International Journal of Mathematical Archive-6(6), 2015, 227-233

GEOMETRIC MEAN LABELING OF SOME NEW DISCONNECTED GRAPHS

¹S. SOMASUNDARAM, ²S. S. SANDHYA, ³S. P. VIJI*

¹Department of Mathematics, M. S. University, Tirunelveli-627012, India.

²Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai-629003, India.

³Department of Mathematics, K. N. S. K. College of Engineering, Therekalputhoor–629004, India.

(Received On: 09-06-15; Revised & Accepted On: 30-06-15)

ABSTRACT

A Graph G = (V, E) with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in V$ with distinct labels f(x) from 1, 2, ..., q+1 is such a way that when each edge e = uv is labeled with $f(e = u) = \left[\sqrt{f(u)f(v)}\right]$ (or) $\left[\sqrt{f(u)f(v)}\right]$ then the resulting edge labels are distinct. In this case f is called Geometric mean labeling of G. In this paper we prove that some disconnected graphs are Geometric Mean graphs.

Key Words: Graph, Geometric Mean labeling, Path, Cycle, Comb, Triangular Snake, Quadrilateral Snake.

1. INTRODUCTION

The graph considered here are simple, finite, connected and undirected graph. Let V(G) denote the vertex set and E(G) denote the edge set of G. For a detailed survey of graph labeling we refer to Gallain [1]. For all other standard terminology and notations we follow Harary [2]. S. Somasundaram and P. Vidyarani introduced the concept of Geometric Mean labeling of graphs in [3] and studied their behavior in [4], [5], [6] and [7]. In this paper we investigate the Geometric mean labeling behavior of some disconnected graphs. The following definitions are useful for our present study.

Definition1.1: A Graph G = (V, E) with p vertices and q edges is said to be a Geometric mean graph if is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2....q+1 is such a way that when each edge e = uv is labeled with $f(e = u) = \left[\sqrt{f(u)f(v)}\right]$ (or) $\left[\sqrt{f(u)f(v)}\right]$, then the resulting edge labels are distinct. In this case f is called *Geometric mean labeling* of G.

Definition1.2: The *union* of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1 U G_2$ with vertex set $V = V_1 U V_2$ and the edge set $E = E_1 U E_2$.

Definition1.3: The *Corona* of two graphs G_1 and G_2 is the graph $G = G_1 \odot G_2$ formed by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2 .

Definition1.4: A *Triangular Snake* T_n , is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} to a new vertex $v_i, 1 \le i \le n-1$.

Definition1.5: A *Double Triangular Snake* $D(T_n)$ consists of two Triangular Snakes that have a common path.

Definition1.6: A Quadrilateral Snake Q_n is obtained from a path u_1, u_2, \dots, u_n by joining u_i and u_{i+1} to two new vertices v_i and w_i respectively and then joining v_i and $w_i, 1 \le i \le n-1$.

Definition1.7: A *Double Quadrilateral Snake* $D(Q_n)$ consists of two Quadrilateral Snakes that have a common path.

Theorem1.8: Triangular Snake T_n is a Geometric Mean graph.

Theorem1.9: Double Triangular Snake $D(T_n)$ is a Geometric Mean graph.

Theorem1.10: Quadrilateral Snake Q_n is a Geometric Mean graph.

Theorem1.11: Double Quadrilateral Snake $D(Q_n)$ is a Geometric Mean graph.

2. MAIN RESULTS

Theorem2.1: $G_m \bigcup T_n$ is a Geometric Mean graph.

Proof: Let $u_1u_2...u_mu_1$ be the cycle C_m . Let $v_1v_2...v_n$ be the path P_n . Let T_n be the triangular snake obtained from the path P_n by joining v_i and v_{i+1} to new vertex $w_i, 1 \le i \le n-1$. Let $G = C_m \bigcup T_n$. Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by

$$f(u_i) = i, 1 \le i \le m$$

$$f(v_i) = m + 3i - 2, 1 \le i \le n$$

$$f(w_i) = m + 3i - 1, 1 \le i \le n - 1$$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.2: Geometric Mean labeling of $C_7 \bigcup T_6$ is given below.

Theorem2.3: $(C_m \odot K_1) \bigcup T_n$ is a Geometric Mean graph.

Proof: Let $u_1 u_2 ... u_m u_1$ be the cycle C_m . Let v_i be the vertex of K_1 which is attached to the vertex $u_i, 1 \le i \le m$ of the cycle C_m . Let $w_1 w_2 \dots w_n$ be the path P_n Let T_n be the triangular snake obtained from P_n by joining w_i and W_{i+1} to a new vertex $x_i, 1 \le i \le n-1$. Let $G = (C_m \odot K_1) \bigcup T_n$. Define a function $f: V(G) \rightarrow \{1, 2, ..., q+1\}$ by $f(u_i) = 2i - 1, 1 \le i \le 2$ $f(u_i) = 2i, 3 \le i \le m$ © 2015, IJMA. All Rights Reserved

 $f(v_i) = 2i, 1 \le i \le 2$ $f(v_i) = 2i - 1, 3 \le i \le m$ $f(w_i) = 2m + 3i - 2, 1 \le i \le n$ $f(x_i) = 2m + 3i - 1, 1 \le i \le n - 2$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.4: Geometric Mean labeling of $(C_7 \odot K_1) \cup T_5$ is given below.

Theorem2.5: $C_m \odot D(T_n)$ is a Geometric Mean graph.

Proof: Let $u_1u_2...u_mu_1$ be the cycle C_m . Let $v_1v_2...v_n$ be the path P_n . The double triangular snake $D(T_n)$ is obtained from the path P_n by joining v_i and v_{i+1} to two new vertices $\mathfrak{X}_{\bar{\mathfrak{s}}}$ and $y_i, 1 \le i \le n-1$. Let $G = C_m \odot D(T_n)$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by $f(u_i) = i, 1 \le i \le m$ $f(v_i) = m + 5i - 4, 1 \le i \le n$ $f(x_i) = m + 5i - 3, 1 \le i \le n - 1$ $f(y_i) = m + 5i - 2, 1 \le i \le n - 1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.6: Geometric Mean labeling of $C_7 \odot D(T_5)$ is given below.

Theorem2.7: $(C_m \odot K_1) \cup (D(T_n))$ is a Geometric Mean graph.

Proof: Let the cycle C_m be $u_1u_2...u_mu_1$. Let \mathbb{V}_i be the vertex of K_1 which is attached to the vertex $u_i, 1 \le i \le m$ of the cycle C_m . Let $w_1w_2...w_n$ be the path P_n . The double triangular snake $D(T_n)$ is obtained by joining w_i and w_{i+1} to two new vertices \mathbb{X}_i and $y_i, 1 \le i \le n-1$. Let $G = (C_m \odot K_1) \cup (D(T_n))$.

Define a function $f: V(G) \to \{1, 2, ..., q+1\}$ by $f(u_i) = 2i - 1, 1 \le i \le 2$ $f(u_i) = 2i, 3 \le i \le m$ $f(v_i) = 2i, 1 \le i \le 2$ $f(v_i) = 2i - 1, 3 \le i \le m$ $f(w_i) = 2m + 5i - 4, 1 \le i \le n$ $f(x_i) = 2m + 5i - 3, 1 \le i \le n - 1$ $f(y_i) = 2m + 5i - 2, 1 \le i \le n - 1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.8: Geometric Mean labeling of $(C_6 \odot K_1) \cup (D(T_5))$ is given below.

Figure-4

Theorem2.9: $C_m \bigcup Q_n$ is a Geometric Mean graph.

Proof: Let $u_1u_2...u_mu_1$ be the cycle C_m . Let $v_1v_2...v_n$ be the path P_n . Let Q_n be the Quadrilateral snake obtained by joining v_i and v_{i+1} to two new vertices \mathbf{x}_i and $\mathbf{y}_i, 1 \le i \le n-1$ respectively and then joining \mathbf{x}_i and \mathbf{y}_i . Let $G = C_m \bigcup Q_n$.

Define a function $f: V(G) \to \{1, 2, ..., q+1\}$ by $f(u_i) = i, 1 \le i \le m$ $f(v_i) = m + 4i - 3, 1 \le i \le n$ $f(x_i) = m + 4i - 2, 1 \le i \le n - 1$ $f(y_i) = m + 4i - 1, 1 \le i \le n - 1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

Example2.10: The labeling pattern of $C_7 \bigcup Q_5$ is given below.

Theorem2.11: $(C_m \odot K_1) \cup (Q_n)$ is a Geometric Mean graph.

Proof: Let $u_1u_2...u_mu_1$ be the cycle C_m . Let \mathbf{v}_i be the vertex of K_1 which is attached to the vertex $u_i, 1 \le i \le m$ of the cycle C_m . Let $w_1w_2...w_n$ be the path P_n . Let \mathbf{x}_i and $\mathbf{y}_i, 1 \le i \le n-1$ be the vertices which are joined to w_i and w_{i+1} respectively. Join \mathbf{x}_i and \mathbf{y}_i . Let $G = (C_m \odot K_1) \cup (Q_n)$.

Define a function
$$f: V(G) \to \{1, 2, ..., q+1\}$$
 by
 $f(u_i) = 2i - 1, 1 \le i \le 2$
 $f(u_i) = 2i, 3 \le i \le m$
 $f(v_i) = 2i, 1 \le i \le 2$
 $f(v_i) = 2i - 1, 3 \le i \le m$
 $f(w_i) = 2m + 4i - 3, 1 \le i \le n$
 $f(x_i) = 2m + 4i - 2, 1 \le i \le n - 1$
 $f(y_i) = 2m + 4i - 1, 1 \le i \le n - 1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G..

Example2.12: The labeling pattern of $(C_7 \odot K_1) \cup (Q_5)$ is given below.

Figure-6

Theorem2.13: $C_m \odot D(Q_n)$ is a Geometric Mean graph.

Proof: Let $u_1u_2...u_mu_1$ be the cycle C_m . Let $v_i, x_i, y_i, x_i', y_i'$ be the vertices of $D(Q_n)$. Let $G = C_m \odot D(Q_n)$.

© 2015, IJMA. All Rights Reserved

Define a function $f: V(G) \to \{1, 2, ..., q+1\}$ by $f(u_i) = i, 1 \le i \le m$ $f(v_i) = m + 7i - 6, 1 \le i \le n$ $f(x_i) = m + 7i - 5, 1 \le i \le n - 1$ $f(y_i) = m + 7i - 2, 1 \le i \le n - 1$ $f(x_i) = m + 7i - 4, 1 \le i \le n - 1$ $f(y_i) = m + 7i - 1, 1 \le i \le n - 1$

Then the edge labels are distinct. Hence f is a Geometric mean labeling of G.

Example2.14: The labeling pattern of $C_7 \odot D(Q_5)$ is given below.

Theorem2.15: $(C_m \odot K_1) \cup D(Q_n)$ is a Geometric Mean graph.

Proof: Let $u_1 u_2 \dots u_m u_1$ be the cycle C_m . Let \mathcal{V}_i be the vertex of K_1 which is attached to the vertex $u_i, 1 \le i \le m$ of the cycle C_m . Let $w_i, x_i, y_i, x'_i, y'_i$ be the vertices of $D(Q_n)$. Let $G = (C_m \odot K_1) \bigcup D(Q_n)$.

Define a function $f: V(G) \rightarrow \{1, 2, \dots, q+1\}$ by $f(u_i) = 2i - 1, 1 \le i \le 2$

 $f(u_i) = 2i, 3 \le i \le m$ $f(u_i) = 2i, 3 \le i \le m$ $f(v_i) = 2i, 1 \le i \le 2$ $f(v_i) = 2i - 1, 3 \le i \le m$ $f(w_i) = 2m + 7i - 6, 1 \le i \le n$ $f(x_i) = 2m + 7i - 5, 1 \le i \le n - 1$ $f(y_i) = 2m + 7i - 2, 1 \le i \le n - 1$ $f(x_i) = 2m + 7i - 4, 1 \le i \le n - 1$ $f(y_i) = 2m + 7i - 4, 1 \le i \le n - 1$ $f(y_i) = 2m + 7i - 1, 1 \le i \le n - 1$

Then the edge labels are distinct. Hence f is a Geometric Mean labeling of G.

¹S. Somasundaram, ²S. S. Sandhya, ³S. P. Viji* / Geometric Mean Labeling of Some New Disconnected Graphs / IJMA- 6(6), June-2015.

Example2.16: The labeling pattern of $(C_6 \odot K_1) \cup D(Q_5)$ is given below.

REFERENCES

- 1. Gallian. J.A, 2012, A dynamic Survey of graph labeling. The electronic Journal of Combinatories 17 # DS6. Harary.F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.
- 2. S. Somasundaram, P. Vidyarani and R. Ponraj "Geometric Mean Labeling of Graphs", Bullettin of Pure and Applied Sciences. 30E (2) (2011), page 153-160.
- 3. Sandhya.S.S, Somasundaram.S, "Geometric Mean Labeling of Disconnected Graphs" Future Prospects in Multi Disciplinary Research. ISBN 978-81-910747-7-2 page no: 134 to 136.
- 4. S. Somasundaram. S.S. Sandhya, S.P Viji, "Some New Results in Geometric Mean Graphs" Kanyakumari Academy of Arts and Science. ISBN 978-93-81658-10-9 Vol. 3 page 13-17.
- 5. S. Somasundaram. S.S. Sandhya, S.P Viji, "A Note on Geometric Mean Graphs", International Journal of Mathematical Archive- 5(10) (2014), 1-8 ISSN 2229-5046.
- 6. S. Somasundaram. S.S. Sandhya, S.P Viji, "Few Results on Geometric Meam Graphs", International Journal of Mathematical Trends & Technology. ISSN 2331-5373 Vol. 16 No. 1 (2014).
- 7. S. Somasundaram. S.S. Sandhya, S.P Viji, "On Geometric Mean Graphs", communicated to International Journal of Mathematical Forum.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]