GEOMETRIC MEAN LABELING OF SOME NEW DISCONNECTED GRAPHS

${ }^{1}$ S. SOMASUNDARAM, ${ }^{2}$ S. S. SANDHYA, ${ }^{3}$ S. P. VIJI*
${ }^{1}$ Department of Mathematics,
M. S. University, Tirunelveli-627012, India.
${ }^{2}$ Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai-629003, India.
${ }^{3}$ Department of Mathematics, K. N. S. K. College of Engineering, Therekalputhoor-629004, India.

(Received On: 09-06-15; Revised \& Accepted On: 30-06-15)

Abstract

A Graph $G=(V, E)$ with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2 \ldots \ldots+1$ is such a way that when each edge $e=u v$ is labeled with $f(e=u) v=[\sqrt{f(u) f(v)}]$ (or) $[\sqrt{f(u) f(v)}]$ then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G. In this paper we prove that some disconnected graphs are Geometric Mean graphs.

Key Words: Graph, Geometric Mean labeling, Path, Cycle, Comb, Triangular Snake, Quadrilateral Snake.

1. INTRODUCTION

The graph considered here are simple, finite, connected and undirected graph. Let $V(G)$ denote the vertex set and $E(G)$ denote the edge set of G. For a detailed survey of graph labeling we refer to Gallain [1]. For all other standard terminology and notations we follow Harary [2]. S. Somasundaram and P. Vidyarani introduced the concept of Geometric Mean labeling of graphs in [3] and studied their behavior in [4], [5], [6] and [7]. In this paper we investigate the Geometric mean labeling behavior of some disconnected graphs. The following definitions are useful for our present study.

Definition1.1: A Graph $G=(V, E)$ with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in \mathrm{~V}$ with distinct labels $\mathrm{f}(\mathrm{x})$ from $1,2 \ldots . \mathrm{q}+1$ is such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $f(e=u) v=[\sqrt{f(u) f(v)}]$ (or) $[\sqrt{f(u) f(v)}]$, then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G.

Definition1.2: The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} U G_{2}$ with vertex set $V=V_{1} U V_{2}$ and the edge set $E=E_{1} U E_{2}$.

Definition1.3: The Corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} where the $\mathrm{i}^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2}.

Definition1.4: A Triangular Snake T_{n}, is obtained from a path $u_{1}, u_{2}, \ldots u_{n}$ by joining u_{i} and u_{i+1} to a new vertex $v_{i}, 1 \leq i \leq n-1$.

Definition1.5: A Double Triangular Snake $D\left(T_{n}\right)$ consists of two Triangular Snakes that have a common path.

Definition1.6: A Quadrilateral Snake Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots u_{n}$ by joining u_{i} and u_{i+1} to two new vertices v_{i} and w_{i} respectively and then joining v_{i} and $w_{i}, 1 \leq i \leq n-1$.

Definition1.7: A Double Quadrilateral Snake $D\left(Q_{n}\right)$ consists of two Quadrilateral Snakes that have a common path.
Theorem1.8: Triangular Snake T_{n} is a Geometric Mean graph.
Theorem1.9: Double Triangular Snake $D\left(T_{n}\right)$ is a Geometric Mean graph.

Theorem1.10: Quadrilateral Snake Q_{n} is a Geometric Mean graph.

Theorem1.11: Double Quadrilateral Snake $D\left(Q_{n}\right)$ is a Geometric Mean graph.

2. MAIN RESULTS

Theorem2.1: $G_{m} \cup T_{n}$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{1} v_{2} \ldots v_{n}$ be the path P_{n}. Let T_{n} be the triangular snake obtained from the path P_{n} by joining v_{i} and v_{i+1} to new vertex $w_{i}, 1 \leq i \leq n-1$. Let $G=C_{m} \cup T_{n}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+3 i-2,1 \leq i \leq n$
$f\left(w_{i}\right)=m+3 i-1,1 \leq i \leq n-1$
Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.
Example2.2: Geometric Mean labeling of $C_{7} \cup T_{6}$ is given below.

Figure-1

Theorem2.3: $\left(C_{m} \odot K_{1}\right) \cup T_{n}$ is a Geometric Mean graph.
Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let v_{i} be the vertex of K_{1} which is attached to the vertex $u_{i}, 1 \leq i \leq m$ of the cycle C_{m}. Let $w_{1} w_{2} \ldots w_{n}$ be the path P_{n} Let T_{n} be the triangular snake obtained from P_{n} by joining w_{i} and w_{i+1} to a new vertex $x_{i}, 1 \leq i \leq n-1$. Let $G=\left(C_{m} \odot K_{1}\right) \bigcup T_{n}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2$
$f\left(u_{i}\right)=2 i, 3 \leq i \leq m$
© 2015, IJMA. All Rights Reserved
$f\left(v_{i}\right)=2 i, 1 \leq i \leq 2$
$f\left(v_{i}\right)=2 i-1,3 \leq i \leq m$
$f\left(w_{i}\right)=2 m+3 i-2,1 \leq i \leq n$
$f\left(x_{i}\right)=2 m+3 i-1,1 \leq i \leq n-2$
Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.4: Geometric Mean labeling of $\left(C_{7} \odot K_{1}\right) \bigcup T_{5}$ is given below.

Figure-2

Theorem2.5: $C_{m} \odot D\left(T_{n}\right)$ is a Geometric Mean graph.
Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{1} v_{2} \ldots v_{n}$ be the path P_{n}. The double triangular snake $D\left(T_{n}\right)$ is obtained from the path P_{n} by joining v_{i} and v_{i+1} to two new vertices x_{i} and $y_{i}, 1 \leq i \leq n-1$. Let $G=C_{m} \odot D\left(T_{n}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+5 i-4,1 \leq i \leq n$
$f\left(x_{i}\right)=m+5 i-3,1 \leq i \leq n-1$
$f\left(y_{i}\right)=m+5 i-2,1 \leq i \leq n-1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.6: Geometric Mean labeling of $C_{7} \odot D\left(T_{5}\right)$ is given below.

Figure-3

Theorem2.7: $\left(C_{m} \odot K_{1}\right) \cup\left(D\left(T_{n}\right)\right)$ is a Geometric Mean graph.
Proof: Let the cycle C_{m} be $u_{1} u_{2} \ldots u_{m} u_{1}$. Let v_{i} be the vertex of K_{1} which is attached to the vertex $u_{i}, 1 \leq i \leq m$ of the cycle C_{m}. Let $w_{1} w_{2} \ldots w_{n}$ be the path P_{n} The double triangular snake $D\left(T_{n}\right)$ is obtained by joining w_{i} and w_{i+1} to two new vertices x_{i} and $y_{i}, 1 \leq i \leq n-1$. Let $G=\left(C_{m} \odot K_{1}\right) \bigcup\left(D\left(T_{n}\right)\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2$
$f\left(u_{i}\right)=2 i, 3 \leq i \leq m$
$f\left(v_{i}\right)=2 i, 1 \leq i \leq 2$
$f\left(v_{i}\right)=2 i-1,3 \leq i \leq m$
$f\left(w_{i}\right)=2 m+5 i-4,1 \leq i \leq n$
$f\left(x_{i}\right)=2 m+5 i-3,1 \leq i \leq n-1$
$f\left(y_{i}\right)=2 m+5 i-2,1 \leq i \leq n-1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.
Example2.8: Geometric Mean labeling of $\left(C_{6} \odot K_{1}\right) \bigcup\left(D\left(T_{5}\right)\right)$ is given below.

Figure-4
Theorem2.9: $C_{m} \cup Q_{n}$ is a Geometric Mean graph.
Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{1} v_{2} \ldots v_{n}$ be the path P_{n}. Let Q_{n} be the Quadrilateral snake obtained by joining v_{i} and v_{i+1} to two new vertices x_{i} and $y_{i}, 1 \leq i \leq n-1$ respectively and then joining x_{i} and y_{i}. Let $G=C_{m} \cup Q_{n}$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+4 i-3,1 \leq i \leq n$
$f\left(x_{i}\right)=m+4 i-2,1 \leq i \leq n-1$
$f\left(y_{i}\right)=m+4 i-1,1 \leq i \leq n-1$
Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.10: The labeling pattern of $C_{7} \cup Q_{5}$ is given below.

Figure-5

Theorem2.11: $\left(C_{m} \odot K_{1}\right) \cup\left(Q_{n}\right)$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let v_{i} be the vertex of K_{1} which is attached to the vertex $u_{i}, 1 \leq i \leq m$ of the cycle C_{m}. Let $w_{1} w_{2} \ldots w_{n}$ be the path P_{n}. Let x_{i} and $\mathrm{y}_{i}, 1 \leq i \leq n-1$ be the vertices which are joined to w_{i} and w_{i+1} respectively. Join x_{i} and y_{i}. Let $G=\left(C_{m} \odot K_{1}\right) \bigcup\left(Q_{n}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2 \\
& f\left(u_{i}\right)=2 i, 3 \leq i \leq m \\
& f\left(v_{i}\right)=2 i, 1 \leq i \leq 2 \\
& f\left(v_{i}\right)=2 i-1,3 \leq i \leq m \\
& f\left(w_{i}\right)=2 m+4 i-3,1 \leq i \leq n \\
& f\left(x_{i}\right)=2 m+4 i-2,1 \leq i \leq n-1 \\
& f\left(y_{i}\right)=2 m+4 i-1,1 \leq i \leq n-1
\end{aligned}
$$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G..
Example2.12: The labeling pattern of $\left(C_{7} \odot K_{1}\right) \bigcup\left(Q_{5}\right)$ is given below.

Figure-6
Theorem2.13: $C_{m} \odot D\left(Q_{n}\right)$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let $v_{i}, x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}$ be the vertices of $D\left(Q_{n}\right)$.
Let $G=C_{m} \odot D\left(Q_{n}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=i, 1 \leq i \leq m$
$f\left(v_{i}\right)=m+7 i-6,1 \leq i \leq n$
$f\left(x_{i}\right)=m+7 i-5,1 \leq i \leq n-1$
$f\left(y_{i}\right)=m+7 i-2,1 \leq i \leq n-1$
$f\left(x_{i}^{\prime}\right)=m+7 i-4,1 \leq i \leq n-1$
$f\left(y_{i}^{\prime}\right)=m+7 i-1,1 \leq i \leq n-1$
Then the edge labels are distinct. Hence f is a Geometric mean labeling of G.

Example2.14: The labeling pattern of $C_{7} \odot D\left(Q_{5}\right)$ is given below.

Figure-7
Theorem2.15: $\left(C_{m} \odot K_{1}\right) \cup D\left(Q_{n}\right)$ is a Geometric Mean graph.

Proof: Let $u_{1} u_{2} \ldots u_{m} u_{1}$ be the cycle C_{m}. Let v_{i} be the vertex of K_{1} which is attached to the vertex $u_{i}, 1 \leq i \leq m$ of the cycle C_{m}. Let $w_{i}, x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}$ be the vertices of $D\left(Q_{n}\right)$. Let $G=\left(C_{m} \odot K_{1}\right) \cup D\left(Q_{n}\right)$.

Define a function $f: V(G) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq 2$
$f\left(u_{i}\right)=2 i, 3 \leq i \leq m$
$f\left(v_{i}\right)=2 i, 1 \leq i \leq 2$
$f\left(v_{i}\right)=2 i-1,3 \leq i \leq m$
$f\left(w_{i}\right)=2 m+7 i-6,1 \leq i \leq n$
$f\left(x_{i}\right)=2 m+7 i-5,1 \leq i \leq n-1$
$f\left(y_{i}\right)=2 m+7 i-2,1 \leq i \leq n-1$
$f\left(x_{i}^{\prime}\right)=2 m+7 i-4,1 \leq i \leq n-1$
$f\left(y_{i}^{\prime}\right)=2 m+7 i-1,1 \leq i \leq n-1$
Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.16: The labeling pattern of $\left(C_{6} \odot K_{1}\right) \cup D\left(Q_{5}\right)$ is given below.

Figure-8

REFERENCES

1. Gallian. J.A, 2012, A dynamic Survey of graph labeling. The electronic Journal of Combinatories17 \# DS6. Harary.F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.
2. S. Somasundaram, P. Vidyarani and R. Ponraj "Geometric Mean Labeling of Graphs", Bullettin of Pure and Applied Sciences. 30E (2) (2011), page 153-160.
3. Sandhya.S.S, Somasundaram.S, "Geometric Mean Labeling of Disconnected Graphs" Future Prospects in Multi Disciplinary Research. ISBN 978-81-910747-7-2 page no: 134 to 136.
4. S. Somasundaram. S.S. Sandhya, S.P Viji, "Some New Results in Geometric Mean Graphs" Kanyakumari Academy of Arts and Science. ISBN 978-93-81658-10-9 Vol. 3 page 13-17.
5. S. Somasundaram. S.S. Sandhya, S.P Viji, "A Note on Geometric Mean Graphs", International Journal of Mathematical Archive- 5(10) (2014), 1-8 ISSN 2229-5046.
6. S. Somasundaram. S.S. Sandhya, S.P Viji, "Few Results on Geometric Meam Graphs", International Journal of Mathematical Trends \& Technology. ISSN 2331-5373 Vol. 16 No. 1 (2014).
7. S. Somasundaram. S.S. Sandhya, S.P Viji, "On Geometric Mean Graphs", communicated to International Journal of Mathematical Forum.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

