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ABSTRACT 
In this paper a theorem on the degree of Approximation of function belonging to the Lipschitz Class by (E, q) (C, δ) 
Product Means of its Conjugate Fourier Series have been established. 
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1. DEFINITION AND NOTATIONS 
 
Let f be 2π - periodic and L-integrable over [ ,π π− ]. The Fourier series of f at a point is given by 
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The conjugate series of the Fourier series (1.1) is given by  
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A function f∈Lipα (0<α ≤ 1) if  

( )( ) ( ) .| |f x t f x t α
+ − =                                                                                                                                           (1.3) 

 
The degree of Approximation of a function :f R R→  by a trigonometric polynomial nt  of order n is defined by 
zygmund [1, p-114], 

sup{ ( ) ( ) : }n nt f x f x x Rt− = − ∈                                                                                                                     (1.4) 
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=
∑  be given infinite series with the sequence (𝑠𝑠𝑛𝑛 ) of partial sums of its first (n+1) terms. The Euler means of 

the sequence (𝑠𝑠𝑛𝑛 ) are defined by  

0
( , ) ( 1) ( ) , ( 0),

n
q n n k
n k

k

n
E q E q q S q

k
− −

=

= = + ≥∑  

Where 0
nE  is defined to be 𝑠𝑠𝑛𝑛 . If nt s→ : as n →∞ , we say that ( nS ) or 
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or symbolically we write ( ) ( , )nS S E q∈ ,for q>0 see Hardy [2,p-180] and for real and complex values of q 1≠ − ,see 
Chandra [4]. 
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The sequence ( nS ) is said to be summable (C, δ) ( 1)δ > −  to limit S if, ( ) 1 1
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Where nAδ are the binomial coefficients. See Zygmund [1, p-76]  
 
The (E, q) transform of the (C,δ ) transform defines the (E, q) (C,δ ) transform of the partial sums nS  of the series
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The Transform (E, q) (C,δ ) reduces to (E, q) and (C,δ ) respectively for δ = 0 and q = 0. Thus if 
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Then the series  
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∑  is said to be summable by (E, q) (C,δ ) means or simply summable (E, d) (C,δ ) to S. 

 
Let nS (f; x) be the thn  partial sum of the series (1.1).Then (E, q) (C,δ ) means of ( nS (f; x)), Where q > 0 and δ >-1, 
is given by  
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We shall use the following notations for each x R∈ . 

( ) ( ) ( )t f x t f x tψ = + − −                                                                                                                                         (1.6) 
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MAIN THEOREM 
 
Theorem 2.1: If :f R R→ is 2π  periodic and Lebesgue integrable on [ , ]π π−  and f Lip∈ 𝛼𝛼  class then the 
degree of approximation of function f by (E, q) (C,δ ) product means of its conjugate Fourier Series (1.2) of f satisfies, 
for n = 0, 1, 2...... 
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3. For the proof of our theorem, we need the following lemmas: 
 
Lemma 1: [1, p-94]: For (0 1), 1, 2,3....nδ< ≤ =  0 t π< ≤  
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Where 𝐴𝐴𝛿𝛿 depending on δ  only 
 
Lemma 2:  [5] For q > 0 
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Lemma 3: For  δ  >1, 
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4. PROOF OF THE THEOREM: 
 
The thn  partial sum of the conjugate Fourier series [1, p-50] is ( ; )nS f x . Then 
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Now, for 1
( 1)0 ,sin sin ,nt nt n t+≤ ≤ ≤ see [1, p-91] 
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We have by Boos [3, p-104] 
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By (1.3) 
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By (1.8), we have 
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Condition –I 
For δ ≤  1, by lemma 1, we have 
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By Lemma 2 and (1.2), we get 
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Case-I:  Whenα δ= , then 
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Case-II: When α δ< , then  
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Combining (4.2) and (4.3) we have, 
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Condition-II:  
 
For 1δ > , by lemma 3, we have 
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By lemma 3 and (1.2), we have  
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Now combining the estimate (4.1), (4.4) and (4.5) we get required result. 
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