(gsp)** - CLOSED SETS IN TOPOLOGICAL SPACES

PUNITHA THARANI
Associate Professor, St. Mary’s College, Tuticorin.

PRISCILLA PACIFICA*
Assistant Professor, St. Mary’s College, Tuticorin.

(Received On: 23-06-15; Revised & Accepted On: 28-07-15)

ABSTRACT
In this paper we introduce a new class of sets called (gsp)**-closed sets in topological spaces which is properly placed in between the class of closed sets and gsp-closed sets. As an application, we introduce two new spaces namely, T_{gsp}** space, a_{T_{gsp}}** space. Further, (gsp)**-continuous, (gsp)**-irresolute mappings are also introduced and investigated.

Key words: (gsp)**closed set, (gsp)**-continuous map, (gsp)**-irresolute map, T_{gsp}**, a_{T_{gsp}}**-spaces.

1. INTRODUCTION

2. PRILIMINARIES
Throughout this paper (X,τ), (Y,σ) represent non-empty topological spaces of which no separation axioms are assumed unless otherwise stated. For a subset A of a space (X,τ), cl(A) and int(A) denote the closure and the interior of A respectively. The class of all closed subsets of a space (X,τ) is denoted by C(X,τ). The smallest semi-closed (resp.pre-closed and α-closed) set containing a subset A of (X,τ) is called the semi-closure (resp.pre-closure and α-closure) of A and is denoted by scl(A)(resp.pcl(A) and αcl(A)).

Definition 2.1: A subset A of a topological space (X,τ) is called
1. a pre-open set [14] if A ⊆ int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ A.
2. a semi-open set [12] if A ⊆ cl(int(A)) and a semi-closed set if cl(int(A)) ⊆ A.
3. a semi-preopen set [1] if A ⊆ cl(int(cl(A))) and a semi-preclosed set [1] if int(cl(int(A))) ⊆ A.
4. an α-open set [16] if A ⊆ cl(int(A)) and an α-closed set [16] if cl(int(cl(A)) ⊆ A.
5. a regular-open set [14] if int(cl(A) = A and regular-closed set [14] if A = int(cl(A)).

Definition 2.2: A subset A of a topological space (X,τ) is called
1. a generalized closed set (briefly g-closed) [1] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).
2. generalized semi-closed set (briefly gs-closed) [3] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).
3. an α-generalized closed set (briefly gα-closed) [19] if αcl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).
4. a generalized semi pre-closed set (briefly gsp-closed) [9] if sp cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).
5. a regular generalized closed set (briefly rg-closed) [17] if cl(A) ⊆ U whenever A ⊆ U and U is regular open in (X,τ).
(6) a generalized pre-closed set (briefly gp-closed) [13] if \(p \text{cl} (A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X,\tau)\).
(7) a generalized pre-regular-closed set (briefly gpr-closed)[10] if \(p \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is regular open in \((X,\tau)\).
(8) a g* -closed set \([18]\) if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is g-open in \((X,\tau)\).
(9) a wg-closed set \([16]\) if \(\text{cl}(\text{int}(A)) \) whenever \(A \subseteq U \) and \(U \) is open in \((X,\tau)\).
(10) a (gsp)*-closed set \([20]\) if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is gsp-open in \((X,\tau)\).

Definition 2.3: A function \(f : (X,\tau) \rightarrow (Y,\sigma) \) is called
(1) g-continuous \([4]\) if \(f^{-1}(V) \) is a g-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(2) \(\alpha g \)-continuous \([10]\) if \(f^{-1}(V) \) is an \(\alpha g \)-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(3) gs-closed \([7]\) if \(f^{-1}(V) \) is a gs-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(4) gsp-closed \([9]\) if \(f^{-1}(V) \) is a gsp-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(5) rg-continuous \([17]\) if \(f^{-1}(V) \) is a rg-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(6) gp-continuous \([2]\) if \(f^{-1}(V) \) is a gp-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(7) gpr-continuous \([10]\) if \(f^{-1}(V) \) is a gpr-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(8) gc*-closed \([18]\) if \(f^{-1}(V) \) is a gc*-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(9) gsp-closed \([16]\) if \(f^{-1}(V) \) is a gsp-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).
(10) \((gsp)^* \)-closed \([20]\) if \(f^{-1}(V) \) is an \((gsp)^* \)-closed set of \((X,\tau)\) for every closed set \(V \) of \((Y,\sigma)\).

3. Basic properties of \((gsp)^*\)-closed sets

We introduce the following definition.

Definition 3.1: A subset \(A \) of \((X,\tau)\) is said to be \((gsp)^*\)-closed if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \((gsp)^*\)-open in \(X \).

Proposition 3.2: Every closed set is \((gsp)^*\)-closed.

Proof: Let \(A \) be closed set, Then \(\text{cl}(A) = A \).

Let \(A \subseteq U \) and \(U \) be \((gsp)^*\)-open.

Then \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \((gsp)^*\)-open.

Therefore \(A \) is \((gsp)^*\)-closed.

Proposition 3.3: Every \((gsp)^*\)-closed set is gs-closed.

Proof: Let \(A \) be a \((gsp)^*\)-closed set. Let \(A \subseteq U \) and \(U \) be open. Then \(\text{cl}(A) \subseteq U \) since \(U \) is \((gsp)^*\)-open and \(A \) is \((gsp)^*\)-closed. \(\text{sc}(A) \subseteq \text{cl}(A) \subseteq U \). Hence \(A \) is gs-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.4: Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{a, b\}\} \). Then \(A = \{b\} \) is gs-closed but not \((gsp)^*\)-closed in \((X,\tau)\).

Proposition 3.5: Every \((gsp)^*\)-closed set is \(\alpha g \)-closed, but not conversely.

Proof: Let \(A \) be a \((gsp)^*\)-closed set. \(\text{cl}(A) \subseteq U \) since \(U \) is \((gsp)^*\)-open and \(A \) is \((gsp)^*\)-closed. \(\alpha \text{cl}(A) \subseteq \text{cl}(A) \subseteq U \). Hence \(A \) is \(\alpha g \)-closed.

Example 3.6: Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{a, b\}\} \). Then \(A = \{b\} \) is \(\alpha g \)-closed but not \((gsp)^*\)-closed in \((X,\tau)\).
Proposition 3.7: Every (gsp)**-closed set is gsp-closed, but not conversely.

Proof: Let A be a (gsp)**-closed set. Let $A \subseteq U$ and U be open. Then $\text{cl}(A) \subseteq U$ since U is (gsp)*-open and A is (gsp)**-closed. $\text{spcl}(A) \subseteq \text{cl}(A) \subseteq U$. Hence A is gsp-closed.

Example 3.8: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $A = \{b\}$ is gsp-closed but not (gsp)**-closed in (X, τ).

Proposition 3.9: Every (gsp)**-closed set is rg-closed.

Proof: Let A be a (gsp)**-closed set. Let $A \subseteq U$ and U be regular open. Then $A \subseteq U$ and U is (gsp)*-open and $\text{cl}(A) \subseteq U$, since A is (gsp)**-closed. Hence A is rg-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.10: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $A = \{a\}$ is rg-closed but not (gsp)**-closed in (X, τ).

Proposition 3.11: Every (gsp)**-closed set is gp-closed, but not conversely.

Proof: Let A be a (gsp)**-closed set. Let $A \subseteq U$ and U be open. Then $\text{cl}(A) \subseteq U$ since U is (gsp)*-open and A is (gsp)**-closed. $\text{pcl}(A) \subseteq \text{cl}(A) \subseteq U$. Hence A is gp-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.12: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $A = \{b\}$ is gp-closed but not (gsp)**-closed in (X, τ).

Proposition 3.13: Every (gsp)**-closed set is gpr-closed, but not conversely.

Proof: Let A be a (gsp)**-closed set. Let $A \subseteq U$ and U be regular open. Then $A \subseteq U$ and U is (gsp)*-open and $\text{cl}(A) \subseteq U$, since A is (gsp)**-closed. $\text{pcl}(A) \subseteq \text{cl}(A) \subseteq U$. Hence A is gpr-closed.

Example 3.14: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $A = \{a\}$ is gpr-closed but not (gsp)**-closed in (X, τ).

Proposition 3.15: Every (gsp)**-closed set is wg-closed, but not conversely.

Proof: Let A be a (gsp)**-closed set. Let $A \subseteq U$ and U be open. Then U is (gsp)*-open and $\text{cl}(A) \subseteq U$, since A is (gsp)**-closed. $\text{cl}(\text{int}(A)) \subseteq \text{cl}(A) \subseteq U$. Hence A is wg-closed.

Example 3.16: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $A = \{b\}$ is wg-closed but not (gsp)**-closed in (X, τ).

Proposition 3.17: If A and B are (gsp)**-closed sets then $A \cup B$ is also (gsp)**-closed.

Proof: follows from the fact that $\text{cl}(A \cup B) = \text{cl}(A) \cup \text{cl}(B)$.

Proposition 3.18: If A is (gsp)**-closed set of (X, τ) such that $A \subseteq B \subseteq \text{cl}(A)$, then B is also a (gsp)**-closed set of (X, τ).

Proof: Let U be the (gsp)*-open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$ where U is (gsp)*-open. Since A is (gsp)**-closed, $\text{cl}(A) \subseteq U$. Hence B is (gsp)**-closed.

Proposition 3.19: If A is (gsp)**-closed set of (X, τ), then $\text{cl}(A) \setminus A$ does not contain any non-empty (gsp)*-closed set.

Proof: Let F be (gsp)*-closed set of (X, τ) such that $F \subseteq \text{cl}(A) \setminus A$. Then $A \subseteq X \setminus F$. Since A is (gsp)**-closed $\text{cl}(A) \subseteq X \setminus F$. This implies $F \subseteq X \setminus \text{cl}(A)$. Hence $F \subseteq (X \setminus \text{cl}(A)) \cap (\text{cl}(A) \setminus A) = \emptyset$. Hence $\text{cl}(A) \setminus A$ does not contain any non-empty (gsp)*-closed set.

Proposition 3.20: If A is both (gsp)*-open and (gsp)**-closed then A is closed.
The above results can be represented in the following figure.

![Diagram showing relationships between various types of closed sets in topological spaces](image)

Where A → B represents A implies B and B need not imply A.

4. (gsp)**-continuous and (gsp)**-irresolute maps

We introduce the following definitions:

Definition 4.1: A function \(f: (X, \tau) \to (Y, \sigma) \) is called (gsp)**-continuous if \(f^{-1}(V) \) is a (gsp)**-closed set in \((X, \tau) \) for every closed set \(V \) of \((Y, \sigma) \).

Definition 4.2: A function \(f: (X, \tau) \to (Y, \sigma) \) is called (gsp)**-irresolute if \(f^{-1}(V) \) is a (gsp)**-closed set in \((X, \tau) \) for every (gsp)**-closed set \(V \) of \((Y, \sigma) \).

Theorem 4.3: Every continuous map is (gsp)**-continuous.

Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be a continuous map. Let \(F \) be a closed set in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(F) \) is closed in \((X, \tau) \). Therefore \(f \) is (gsp)**-continuous.

Theorem 4.4: Every (gsp)**-continuous map is (1) gs-continuous (2) \(\alpha g \)-continuous (3) gsp-continuous (4) rg-continuous (5) gp-continuous (6) gpr-continuous and (7) wg-continuous but not conversely.

Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be (gsp)**-continuous and let \(F \) be a closed set of \((Y, \sigma) \). Since \(f \) is (gsp)**-continuous, \(f^{-1}(F) \) is (gsp)**-closed in \((X, \tau) \), then \(f^{-1}(F) \) is gs- closed, \(\alpha g \)-closed, gsp- closed, gp- closed, gpr- closed and wg- closed. Hence \(f \) is gs-continuous, \(\alpha g \)-continuous, gsp-continuous, rg-continuous, gp-continuous, gpr-continuous and wg-continuous.

Example 4.5: Let \(X = \{a, b, c\} = Y, \tau = \{\varnothing, X, \{a\}, \{a, b\}\}, \sigma = \{\varnothing, Y, \{a, c\}\} \) let \(f: (X, \tau) \to (Y, \sigma) \) be the identity map. The closed sets of \(Y \) are \(\varnothing, Y, \{a, b\} \). \(f^{-1}(\{a, b\}) = \{a, b\} \) is gpr- closed but not (gsp)**-closed and hence \(f \) is gpr-continuous but not (gsp)**-continuous.

Example 4.6: Let \(X = \{a, b, c\} = Y, \tau = \{\varnothing, X, \{a\}, \{a, b\}\}, \sigma = \{\varnothing, Y, \{b\}\} \) let \(f: (X, \tau) \to (Y, \sigma) \) be defined as \(f(a) = c, f(b) = a, f(c) = b \). \(f^{-1}(\{a, c\}) = \{a, b\} \) is gpr- closed in \((X, \tau) \), but not (gsp)**-closed in \((X, \tau) \). Hence \(f \) is gpr-continuous but not (gsp)**-continuous.

Example 4.7: Let \(X = \{a, b, c\} = Y, \tau = \{\varnothing, X, \{a\}, \{a, b\}\}, \sigma = \{\varnothing, Y, \{c\}\} \) let \(f: (X, \tau) \to (Y, \sigma) \) be the identity map. The closed sets of \(Y \) are \(\varnothing, Y, \{a, b\} \). \(f^{-1}(\{a, b\}) = \{a, b\} \) is rg- closed but not (gsp)**-closed and hence \(f \) is rg-continuous but not (gsp)**-continuous.

Theorem 4.8: Every (gsp)**-irresolute is (gsp)**-continuous.

Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be a (gsp)**-irresolute. Let \(V \) be a closed set of \((Y, \sigma) \). Then \(V \) is (gsp)**-closed and \(f^{-1}(V) \) is (gsp)**-closed since \(f \) is a (gsp)**-irresolute. Hence \(f \) is (gsp)**-continuous.
Theorem 4.9: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a $(gsp)^{**}$-irresolute then f is

1. gs-continuous
2. αg-continuous
3. gsp-continuous
4. rg-continuous
5. gp-continuous
6. gpr-continuous and
7. wg-continuous but not conversely.

Proof: Since every $(gsp)^{**}$-irresolute is $(gsp)^{**}$-continuous, f is $(gsp)^{**}$-continuous. Then by theorem 4.4 the result follows.

Example 4.10: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = a, f(b) = c, f(c) = b$. $f^{-1}(\{c\}) = \{b\}$ is gs- closed in (X, τ) and hence f is gs-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{b\})$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

Example 4.11: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = a, f(b) = c, f(c) = b$. $f^{-1}(\{c\}) = \{b\}$ is gp- closed in (X, τ) and hence f is gp-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{b\})$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

Example 4.12: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = b, f(b) = c, f(c) = a$. $f^{-1}(\{c\}) = \{b\}$ is rg- closed in (X, τ) and hence f is rg-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{c\}) = \{b\}$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

Example 4.13: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. $f^{-1}(\{c\}) = \{c\}$ is gsp- closed in (X, τ) and hence f is gsp-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{c\}) = \{c\}$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

Example 4.14: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = a, f(b) = c, f(c) = b$. $f^{-1}(\{c\}) = \{b\}$ is wg- closed in (X, τ) and hence f is wg-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{c\}) = \{b\}$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

Example 4.15: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = b, f(b) = c, f(c) = a$. $f^{-1}(\{c\}) = \{b\}$ is αg-closed in (X, τ) and hence f is αg-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{c\}) = \{b\}$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

Example 4.16: Let $X = \{a, b, c\} = Y, \tau = \{\varphi, X, \{a, b\}, \sigma = \{\varphi, Y, \{a, b\}\}$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined as $f(a) = b, f(b) = c, f(c) = a$. $f^{-1}(\{c\}) = \{b\}$ is gpr- closed in (X, τ) and hence f is gpr-continuous. $(gsp)^{**}$-closed sets of (Y, σ) are $\varphi, Y, \{c\}, \{a, c\}$ and $\{b, c\}$. $f^{-1}(\{c\}) = \{b\}$ is not $(gsp)^{**}$-closed set in (X, τ). Hence f is not a $(gsp)^{**}$-irresolute.

The above results can be represented in the following figure.

Where $A \rightarrow B$ represents A implies B and B need not imply $A.$
5. APPLICATIONS OF (gsp)**-CLOSED SETS

Definition 5.1: A space \((X,\tau)\) is called a \(T^{gsp}\)-space if every (gsp)**-closed set is closed.

Definition 5.2: A space \((X,\tau)\) is called a \(aT^{gsp}\)-space if every \(\alpha g\)-closed set is (gsp)**-closed.

Theorem 5.3: Every \(T_{0}\)-space is \(T^{gsp}\)-space but not conversely.

Proof: Let \((X,\tau)\) be a \(T_{0}\)-space. Let \(A\) be a (gsp)**-closed set. Since every (gsp)**-closed set is gs-closed and hence \(A\) is gs-closed. Since \((X,\tau)\) is a \(T_{0}\)-space, \(A\) is closed. Hence \((X,\tau)\) is \(aT^{gsp}\)-space.

Example 5.4: Let \(X = \{a, b, c\}\) and \(\tau = \{(\varphi, X,\{a\},\{b\},\{a, b\}\}\}. \((X,\tau)\) is a \(T^{gsp}\)-space \(A = \{a\}\) is gs-closed, but it is not closed, and hence it is not a \(T_{0}\)-space. Hence a \(T^{gsp}\)-space need not be a \(T_{0}\)-space.

Theorem 5.5: Every \(T_{b}\)-space is a \(aT^{gsp}\)-space.

Proof: Let \((X,\tau)\) be a \(T_{b}\)-space. Let \(A\) be \(\alpha g\) -closed. Then \(A\) is gs-closed. Since the space is \(T_{b}\)-space, \(A\) is closed and hence \(A\) is (gsp)**-closed. Therefore the space \((X,\tau)\) is a \(aT^{gsp}\)-space.

Example 5.6: Let \(X = \{a, b, c\}\) and \(\tau = \{(\varphi, X,\{a\},\{b\},\{a, b\}\}\}. Here (gsp)**-closed sets are \((\varphi, X,\{a\},\{b\},\{a, c\}\})\) and \(\alpha g\)-closed sets are \((\varphi, X,\{a\},\{b\},\{a, c\}\})\) and the gs-closed sets are \((\varphi, X,\{a\},\{b\},\{c\}\})\). Since every \(\alpha g\)-closed set is (gsp)**-closed the space \((X,\tau)\) is a \(aT^{gsp}\)-space. \(A = \{a\}\) is gs-closed but it is not closed, and hence it is not a \(T_{0}\)-space.

Theorem 5.7: Let \(f: (X,\tau) \to (Y,\sigma)\) be (gsp)**-continuous map and let \((X,\tau)\) be \(aT^{gsp}\)-space then \(f\) is continuous.

Proof: Let \(f: (X,\tau) \to (Y,\sigma)\) be (gsp)**-continuous map. Let \(F\) be a closed set of \((Y,\sigma)\). Since \(f\) is (gsp)**-continuous, \(f^{-1}(F)\) is (gsp)**-closed set in \((X,\tau)\). Since \((X,\tau)\) is a \(T^{gsp}\)-space, \(f^{-1}(F)\) is closed in \((X,\tau)\). Therefore \(f\) is continuous.

Theorem 5.8: Let \(f: (X,\tau) \to (Y,\sigma)\) be \(\alpha g\) -continuous map where \((X,\tau)\) is a \(aT^{gsp}\)-space. Then \(f\) is (gsp)**-continuous.

Proof: Let \(f: (X,\tau) \to (Y,\sigma)\) be an \(\alpha g\) -continuous map. Let \(F\) be a closed set of \((Y,\sigma)\). Since \(f\) is \(\alpha g\)-continuous, \(f^{-1}(F)\) is \(\alpha g\)-closed set in \((X,\tau)\). Since \((X,\tau)\) is a \(aT^{gsp}\)-space, \(f^{-1}(F)\) is (gsp)**-closed in \((X,\tau)\). Therefore \(f\) is (gsp)**-continuous.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

Copyright © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.