
International Journal of Mathematical Archive-6(6), 2015, 202-208 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 6(6), June – 2015                                                                                                               202 

 
A REVIEW OF SOME APPLICATIONS  

OF CLASSICAL PROBABILISTIC INFORMATION MEASURES 
 

SURENDER SINGH* 
 

School of Mathematics, Faculty of Sciences, 
Shri Mata Vaishno Devi University, Sub Post Office, Katra-182320 (J & K), India. 

 
(Received On: 06-06-15; Revised & Accepted On: 30-06-15) 

 
 

ABSTRACT 
Information theory, which was developed as a branch of communication engineering mainly by Hartley (1928) and 
Shannon (1948), has its roots in statistical thermodynamics. It has been applied in many fields outside communication 
engineering. In the present communications some application of classical Shannon measure and generalized entropy 
measures have been reviewed. 
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1. INTRODUCTION 
 
Consider a set E of mutually exclusive events Ei (i = 1... n) each of which has the probability of occurrence pi, so that 
the pi s add up to unity. The information content of the occurrence of event Ei is defined [28]: 
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The expected information content of an event from our set of n events, the entropy of the set E, is defined [28]: 
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H(P) is always non negative. Its maximum value depends on n. It is equal to nlog  when all pi are equal. A general 
communication system has a source which generates messages symbol by symbol and chooses symbols with given 
probabilities. The symbols are transmitted through a channel in which noise may disturb them. The messages are 
received at destination. 
 

Let ( )ip x = the probability that the source will generate and send symbol xi; =)( jmp  the probability that the 

destination will receive symbol mj; =),( ji mxp  the probability that symbol xi will be sent and symbol mj will be 

received; =)|( ij xmp  the probability that symbol mj will be received when symbol xi has been sent; =)|( ji mxp  the 
probability that symbol xi was sent if symbol mj has been received. 
 
Now using (1.1) we can define the entropies of the communication system: 
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is called noiseless systems. Consequently, in noiseless systems 0)|()|( == mxHxmH and also ).()( mHxH =  In noisy 
communication systems the conditional entropy of the symbols sent when the received symbols are known ),|( mxH
has been taken to measure the missing information due to noise in the channel. )|( mxH is called the equivocation of 
the channel. The rate of actual transmission of the information can be defined in three equivalent ways: 
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R is always non negative. Its minimum is reached when ),()(),( jiji mpxpmxp = i.e when the symbols sent and 
received are independent. This means that there is maximum noise in the system. The maximum of R is )(xH and is 
reached when the system is noiseless.  
 
Mutual Information 
 
Mutual Information between two random variables X and Y can be defined in following three equivalent ways 
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),( YXI can be interpreted as a measure of the dependence between Y and X. When X and Y are independent, ),( YXI
is minimum, that is, ),( YXI =0. 
 
Based upon this property, Mutual Information (MI) was introduced as a similarity measure in various applications. 
 
In 1961, Renyi [26] pointed out in his fundamental paper on generalized information measure that in other sorts of 
problems other quantities may serve just as well or even better than measures of information. The basic idea behind 
Renyi’s generalization is that an expression for an entropy should be a mean, and therefore, he uses a well known 
mathematical idea that the linear mean, though most widely used, is not the only possible way of averaging, however, 
one can define the mean with respect to an arbitrary function. Here one should be aware that, to define a ‘meaningful’ 
generalized mean, one has to restrict the choice of functions to continuous and monotone functions. Following the 
above idea, once we replace the linear mean with generalized means, we have a set of information measures 
corresponding to a continuous and monotone function. Renyi ‘s[26] celebrated measure is  
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Shannon,s measure is a limiting case of Renyi,s measure. After Renyi, voluminous literature on generalization (one, 

two, three and four parametric) of information measures developed. 

 

But utility of these additional parameter(s) remained missing in most of the work on generalization. In this review, 

some discussion on pragmatic aspect of parameter(s) is also given.  

 

Since in most of interdisciplinary applications maximum entropy principle plays an important role. Therefore, in 

section 2, principle of maximum entropy has been recalled. Section 3 reviews the applications of  non-parametric 

information measure (entropy measure) and in section 4 some insight on application of generalized (parametric) 

information measure is given. 
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2. MAXIMUM ENTROPY PRINCIPLE 
 
We know the finite discrete case of Shannon’s entropy, which is given by Boltzmann’s H-function taking from 
statistical mechanics. We define the entropy function as in (2.1) .Where )(PH  is the amount of uncertainty contained 
by the probability distribution P, is known as system’s entropy function. The property of Shannon’s entropy is that 
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By this expression we notice that the uniform distribution is the most uncertain one when no constraint is imposed on 
the probability distribution. This relation is equal to Laplace’s principle of insufficient reason, which implies that the 
most reasonable strategy consists in attaching the same probability to different outcomes when we have no additional 
information about them. Jaynes [12] extended Laplace’s principle of sufficient reason by introducing the PME, which 
proves to be a non-linear entropy function (1.1) to be maximizes subject to the constraints 
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Where fk , (k = 1,2,...,n) are weights which give information about moments in certain cases.  
 
Also, 
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We select the probability distribution P = (p1, p2,..., pn) that maximizes the corresponding entropy relation (1.1) subject 
to the given constraints. 
 
3.  APPLICATIONS OF PROBABILISTIC  INFORMATION MEASURES 
 
Beyond the theory of communications, applications of probabilistic information measures could be seen in finance, 
marketing, operations research, actuarial sciences, image processing, sociology, biology, ecology, population studies 
and many more. In this section some of the applications have been recalled. 
 
3.1 Application in finance and trade 
 
Problem: Could a mathematical formula be derived in betting on horse races? 
 
J. Kelly in his article “A new Interpretation of Information rate” [16] provided a solution know as Kelly Formula or 
Kelly Criterion became the basis of many betting systems and also paved the way for various strategies in financial 
options trading. According to Kelly random variable X denotes the outcome of each horse race is represented by a 
random variable X and gambler has some side information Y relevant to the outcome of the race, then under some 
condition of odds, the mutual information I(X; Y) is the difference in growth rates of the wealth with and without side 
information. The side information can be considered to be a set of symbols received over a communication channel that 
the gambler uses to make bets on the transmitted symbols. The growth rate is defined as 
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where VN is the gamblers capital after N bets and V0 is the starting capital. An optimal gambler always tries to 
maximize the growth rate (Gmax).  
 
Problem: Could the expected portfolio return be maximized from an investment in share market? 
 
Wilson [34] proposed mean entropy model using concepts of individual entropy, joint entropy and conditional entropy.  
 
In international trade, distribution pattern of industrial agglomeration can be studied in information theoretic 
framework.   
 
Let ijk stand for the trade flow from region i  to region j ),...,2,1,( nji = . Then 
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While analyzing the international trade, we calculate several statistics to describe them. As for example we analyze the 
changes Export shares, which we present in the form of the export vector { / };iX X Import shares, which we present 

in the form of the import vector { / };jM X Trade patterns, which we present in the form of the trade-flow matrix 

{ / };ijk X Export patterns, which we present in the form of the conditional export vector{ / };ij ik X  Import patterns, 

which we present in the form of the conditional import vector { / };ij jk M . Entropy analysis of international trade 
using empirical data is done by Pulliainen [25]. H(m | x) and H(x | m) are weighted averages of the conditional entropies 
calculated for individual regions, and they measure the average uncertainty of destination and origin, given the region 
of origin and destination, respectively. These entropies also measure the evenness or concentration of the distributions 
of the elements in the trade-flow matrix and vectors. The larger the entropies the more even are the distributions in 
question; the smaller the entropies the more concentrated they are. Jacquemin and Charles [11] studied the relation 
between diversification and corporate growth using measure of entropy. 
 
3.2 Application in market research 
 
Problem: The most fundamental question that can be asked about consumer choice behavior, is that whether, there 
exist causes and explanations for all behaviors in some fundamental sense? 
 
Since individual consumer choice behavior is characterized by some randomness, the underlying fact which guides 
most of the research in individual consumer behavior is that, in principle, behavior is caused and can therefore be 
explained. 
 
Keeping in view the above fact, Herniter [10] maximized the shannon’s measure of entropy to estimate the probability 
of customer changing from from one brand of a product to another brand, Bass [2] criticized him for inflexibility of his 
results, since Hertiner [10] probability of transition was same whether products was soap or alcohal, or whether 
community belongs to Africa or Asia or U.S.A. Later, Kapur et al. [15] remedied this defect by using Renyi’s entropy 
measure, which depends on one parameter. 
 
3.3 Application in operations research 
 
In operations research there are two fundamental problems one is optimization and second system modelling. Kapur 
[14] found different objective functions for different entropies. Presence of one, two or three parameters provides 
flexibility for choice of best entropy measure for the optimization problem. It is very important to note that the 
principle of maximum entropy is at the core of every optimization problem. 
 
In system modelling the concept of entropy seems to have four perspectives, the first three essentially subjective and 
the last objective: 

(i) Entropy can be considered as probability (to deal with the notion of uncertainty). 
(ii) Entropy can be considered as a statistic of a probability distribution. 
(iii) Entropy can be considered as the negative of a Bayesian log-likelihood function. 
(iv) Entropy as a measurable system property (to deal with randomness and disorder). 

 
Entropy has three types of utility in model building: 

(i) For hypothesis generation and as a means of achieving consistency within models of certain types of rather 
complex situations, 

(ii) For interpreting models and theories, and 
(iii) For the development of dynamic system models (as distinctive from equilibrium models to be used in a 

comparative-static way). 
Wilson [34] gave a nice framework for building models of urban and regional systems used for planning purposes 
using the concept of entropy. 
 
In optimization problems, queuing theory is also a versatile discipline. Queues are formed whenever individuals have to 
wait for receiving service. A queue may be formed either by human beings or by machines. Waiting in queues may be 
very costly in time and money and a scientific study of queues is essential in order to reduce cost for given waiting time 
or reduce waiting time for given cost. Queuing theory is concerned with the following problems: 
 
Situation: The situation is described by probability distributions of the inter-arrival time and the service time, the 
queuing discipline, and other features like limited waiting space, persons not joining a queue if they find it too long and 
persons losing patience and leaving the queue after waiting in it for some time. 
 
Problem: The problem is to find performance distributions like, queue size distribution, waiting time distribution and 
busy period distribution. 
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The maximum entropy principle is applicable to select appropriate probability distributions for a queuing situation. For 
example, some moments of the inter-arrival time or service time or queue size waiting time distribution may be given. 
In each of these cases, we can use the maximum entropy principle to select a corresponding probability distribution 
based only on the available information. Sometimes the distributions obtained by the usual methods applied in queuing 
theory are rather complicated. In such cases the principle of maximum entropy can be used to approximate these 
distributions by simpler ones of the exponential family. The contributions of Guiasu [7] and Kouvatsos [17] contain 
examples showing the role of maximum entropy in queuing theory. Artalezo and Lopez-herrero [1] applies information 
theoretic methodology for systems modeling to investigate the probability density function of busy period of M/G/1 
vacation model operating under the N-, T- and D- policies. Parkash and Gandhi [23] study variations of different 
entropy measures in steady and non-steady processes of queuing theory. 
 
3.4 Application in population studies 
 
The entropy of population measures the variability of the contribution of the different age classes to the stationary age 
distribution. Demetrius [6] studied the problem of natural selection using entropy measure and obtained a result 
analogous to Fisher fundamental theorem of natural selection. Maasumi [18] studied a class of evaluative statistics for 
the measurement of multidimensional inequality and their corresponding Social Welfare Functions. 
 
3.5 Application to measure the diversity 
 
Diversity is a measure of the compositional complexity of an assemblage. It plays a central role in community ecology 
and conservation biology. If n is the number of species in the assemblage and ith species have relative abundance ip  

then  the shannon’s entropy gives the uncertainty in the species identity of a randomly chosen 

individual in the assemblage. Burbea and Rao[3] measured the total diversity in a mixed distribution in terms of 
average diversity within the distribution. 
 
4. APPLICATIONS OF GENERALIZED INFORMATION MEASURES 
 
Owing to various theoretical and practical reasons, related to various branches of study, it appears that Shannon entropy 
is the most important and useful measure of uncertainty, and, consequently a new entropy will be of interest if and only 
if it has some advantage with respect to the former. This section deals some applications where the generalized 
entropies have some advantage. 
 
4.1 Application in Non extensive Information Systems 
 
Tsallis[32] proposed nonextensive formalism of concept of entropy by proposing a generalized q-entropy  which 
satisfies 

                                                                                                           (4.1) 

Where
 

 is called entropic index. For Tsallis entropy  
 
we have

 

                                                                                                        (4.2)
 

(4.2) is called pseudo-additivity property. 
 
When  1→q , (4.2) reduces to  

( ) ( ) ( ),S A B S A S B+ = +                                                                                                                                         (4.3) 
 
Which is Shannon’s additivity. The deviation of ‘q’ from unity measures the degree of non extensivity of the entropies. 
Thus, generalized entropies are useful for dealing the nonextensive systems (systems where the output is not equal to 
the sum of inputs supplied). Generalized entropies are also useful in Statistical physics for the purpose of analyzing 
multifractal systems. 
 
4.2 Application in Chaos Theory  
 
Benoit B.Mandelbrot [19] determined “fractal”: A rough or fragmented geometric shape that can be subdivided in 
parts, each of which is (at least approximately) a reduced/size copy of the whole. And fractal dimension is the 
dimension number of fractal, and it metrics the ability of system filled space (compact) or crannies (osteoporosis), and 
characterizes the system disorder. 
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Generally, fractal dimension is calculated by: 

ln ( )
ln( )f
ND ε
ε

= −                                                                                                                                                          (4.4) 

ε is measuring scale and )(εN is number of parts under ε .Generalized dimension was proposed by Shixian[29] as 
follows: 

0
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ln( )
HD α

α ε
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Where )(εαH  is Renyi’s entropy. 
 
4.3 Application to Provide Flexibility and Subjectivity in Information System 
 
Jumarie [13] have shown that Renyi’s entropy )(XH R  can be utilized to model the effect of the subjectivity in the 
information systems.  
 
4.4 Application in Statistical Mechanics 
 
Well known probability distributions of statistical mechanics like Boltzaman-Gibbs (BG), Bose-Einestien (BE), Fermi-
Dirac (FD) distributions are obtain by maximizing the generalized entropies. More detail are given in Jaynes [12], 
Kapur[14], Tsallis and Brigatti [31] and Niven[22]. 
 
4.5 Application of Parameter for Scaling the Information Measure 
 
The generalized entropies, with the Shannon entropy as a special case, are almost consistent for different values of α. 
Increasing α makes the measure’s values span a smaller interval. This means that as α increases, the measures become 
coarse and their discriminating power decreases. So, the parameter α is used for scaling the measure. Some applications 
of this type are Neemuchwala et al. [21] and Mohanalin et al. [20]. Generalized information measures proposed in 
literature contains one, two or more parameters. These parameters give certain flexibility in applications and their 
values have ultimately to be determined from the data itself. 
 
4.5 Application in Image Processing 
 
In image processing, two types of problem exists which have been studied in information theoretic environment. 
 
Problem: To Align images from different modalities (Image registration). This is very useful in the diagnoses of 
diseases.  
 
Intensity based image registration is one of the most popularly used methods for automatic multimodality image 
registration. Recently, various improvements have been suggested, ranging from variation in the similarity metrics to 
improvement in the interpolation techniques. As a similarity measure, mutual information was pioneered both by 
Collignon et al. [4], and by Viola and Wells [33]. Applied to rigid registration of multimodality images, mutual 
information showed great promise and within a few years it became the most investigated measure for medical image 
registration. 
 
Problem: To Divide an image into meaningful structures (image segmentation). This is often an essential step in image 
analysis, object representation, visualization and many other image processing tasks. 
 
In recent years, multi scale techniques have gained a lot of attention in the image processing community. Typical 
examples are pyramid and wavelet decompositions. They represent images at a small number of scales and have proven 
their use for many image processing tasks. It is not difficult to see that the generalized entropies, the multi fractal 
spectrum, the gray-value moments and the gray-value histogram itself are equivalent representations: they can be 
transformed into each other by one-to-one mappings. The relation between gray-value moments and the gray-value 
histogram is given in [30] The equivalence of the multifractal spectrum and the generalized entropies is discussed in 
[9]. Further [30] have illustrated that the generalized entropies can be used to perform size measurements for periodic 
textures. This is not possible with the Shannon–Wiener entropy. Further applications can be seen in [24], [27] and [5]. 
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