AN INVENTORY MODEL FOR DETERIORATING GOODS WITH TIME DEPENDENT QUADRATIC DEMAND WITH PARTIAL BACKLOGGING

ANIL KUMAR SHARMA*, MEENAKSHI YADAV**

*Associate Professor, Department of Mathematics, Raj Rishi College, Alwar-(R.J.), India.
**Research Scholar, Department of Mathematics, Singhania University, Jhunjhunu-(R.J.), India.
(Received On: 17-06-15; Revised & Accepted On: 30-06-15)

ABSTRACT

A deterministic inventory model is study in which demand is consider to be deterministic (quadratic demand rate) and in which shortages are also allowed. In this paper we try to minimizes the total inventory cost and maximizes the total profit. Holding cost and deterioration rate is considered to be constant.

Key Words: deteriorating items, quadratic demand, partial backlogging.

INTRODUCTION

The economic order quantity was firstly given by F.Harris in 1916. F.Harris work was generalized by Wilson (1934). Dave and Patel (1981) were first to study about deteriorating items with linearly increasing demand and in which shortages are not allowed. Deterioration is most realistic feature in today life. Due to deterioration or damage of product inventory faces a lot of problems. Problems of shortages or loss of good will. Some of recent researchers of management and mathematics are busy in this field. Some of them take deterioration as constant while some take demand as a function of selling price, linear demand, quadratic demand, ramp type demand, time and price dependent demand and so on.

In this paper we develop a economic inventory model by considering demand as quadratic demand and developed an inventory model for deteriorating items where holding cost and deteriorating rate are constant. Shortages are allowed and are Partially backlogged.

ASSUMPTIONS AND NOTATIONS

The basic assumptions are as given by

- The demand rate is time dependent and demand is quadratic.
- Shortages are allowed and partially backlogged.
- Lead time is zero.
- The replenishment rate is instantaneous.
- The deterioration rate is constant.

Corresponding Author: Meenakshi Yadav**
**Research Scholar, Department of Mathematics, Singhania University, Jhunjhunu-(R.J.), India.
The basic notations are as given by:

- A is the fixed ordering cost per order.
- \(\theta \) is the constant deterioration rate.
- \(Q(t) \) is the level of inventory at time \(t \) \((0 \leq t \leq T) \).
- \(t_1 \) is the time when inventory attains zero.
- \(Q \) is the ordering point quantity per cycle.
- \(C_t \) is the cost of each deteriorated item.
- \(C_t \) is the inventory holding cost per unit per unit of time.
- \(M \) is the maximum inventory level for the ordering cycle such that \(M = Q(0) \).

MATHEMATICAL MODEL

Here we consider the deteriorating inventory model with quadratic demand rate. Replenishment occur at time \(t=0 \) when the inventory level attains its maximum. From \(t=0 \) to \(t_1 \), the inventory level reduces due to demand and deterioration. At \(t_1 \), the inventory level reaches to zero, then shortages is allowed to occur during the time interval \((t_1, T) \) is completely backlogged. The total number of backlogged items is replaced by the next replenishment. According to assumptions and notations given above, the behavior of inventory system can be described as below by the following differential equations:

\[
\frac{dQ(t)}{dt} + \theta . Q(t) = -(a + bt + ct^2), \quad 0 \leq t \leq t_1
\]

\[
\frac{dQ(t)}{dt} = -(a + bt + ct^2), \quad t_1 \leq t \leq T
\]

With boundary conditions \(Q(0) = M, Q(t_1) = 0 \)

The solutions of equations (1) and (2) with boundary conditions are as follows.

\[
Q(t) = \frac{1}{\theta} (a - \frac{b}{\theta} + \frac{2c}{\theta^2}) + \frac{1}{\theta} (bt + \frac{2ct}{\theta}) - \frac{ct^2}{\theta^2} + e^{\theta(t-t_1)} \left(\frac{1}{\theta} \left(a - \frac{b}{\theta} + \frac{2c}{\theta^2} \right) + \frac{1}{\theta} \left(-bt_1 + \frac{2ct_1}{\theta} \right) + \frac{ct_1^2}{\theta^2} \right)
\]

\[
Q(t) = \left[a(t_1 - T) + b \left(\frac{t_1^2}{2} - \frac{t_1}{2} + c \left(\frac{t_1^3}{3} - \frac{t_1}{3} \right) \right) \right] \quad t_1 \leq t \leq T
\]

The beginning inventory level can be computed as

\[
M = Q(0) = \frac{a}{\theta} \left(e^{\theta t_1} - 1 \right) - \frac{b}{\theta^2} \left(e^{\theta t_1} - 1 \right) + \frac{2c}{\theta^3} \left(e^{\theta t_1} - 1 \right) - at_1 + b \left(\frac{t_1 e^{\theta t_1}}{\theta} - \frac{t_1^2}{2} \right) + c \left(\frac{t_1^2}{\theta} e^{\theta t_1} - \frac{t_1^3}{3} \right)
\]

The total number of items which perish in the interval \([0,t_1] \)

\[
\varphi_T = M - \int_{0}^{t_1} (a + bt + ct^2) dt
\]

\[
\frac{a}{\theta} \left(e^{\theta t_1} - 1 \right) - \frac{b}{\theta^2} \left(e^{\theta t_1} - 1 \right) + \frac{2c}{\theta^3} \left(e^{\theta t_1} - 1 \right) - at_1 + b \left(\frac{t_1 e^{\theta t_1}}{\theta} - \frac{t_1^2}{2} \right) + c \left(\frac{t_1^2}{\theta} e^{\theta t_1} - \frac{t_1^3}{3} \right)
\]

The total number of inventory carried during the interval \([0,t_1] \)

\[
\varphi_L = \int_{0}^{t_1} Q(t) dt = \frac{a}{\theta} t_1 + \frac{b}{\theta^2} t_1 - \frac{2c}{\theta^3} t_1 - \frac{b t_1^2}{2 \theta} + \frac{c t_1^2}{\theta^2} - \frac{a t_1^3}{3 \theta} \left(e^{\theta t_1} - 1 \right) + \frac{b}{\theta^3} \left(e^{\theta t_1} - 1 \right) - \frac{2c}{\theta^4} \left(e^{\theta t_1} - 1 \right) - \frac{b}{\theta^2} \left(e^{\theta t_1} - 1 \right) + \frac{c}{\theta^3} \left(e^{\theta t_1} - 1 \right)
\]

The total shortages quantity during the interval \([0,t_1] \)

\[
\varphi_s = -\int_{t_1}^{T} Q(t) dt = \frac{b}{2} \left(-2t_1T + T^2 + t_1^2 \right) + \frac{b}{6} \left(3t_1^2T - T^3 - t_1^3 \right) + \frac{b}{12} \left(4t_1^3T - T^4 - 3t_1^4 \right)
\]

Then the average total cost per unit time under the condition \(t_1 \leq T \) is given by

\[
TC = \frac{1}{T} (A + C_t \varphi_T + C_2 \varphi_L + C_3 \varphi_s)
\]

\[
= \frac{1}{T} \left(A + C_t \left(\frac{a}{\theta} t_1 + \frac{b}{\theta^2} t_1 - \frac{2c}{\theta^3} t_1 - \frac{b t_1^2}{2 \theta} + \frac{c t_1^2}{\theta^2} - \frac{a t_1^3}{3 \theta} \left(e^{\theta t_1} - 1 \right) + \frac{b}{\theta^3} \left(e^{\theta t_1} - 1 \right) - \frac{2c}{\theta^4} \left(e^{\theta t_1} - 1 \right) - \frac{b}{\theta^2} \left(e^{\theta t_1} - 1 \right) + \frac{c}{\theta^3} \left(e^{\theta t_1} - 1 \right) \right) + C_2 \left(\frac{b}{2} \left(-2t_1T + T^2 + t_1^2 \right) + \frac{b}{6} \left(3t_1^2T - T^3 - t_1^3 \right) + \frac{b}{12} \left(4t_1^3T - T^4 - 3t_1^4 \right) \right) \right)
\]
The necessary condition for TC in (9) to be minimized is
\[
\frac{\partial TC}{\partial t_1} = 0
\]

5.0 SENSITIVITY ANALYSIS

Consider an inventory system with the following parameter in proper unit A=2000, a=25, b=20.0, c=15, \(\theta=0.5\), \(C_1=0.1\), \(C_2=0.1\), \(C_3=0.3\), \(T=2.5\). The computer output by using maple mathematical software is \(t_1=0.1756\) and \(TC=799.049\). The variation in the parameter is as follows:

<table>
<thead>
<tr>
<th>Table 5.1: Variation in parameter A</th>
<th>Table-5.2: Variation in parameter (\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(t_1)</td>
</tr>
<tr>
<td>1000</td>
<td>0.1756</td>
</tr>
<tr>
<td>1500</td>
<td>0.1756</td>
</tr>
<tr>
<td>2000</td>
<td>0.1756</td>
</tr>
<tr>
<td>2500</td>
<td>0.1756</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table- 5.3: Variation in parameter a</th>
<th>Table- 5.4: Variation in parameter b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(t_1)</td>
</tr>
<tr>
<td>25</td>
<td>0.1756</td>
</tr>
<tr>
<td>30</td>
<td>0.21660</td>
</tr>
<tr>
<td>35</td>
<td>0.25491</td>
</tr>
<tr>
<td>40</td>
<td>0.29087</td>
</tr>
</tbody>
</table>

From table 5.1, 5.2, 5.3 and 5.4 we observed that the total cost increases if we increases the parameters a, A and we observed that total cost decreases if we increases the parameter b, \(\theta\). It’s also observed that the parameter a and A is more sensitive than the parameter \(\theta\) and b.

6.0 CONCLUDING REMARKS

In this paper, we developed a model for deteriorating item with time dependent demand and partial backlogging and give analytical solution of the model that minimize the total inventory cost. The deterioration factor taken into consideration in the present model, as almost all items undergo either direct spoilage (like fruits, vegetable etc) or physical decay (in case of radioactive substance etc.) in the course time, deterioration is natural feature in the inventory system. The model is very useful in the situation in which the demand rate is depending upon the time.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]