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ABSTRACT 
This paper deals the computational study of synchronization of the Three Dimensional Cancer Model (TDCM) with 
Rossler System (RS) using a Robust Adaptive Sliding Mode Controller (RASMC) together with uncertainties, external 
disturbances and fully unknown parameters. A simple suitable sliding surface, which includes synchronization errors, 
is constructed and appropriate update laws are used to tackle the uncertainties, external disturbances and unknown 
parameters. All simulations to achieve the synchronization for the proposed technique for the two nonidentical chaotic 
systems under consideration are being done using Mathematica. Furthermore, application of synchronization to secure 
communication is also demonstrated on tumour cells. 
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1. INTRODUCTION 
 
Synchronization of chaotic systems is a collective phenomenon occurring in systems of interacting units, and is 
ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the 
interaction topology on the emergence of synchronized states. It gained momentum in the last two decades and various 
techniques have been proposed on synchronization of chaotic systems [1–8]. The aforecited works on chaos 
synchronization have focused on chaotic systems without model uncertainties and external disturbances. It has been 
observed practically that structural variations of the systems and unmodeled dynamical uncertainties are present in the 
chaotic system dynamics due to the modeling errors. So, synchronization of chaotic systems with uncertainties and 
external disturbances is effectively significant in applications [9–17]. The previously mentioned studies were based on 
with fully (or partially) known parameters for the systems. While, in practice, it is hard to exactly determine the values 
of the system parameters in priori. Therefore, synchronization of chaotic systems with unknown parameters is essential 
and useful in real-life applications [18–25].  
 
Motivated by the aforementioned studies, we aim to synchronize the TDCM with the Rossler system using RASMC. In 
our numerical approach, we study the synchronization between the considered nonidentical chaotic systems as well as 
efficiency of the implemented technique. As far as the best of my knowledge, my study is different with others because 
TDCM has never been studied in this way before. The attractive features of the implemented technique like fast 
response, a good transient performance, insensitiveness to the matching parameters uncertainties and external 
disturbances, mount pressure for the particular technique in this study. 
 
We implement the RASMC [26] in the presence of uncertainties, external disturbances and fully unknown parameters 
in both considered master and slave chaotic systems together with the assumption that the bounds of the uncertainties 
and external disturbances are unknown in advance. A simple suitable sliding surface, which includes synchronization 
errors, is chosen. Appropriate update laws are used to tackle the uncertainties, external disturbances and unknown 
parameters. Then, on the basis of the update laws, the RASMC is designed to guarantee the existence of the sliding 
motion. The stability and robustness of the proposed RASMC is proved using Lyapunov stability theory for the TDCM 
and Rossler system graphically. 
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2. DESCRIPTION OF RASMC 
 
In order to implement the proposed technique [26], the n-dimensional master and slave systems with uncertainties, 
external disturbances and unknown parameters are given as follows: 
 
Master system: 

( ) ( ) ( ) ( , ) ( )mt t t= + + ∆ +x f x F x f x dθ .                 (2.1) 
 

Slave System: 
( ) ( ) ( ) ( , ) ( ) ( )st t t t= + + ∆ + +y g y G y g y d uψ .                (2.2) 

Where [ ]1 2( ) , ,..., T
nt x x x=x

 
are the state vectors, θ ( ) ( ) ( ) ( )1 2, ,...,

T
f x f x f x f x =   are the continuous nonlinear 

functions, ( ), 1, 2,...,iF i n=x , is ith row of an n n×  matrix ( )( )F x  whose elements are continuous nonlinear 

functions, [ ]1 2, ,..., T
nθ θ θ θ= are the unknown vector parameters, ( ) ( ) ( ) ( )1 2, , , , ,..., ,

T
nf x t f x t f x t f x t ∆ = ∆ ∆ ∆   

and ( ) ( ) ( ) ( )1 2, ,...,
Tm m m m

nd t d t d t d t =    are the vectors of unknown uncertainties and external disturbances of 

the master system respectively. [ ]1 2( ) , ,..., T
nt y y y=y  are the state vectors, ( ) ( ) ( ) ( )1 2, ,...,

T
ng y g y g y g y =    

are the continuous nonlinear functions, ( ), 1, 2,...,iG i n=y , is ith row of an n n×  matrix ( )( )G y  whose elements 

are continuous nonlinear functions, [ ]1 2, ,..., T
nψ ψ ψ=ψ  are the unknown vector parameters, 

( ) ( ) ( ) ( )1 2, , , , ,..., ,
T

ng y t g y t g y t g y t ∆ = ∆ ∆ ∆   and ( ) ( ) ( ) ( )1 2, ,...,
Ts s s s

nd t d t d t d t =    are 

the vectors of unknown uncertainties and external disturbances of the slave system, respectively, and 

( ) ( ) ( ) ( )1 2, ,...
T

nu t u t u t u t =   is the vector of control inputs. 

 
Assumption 1: Since the trajectories of chaotic systems are always bounded, then the unknown uncertainties 

( , )t∆f x  and ( , )t∆g y  are assumed to be bounded. Therefore, there exist appropriate positive constants m
iα  and 

, 1, 2,...,s
i i nα =  such that 

( , ) m
i if t α∆ <x  and ( , ) , 1, 2,...s

i ig t i nα∆ < =y                (2.3) 

⇒  ( , ) ( , ) , 1, 2,...,i i if t g t i nα∆ −∆ < =x y , where iα  are unknown constants                           (2.4) 

Assumption 2: In general, it is assumed that the external disturbances are norm-bounded in 1C , i.e. ( )m m
i id t β<  

and ( ) , 1, 2,...,s s
i id t i nβ< =                                                                           (2.5) 

⇒  ( ) ( ) , 1, 2,...,m s
i i id t d t i nβ− < = ,  where iβ  are unknown constants                           (2.6) 

 
To solve the synchronization problem, the error between the master system (2.1) and slave systems (2.2) can be defined 
as ( ) ( ) ( )t t t= −e x y . Then from (2.1) and (2.2), the error dynamics can be written as: 

( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )m st t t t t t= + + ∆ + − − −∆ − −e f x F x f x d g y G y f y d uθ ψ .            (2.7) 
 
It is clear that the synchronization problem can be transformed to the equivalent problem of stabilizing the error system 
(2.7). The objective of this paper is that for any given master chaotic system (2.1) and slave chaotic system (2.2) with 
the uncertainties, external disturbances and unknown parameters a suitable feedback control law ( )tu  is designed such 
that the asymptotical stability of the resulting error system (2.7) can be achieved in the sense that 
lim ( ) ( ) 0
t

t t
→∞

− →x y . 

 
Let us consider now, the appropriate sliding surface with the desired behavior. Therefore, the sliding surface suitable 
for the technique can be designed as: 

( ) ( ), 1, 2,...,i i is t e t i nλ= =                    (2.8) 

where ( ) ( ) ( ) ( ) ( )( )1 2, ,...,i ns t s t s t s t s t ∈ =   and the sliding surface parameters iλ  are positive constants. 
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After designing the suitable sliding surface, let us determine the input signal ( )tu  to guarantee that the error system 
trajectories reach to the sliding surface ( ) 0t =s  (i.e. to satisfy the reaching condition ( ) ( ) 0t t <s s ) and stay on it, 
forever. Therefore, to ensure the existence of the sliding motion a discontinuous control law with minimum chattering, 
is given as: 

( )ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) sgn( ) tanh( ), for 1, 2,...,i i i i i i i i i i i iu t f g F G s k s i nθ ψ α β ε= − + − + + + =x y x y
              

(2.9) 

Where îθ , ˆ iψ , ˆiα , îβ   are estimations for iθ , iψ , iα , iβ  respectively and 0, 1, 2,...,ik i n> =  are the 
switching gain constant. 
 
To tackle the uncertainties, external disturbances and unknown parameters, appropriate update laws are defined as: 

 [ ] 0
ˆ ˆ ˆ( ) , (0)T γ= =θ θ θF x , 

 [ ] 0ˆ ˆ ˆ( ) , (0)T γ= − =ψ ψ ψG y , 

 0 0
ˆ ˆ ˆˆ ˆ ˆ, (0) & (0)i i i i i i i isα β λ α α β β= = = =

 .              (2.10) 

where [ ]1 1 2 2, ,..., T
n ns s sγ λ λ λ=  and 0̂θ , 0ψ̂ , 0ˆiα  and 0îβ  are the initial values of the update parameters θ̂ , ψ̂ , 

ˆiα  and îβ  respectively. 
 
Based on the control input in (2.9) and update laws governed by (2.10), to guarantee the reaching condition 

( ) ( ) 0t t <s s  and to ensure the occurrence of the sliding motion, we have the following theorem. 
 
Theorem 1: Consider the error dynamics (2.7), this system is controlled by ( )tu  in (2.9) with update laws in (2.10). 
Then the error system trajectories will converge to the sliding surface ( ) 0t =s . 
 
3. DESCRIPTION OF THE SYSTEMS 

 
The simplicity and elusiveness of the TDCM in its various forms have attracted the attention of mathematicians for 
over decades. The equations of motion of TDCM [27] is given by 

 
1 12 13

1

1 ,dT TrT a TH a TE
dt k

 
= − − − 

 
 

 2 21
2

1 ,dH Hr H a TH
dt k

 
= − − 

   

 
3

31 3
3

.r TEdE a TE d E
dt T k

= − −
+

                       (3.1) 

where ( )T t  denotes the number of tumour cells; ( )H t  denotes the healthy host cells and ( )E t  denotes effecter 

immune cells at the time t; 1r  is the growth rate of tumour cells in the absence of any effect from other cell populations 

with maximum carrying capacity 1k ; 12a  and 13a  refers to the tumour cells killing rate by the healthy host cells and 

effecter cells respectively; 2r   is the growth rate of healthy host cells with maximum carrying capacity 2k ; 21a  is the 
rate of inactivation of the healthy cells by tumours cells. The rate of recognition of the tumour cells by the immune 
system depends on the antigenicity of the tumour cells. Since this recognition process is very complex in order to keep 
the model simple, we assume the stimulation of the immune system depends directly on the number of tumour cells 
with positive constants 3r  and 3k . The effecter cells are inactivated by the tumour cells at the rate 31a  as well as they 

die naturally at the rate 3d . We assume that the cancer cells proliferate faster than the healthy cells (i.e. 1 2r r> ) and 
all system parameters are being kept positive. 

In order to make dimensionless to the system (3.1), let us introduce: 1
1

Tx
k

= , 2
2

Hx
k

= , 3
3

Ex
k

= , 1r tτ = , 

12 2
12

1

a kA
r

= , 13 3
13

1

a kA
r

= , 2
2

1

rR
r

= , 21 1
21

1

a kA
r

= , 3
3

1

rR
r

= , 3
3

1

kK
k

= , 31 1
31

1

a kA
r

= , 3
3

1

dD
r

= , the non 

dimensional form of the three dimensional cancer model (3.1), can be written as: 
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1 1 1 12 1 2 13 1 3

2 2 2 2 21 1 2

3 1 3
3 31 1 3 3 3

1 3

(1 ) ,

(1 ) ,
TDCM :

.

x x x A x x A x x

x R x x A x x

R x xx A x x D x
x k

= − − −


 = − −




= − −
+







                  (3.2) 

 
We synchronize the TDCM with the given below Rossler system [28], 

1 2 3

2 1 2

3 1 3 1 3

Rossle
,

.
r : ,

y y y
y y ay
y by cy y y

= − −
 = +
 = − +







                  (3.3) 

 
In order to apply the RASMC to synchronize the TDCM and Rossler systems with uncertainties ( ( , ) :i if x t∆  

10.5cos 2 ;x  20.5cos5 ;x  30.5cos x  & ( , ) :i ig y t∆  10.5cos 2 ;y−  20.5cos5 ;y−  30.5cos y− ), external 

disturbances ( ( ) :m
id t  0.5cos t  & ( ) :s

id t  0.5cos t− , for 1, 2,3i = ) and unknown parameters (as per equation 
(2.10)), it is assumed that the TDCM drives the Rossler system. The master and slave systems can be rewritten in the 
form of (2.1) and (2.2) as follows: 

 

2
1 12 1 2 13 1 3

1 12
2 2 21 1 2

2 2 2

3 3 3
3 1 3 ( ) ( , )31 1 3

1 3

( )

0 0 1 0.5cos 2 0.5
0 0 0.5cos5
0 0 0.5cos

t

x A x x A x x

x x
R x A x x

x R x
x D x

R x x A x x
x k

∆

 − − −
 
        − −       = + + +            −      
 −

+  



 



F x f x

f x

x

θ ( )

cos
0.5cos
0.5cos

m t

t
t
t

 
 
 
  


d

                 

(3.4) 

 



3 2 1 1

1 2 2 2

1 1 3 3 3 3

( ) ( ) ( , ) ( )

0 0 1 0.5cos 2 0.5cos ( )
0 0 0.5cos5 0.5cos ( )
0 0 0.5cos 0.5cos ( )

st t

y y y t u t
y y a y t u t

by y y y c y t u t
∆

− − − −         
         = + + − + − +         
         + − − −         



   

g y G y g y d

y

ψ ( )t

 
 
 
  


u

            (3.5) 

 
Therefore, using (2.7), the error dynamics can be expressed as: 

( )2
1 1 12 1 2 13 1 3 1 1 1 2 3 10.5 cos 2 cos 2 cos ( ),e x A x x A x x x x y t y y u t= − − − + + + + + + −  

 ( )2
2 2 2 2 11 2 2 2 1 2 2 2 20.5 cos5 cos5 cos ( ),e R x A x x R x y a y x y t u t= − − + − − + + + −  

 ( )3 1 3
3 31 1 3 3 3 1 1 3 3 3 3 3

1 3

0.5 cos cos cos ( )R x xe A x x D x by y y cy x y t u t
x K

= − − − − + + + + −
+

 .                (3.6) 

Where ( )iu t  (for 1, 2,3i = ) governed by (2.11). 
 
4. NUMERICAL SIMULATION 
 
In the proposed computational study, we have chosen 12 1A = ; 13 2.5A = ; 21 1.5A = ; 2 0.6R = ; 31 0.2A = ; 

3 4.5R = ; 3 1K = ; 3 0.5D = ; 0.32a = ; 0.3b = ; 4.5c =  and  the initial values of the update vector parameters 

0̂θ , 0ψ̂ , 0ˆiα  and 0îβ  are [ ]0.1,0.1,0.1 , [ ]0.2,0.2,0.2 , [ ]0.3,0.3,0.3  and [ ]0.4,0.4,0.4  respectively. 

Furthermore, The vector of switching gains 10ik =  for 1, 2,3i = , the coefficient 10ε =  and the sliding surfaces 

are 1 110s e= , 2 28s e= , 3 310s e= . The TDCM and Rossler system are started with the initial conditions as follows: 

1(0) 1x = , 2 (0) 2x = , 3 (0) 3x =  and (0) 0iy =  for 1, 2,3i = . Figure 1 illustrates the synchronization errors of  



Mohammad Shahzad, Mohammed Raziuddin*/ Synchronization of Three Dimensional Cancer Model…. / IJMA- 6(6), June-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                       127   

 
the TDCM and Rossler system, as one can see the all synchronization errors converge to the zero, which implies that 
the chaos synchronization between the TDCM and Rossler system is realized. The time responses of the update vector 

parameters θ̂ , ψ̂ , ˆiα  and îβ  are depicted in figures 2–5 respectively. It is very well clear that all of the update 
parameters approach to some constants. Furthermore, we have plotted the time series of state vectors of the master and 
slave systems (fig. 6) that also confirm the synchronization between the systems under consideration. 
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In order to discuss the stability, we consider a Lyapunov function (that is a positive definite function also) as follows: 

( ) ( )2 22 22

1

1 1 1ˆ ˆˆ ˆ( )
2 2 2

n

i i i i i
i

V t s α α β β
=

 = + − + − + − + −  ∑ θ θ ψ ψ
               

(4.1) 

 
Figure 10 shows that the derivative of Lyapunov function (4.1) is less than or equal to zero for t is bigger than 
zero (i.e. ( ) 0 for 0)V t t≤ ≥  which strongly support that the synchronization is stable on the chosen sliding 
surfaces. 
 
5. CHAOTIC SECURE COMMUNICATIONS 
 
One of the important application of chaos synchronization is in secure communications [29 – 31] in which the purpose 
of chaotic secure communications is to hide the message signal during transmission. Chaos synchronization is applied 
in secure communications due to the fact that there exists a functional relation between the dynamics of the drive and 
response systems. The signal from the drive system is used for two purposes: to control the response system through  
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synchronization and to carry the message (Fig. 11). In the modulator the chaotic carrier signal ( )c t  produced by the 
drive system is modulated by the message signal ( )m t  to generate the transmitted signal ( )s t . Modulation is achieved 
by mixing the message signal with the chaotic carrier signal using a mixing algorithm which is simply a function of the 
message and chaotic carrier signals, i.e. ( )( ) ( ), ( )s t f m t c t= .  
 
In this paper the transmitter and the receiver are taken as TDCM and Rossler systems respectively. Let ( )s t   be the 
transmitted signal that is the sum of the message signal ( )m t  and the chaotic carrier signal ( )c t  from the drive 

system. Here the message signal is chosen to be a periodic function ( ) 0.01sin 2m t t=  . With this choice the chaotic 

carrier signal ( )c t , chosen to be the state variable 1x  (representing number of tumour cells ) of the drive system. To 

recover the message the demodulator calculates the difference between the signal ( )s t  from the modulator and ( )c t′  
from the response system as ( )m t′ . The results (in Fig 7 and 8) show that when there is no synchronization between 
the drive and the response systems, the message signal ( )m t  and the demodulated chaotic signal ( )m t′  are quite 
unrelated but when the controller is activated at 0.2t =  synchronization occurs after a short transient time and then 
the recovered and the original messages are identical. It is also confirmed by the convergence of the difference 

( ) ( )m t m t′ −  to zero shortly after the controller is activated (Fig 9) and that is because when the drive and response 
systems are completely synchronized ( ) ( )c t c t′ =  and consequently ( ) ( )m t m t′ = . 
 

 
   
6. CONCLUSIONS 
 
In this computational study, the problem of practical synchronization of chaotic systems is done using RAMSC under 
the effects of the model uncertainties, external disturbances and unknown parameters in synchronizing the two different 
chaotic systems (TDCM & Rossler). Numerical simulations are presented to show the applicability and feasibility of 
the proposed study using Mathematica. We conclude three remarkable features of our proposed study that are: 
 

(1) The implemented technique in our study was robust with respect to the model uncertainties, external 
disturbances and unknown parameters. 

(2) It can be easily realized and implemented in real world applications without requiring the bounds of the model 
uncertainties, external disturbances and unknown parameters to be known in advance. 

(3) Application of synchronization to secure communications has been presented successfully first time using 
RASMC on the tumour cells. 
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