from equation (1.10)a,
we get

X X X y X
(DX qu—(DYqu:A(Y)u(X)—A(X)u(Y). @19
y y
Using equation (2.14) in equation (2.15), we get
(DX qu —(DY ujx =2'F(X,Y).
Which shows that the manifold is 3- structure almost Sasakian manifold.

Theorem 2.7: A 3- structure co-symplectic manifold is K- contact 3- structure metric manifold, if

A(Y)u(X)+A(X)u(¥)=0. (216)

y

Proof: From equation (1.9)a, we have

g(DXfY—EDXY,Z):é(X)g(EY,Z). (2.17)

Putting Y =U and Z =U inequation (2.17) and using equations (1.1)b and (1.10)b, we get
X y

y

2 A(X)gxyzg(U,U):O. (2.18)
X z 0y
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From equation (1.10)a, we get

(DX GJYJF(DYGJX=—Z\(X)G(Y)—,§\(Y)J(X). (219)

y

Using equation (2.16) in equation (2.19), we get
(DX qu +(DY qu =0. (2.20)

Equations (2.18) and (2.20) give the statement.

Theorem 2.8: A 3- structure co-symplectic manifold is Sasakian 3 — structure metric manifold, if

XA(x)G(Y)tQ—;A(Y)G(x)U:[E,lﬂ. (2.21)

y X

Proof: Multiplying equation (2.15) by U and then using equation (2.21) in the resulting equation, we get
X

{(DXGJY—(DYGJX}9+[E,EJ:O. (2.22)

Which shows that the manifold is Sasakian 3 — structure metric manifold.

Theorem 2.9: A 3- structure co-symplectic manifold is Sasakian 3 — structure metric manifold, if
y

A(FX)FY—,VA(FY)FX—)/A(x)FFY+)/A(Y)FFx +{/’1(Y)d(x)—/§(x)ﬂ(v)}U=o. (2.23)
X y X \ X y X Xy X Xy y y X

X

Proof: From equation (1.9)a, we have
y
DXFY—FDXY:A(X)FY. (2.24)
X X X y
Applying F on equation (2.24), we get
y

FD,FY-F*D,Y=A(X)FFY, (2.25)a
X X X X Xy

Similarly, we have

y
DFXFY—FDFXY:A(FX)FY, (2.25)
X X X X X X y
y
DFYFX—FDFYX:A(FY)FX, (2.25)c
X X X X X X y
y
FD,FX-F'D,X=A(Y)FFX. (2.25)d
X X X X Xy

From equations (2.25) and (1.10)a, we get
[F,F}+{(Dx GJY—(DY ij}u =/yA(F x)FY—/yA(
X X X X X y X
+)&(Y)FFX+{A(Y)G(X)—}&(X)u(Y)}U. (2.26)
Xy y

Using equation (2.23) in equation (2.26), we get

[E’EH(DXGJY‘(DYG)X}‘? -

Hence the statement.
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Theorem 2.10: If a 3- structure co-symplectic manifold is 3- structure almost Sasakian manifold, then we have
2(D, F)v.2) = A) AO)U(2)-AZ)0() [+ K@) {AV)B0O-AXi()]. ez

Proof: From equation (1.9)a, we have

D,'F|(Y,Z :AX‘FY,Z. (2.28)
(D4 'F)(¥.2)=A(X)'F(¥.2)

X y

Using equation (2.10) in equation (2.28), we get

oy ‘XF)(Y,Z)=—ZA(Y)'Iy:(Z, X)—é(Z)'IyZ(X,Y). (2.29)
Now, using equations (1.3) and (1.10)a in equation(2.29), we get the equation (2.27).

Theorem 2.11: A nearly co-symplectic manifold is 3 — structure contact Riemannian manifold, if

2'XF(x,Y):(DEYGj(|fx)—(DEXGJ(EY) AX)U(Y )+ 2y A(FY)u(x)

| q

A )U(X) =6 A(F X u(Y). (2:30)

Proof: Interchanging X and Y in equation (1.12) and then subtracting the resulting equation from equation (1.12), We
get

(DX ij —(DY ij :(DFY GJ(F X)—(DFX ljj(FY) AX)U(Y )+ 2y A(FY)u(x)
X | q p
+A(Y)U(X) =5 A(F X Ju(Y). (2:31)
Now, using equation (2.30) in equation (2.31), we get

(Dx LXJJY—(DYG)X: 2'F(X.Y).

Hence the statement.

Theorem (2.12: A nearly co-symplectic manifold is K- contact 3- structure metric manifold, if
X X X | q p
(DEY uj(lf X)WL(DEX uj(EY): A(X)U(Y) =2 A(FY Ju(x)

FA(Y)U(X) = ZA(EX)S(Y). (2.32)

Proof: Interchanging X and Y in equation (1.12) and then adding the resulting equation from equation (1.12), we get
(DX qu +(DY qu —(DFY uj(F X)—(DFX u)(FY)
| q p X | q
== A(X)U(Y )+ 2 A(FY Ju(X) =AY )U(X)+ 6 A(F X Ju(Y). (2.33)
Using equation (2.32) in equation (2.33), we get

(DX ij +(DY ij - 0.

Which shows that the manifold is K- contact 3- structure metric manifold.
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Theorem 2.13: A nearly co-symplectic manifold is Sasakian 3 — structure metric manifold, if

F, E}:{(DEX GJ(EY)—(DEY Gj(lf X)}LXH,IXA(X)LIJ(Y)LXJ—qup A(FY)uu

X

X I q p
=AY )U(X )Yz A(F X Ju(Y)U. (2.34)

X

Proof: Multiplying equation (2.31) by U and then using equation (2.34) in the resulting equation, we get
X

{(DXGJY—(DYij}g :—[E,lﬂ. (2.35)a

or

I3

F}+da®u =0. (2.35)b

The equation (2.35)b shows that the manifold is Sasakian 3 — structure metric manifold.
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