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ABSTRACT 
The effect of local thermal non-equilibrium on double diffusive convection in a rectangular channel filled with 
anisotropic porous media is considered, when the fluid and solid phases are not in local thermal equilibrium. Walls of 
the channels are non-uniformly heated to establish a linear temperature gradient and they are assumed to be 
impermeable and perfectly conducting. Darcy model with anisotropy permeability is used to describe the flow and a 
two field model is used for energy equation each representing fluid and solid phase separately. The critical Rayleigh 
number for the onset of convection using linear stability analysis obtained numerically as a function of mechanical 
anisotropy parameters, interphase heat transfer coefficient, solutal Rayleigh number, aspect ratio and results are 
investigated. 
 
 
1.1 INTRODUCTION 
 
The problem of double diffusive convection in porous media has attracted considerable interest because of its wide 
range of applications, from the solidification of binary mixture to the migration of solutes in water-saturated soils. 
Nilsen and Storesletton [1] presented an analytical study of two dimensional natural convection in horizontal 
rectangular channels filled with an isotropic porous medium. Rees and Pop [2] have investigated vertical free 
convection boundary layer flow in a porous medium using a thermal non-equilibrium model. Banu and Rees [3] have 
discussed thermal non-equilibrium effect on free convective flows in a porous medium. Free convection in a square 
porous cavity using a thermal non equilibrium model is studied by Baytas and Pop [4]. The problem of two-
dimensional steady mixed convection in a vertical porous layer using thermal non-equilibrium model is investigated 
numerically by Saeid [5]. Straughan [6] has considered a problem of thermal convection in a fluid saturated porous 
layer using a global nonlinear stability analysis with a thermal non-equilibrium model. Postelnicu and Rees [7] have 
studied the onset of Darcy-Brinkmann convection in a porous layer using a thermal non-equilibrium model. Malashetty 
et al., [8, 9] have studied the effect of thermal non-equilibrium on the onset of convection in a porous layer using the 
Lapwood-Brinkman model and also including anisotropy in permeability and thermal diffusivity in a densely packed 
porous layer. Balagondar and Pranesha Setty [10] have investigated natural convection in anisotropic porous 
rectangular channels using a thermal non-equilibrium model. 
 
In this paper we study the local thermal non-equilibrium on double diffusive convection in a rectangular channel filled 
with anisotropic porous media, when the fluid and solid phases are not in local thermal equilibrium.  Walls of the 
channels are non-uniformly heated to establish a linear temperature gradient and they are assumed to be impermeable 
and perfectly conducting.  Darcy model with anisotropy permeability is used to describe the flow and a two field model 
is used for energy equation each representing fluid and solid phase separately. The critical Rayleigh number for the 
onset of convection using linear stability analysis obtained numerically as a function of mechanical anisotropy 
parameters, interphase heat transfer coefficient, solutal Rayleigh number, aspect ratio and results are discussed. 
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1.2 MATHEMATICAL FORMULATION 
 
We consider two-dimensional free convection in a horizontal porous media heated from below. The lower surface is 
held at temperature lT  while upper surface uT ( )l uT T T∆ = − and concentration gradient l uS S S∆ = − where 

l uT T>  and l uS S> are maintained between the lower and upper surfaces. We assume that the solid and fluid phases of 
the medium are not in local thermal equilibrium and use a two field model for temperatures with anisotropy in porous 
media.  The channel is rectangular with height‘d’ and width ‘a’, we choose a cartesian co-ordinate system with z-axis is 
in the vertical direction and x-axis is the horizontal direction perpendicular to the channel axis.  The horizontal channel 

walls are z = 0 and z = d and the vertical walls at 
2
ax = −  and

2
ax = .  On assuming that the Prandtl-Darcy number 

is large, so that inertia term may be neglected and invoking Boussinesq approximation, the governing equations are  
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Since the flow is two-dimensional, we introduce the stream function ψ as: 
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We also define non dimensional variables by 
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Using the equation (1.2.8) and (1.2.9) into equations (1.2.1)-(1.2.7) the non-dimensional equations after dropping the * 
we obtained in the form: 
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Eliminating pressure gradient from the equations (1.2.10) and (1.2.11), we get 
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The asterisks have been dropped for simplicity 
 
1.3 LINEAR STABILITY ANALYSIS AND NUMERICAL SOLUTION 
 
The linearised forms of the governing equations are 
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The boundary conditions used are  
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The onset of stationary convection is described by the linear version of equations (1.3.1)-(1.3.4) and the solution for     
ψ, θ , φand S is now taken as single mode component as  
 

zxD πψ sin)(= ,  zxG πθ sin)(= , zxI πφ sin)(= ,  zxQS πsin)(=                                       (1.3.6) 
 
In terms of D, G, I and Q the boundary conditions are 
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Using equation (1.3.6) in (1.3.1) to (1.3.4), we get      
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1.4 Anisotropic case: sf ηηξ ≠≠  
 
By eliminating )(and)(),( xQxIxD  between (1.3.7)-(1.3.10), we get a eighth order differential equation in the form:           
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The general solution of equation (1.4.1) is 
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where ic ’s are arbitrary  constants and smi '  are roots of the  auxiliary equation of (1.4.3). Since the auxiliary 
equation involves fourth order in D2, we can put  
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For a non-trivial solution of the system of equations (1.4.1), (1.4.2) and (1.4.3) we require: 
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The left hand side of (1.4.10) may be viewed as a function of cRa , say )( cRaf , with aR depending on 

RsLeH sf and,,,,, ξγηη  hence equation (1.4.10) can be written as 0)( =cRaf . Using Newton-Raphson 

method for various values of 
Ssf RLeH and,,,,, γηηξ and cRa  can be now calculated numerically using the 

formula.  
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RESULTS AND DISCUSSION 
 
Double diffusive convection in a horizontal fluid-saturated porous medium is carried out by considering a thermal non-
equilibrium model.  The expression for critical Rayleigh number is derived numerically by using Newton-Raphson 
method.  The effect of solute diffusion and thermal non equilibrium on the stability of the system is investigated.  It is 
observed that for very small and large values of H the stability criterion is found to be independent of H.  However, the 
effect of H on the stability of the system is significant only for intermediate values of H.  The physical reason for this is 
that when H→0 there is almost no transfer of heat between the fluid and solid phases and the prosperities of solid phase 
have no significant influence on the onset of criterion.  When H→∞ the fluid and solid phase have almost equal 
temperatures and therefore may be treated as single phase (i.e. LTE model).  Between these two extremes H gives rise 
to a strong non-equilibrium effect. 
 
In figure 1 we show the effect of mechanical anisotropy parameter ξ  on Rayleigh number cRa  for a fixed value of 

other parameters.  From this figure it is evident that increase in the value of ξ  decreases cRa and thus advances the 
onset of convection. 
 
The variation of critical Rayleigh number with inter-phase heat transfer coefficient H for different parameter values is 
shown in figs 2 - 6.  These figures indicate that the critical Rayleigh number increases from the LTE values when H is 
small to an LTNE values when H is large.  Thus, the inter-phase heat transfer coefficient makes the system more stable 
for its intermediate values. Fig 2 indicates the effect of solute Rayleigh number on the critical Rayleigh number. For 
small values of solute Rayleigh number (Rs ≤ 10) the convection sets is stationary mode.  As the value of cRa  is 
increased further the motion become significant and the convection sets. The critical Rayleigh number for stationary 
convection is found to increase with the solute Rayleigh number, indicating that the presence of additional diffusing 
component stabilizes the system towards the stationary convection. 
 
Figure 3 displays the variation of the critical Rayleigh number with H for different values of the Lewis number.  This 
figure indicates that the increasing values of Le, the critical Rayleigh number increases.  The Lewis number has very 
negligible effect on the convection.  
 
The variation of the critical Rayleigh number with H for different values of porosity modified conductivity ratio γ is 
shown in figure 4 when all other parameters are fixed.  From this figure it is observed that for small H, cRa  is 
independent of γ and is close to the LTE case.  Since small value of H, there is no significant transfer of heat between 
the phases and the onset of criterion is not affected by the properties of the solid phase.  For large values of H, through 
the stability criterion is independent of H, the condition for the onset of convection is based on the mean properties of 
the medium, and therefore the critical Rayleigh number is independent of γ. 
 
The variation of critical Rayleigh number cRa with H for different values fη  as shown in the figure 5 We find that an 

increase in the value of 
fη  increases in the value of cRa  indicating that the effect of increasing the thermal anisotropy 

parameter is to delay the onset of convection.   
 
Figure 6 shows the variation of critical Rayleigh number with H for different values of thermal anisotropy 
parameter Sη . Its effect is found to be similar to that of fη . However, for small values of H, cRa is found to be 

independent of Sη . For increasing values of parameter Sη  the convection is stabilized. The effect of Sη at small values 
of the scaled inter-phase heat transfer coefficient is negligible. 
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