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ABSTRACT 
In this paper, we made an attempt to study the algebraic nature of anti Ω-fuzzy subbigroup of a bigroup.  
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INTRODUCTION 
 
In 1965, the fuzzy subset was introduced by L.A.Zadeh [10], after that several researchers explored on the 
generalization of the concept of fuzzy sets. The notion of fuzzy subgroups was introduced by Azriel Rosenfeld [2] and 
Gyu Ihn Chae, Young Sik Park and Chul Hwan Park [3] have introduced and defined a new algebraic structure called 
Ω-bifuzzy subsemigroup. After that A.Solairaju, R.Nagarajan [7, 8, 9] and K.Arjunan, Selvak Kumaraen [6] extend the 
theory to many algebraic structure. N.Palaniappan & K.Arjunan [4] defined a new algebraic structure called anti fuzzy 
ideal. In this paper, we introduce the some theorems in anti Ω-fuzzy subbigroup of a bigroup. 
 
1. PRELIMINARIES 
 
1.1 Definition: A set (G, +, •) with two binary operations +  and •  is called a bigroup if there exist two proper subsets 
G1 and G2 of G such that  

(i) G = G1∪G2  
(ii) (G1, +) is a group  
(iii) (G2, •) is a group. 

 
1.2 Definition: Let X be a non–empty set. A fuzzy subset A of X is a function A: X→ [0, 1].  
 
1.3 Definition: Let G = (G1∪G2, +, •) be a bigroup. Then a fuzzy set A of G is said to be a fuzzy subbigroup of G if 
there exist two fuzzy subsets A1 of G1 and A2 of G2 such that  

(i) A = A1∪A2  
(ii) A1 is a fuzzy subgroup of (G1, +)  
(iii) A2 is a fuzzy subgroup of (G2, •). 

 
1.4 Definition: Let G = (G1∪G2, +, •) be a bigroup and Ω be a nonempty set. The fuzzy subset A: G×Ω→[0, 1] of G is 
said to be a Ω-fuzzy subbigroup of G if there exist two fuzzy subsets A1: G1×Ω→[0, 1] of G1 and A2 : G2×Ω→[0, 1] of 
G2 such that                     
(i) A = A1∪A2  

(ii) A1 is a Ω-fuzzy subgroup of (G1, +)   
(iii) A2 is a Ω-fuzzy subgroup of (G2, •). 
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1.5 Definition: Let G = (G1∪G2, +, •) be a bigroup and Ω be a nonempty set. The fuzzy subset A: G×Ω→[0, 1] of G is 
said to be a anti Ω-fuzzy subbigroup of G if there exist two fuzzy subsets A1: G1×Ω→[0, 1] of G1 and A2 : G2×Ω→    
[0, 1] of G2 such that                    

(i) A = A1∪A2  

(ii) A1 is an anti Ω-fuzzy subgroup of (G1, +)  
(iii) A2 is an anti Ω-fuzzy subgroup of (G2, •). 

 
2. PROPERTIES 
 
2.1 Theorem: If A = M∪N is an anti Ω-fuzzy subbigroup of a bigroup G = E∪F, then µM(−x, q) = µM(x, q),            
µM(x, q) ≥ µM(e, q), µN(x−1, q) = µN(x, q), µN(x, q) ≥ µN(e', q) for all  x, e in E and x, e' in F and q in Ω.  
 
Proof: Let x, e in E and x, e' in F and q in Ω. Now µM(x, q) = µM( (−(−x)), q) ≤ µM(−x, q) ≤ µM(x, q). Therefore     
µM(−x, q) = µM(x, q) for all x in E and q in Ω. And µM(e, q) = µM( x−x, q) ≤ max {µM(x, q), µM(x, q)} = µM(x, q). 
Therefore µM(e, q) ≤ µM(x, q) for all x, e in E and q in Ω. Also µN(x, q) = µN( (x−1 )−1, q) ≤ µN(x−1, q) ≤ µN(x, q). 
Therefore µN(x−1, q) = µN(x, q) for all x in F and q in Ω. And µN(e', q) = µN(xx−1, q) ≤ max{µN(x, q), µN(x−1, q)}=   
µN(x, q). Therefore µN(e', q) ≤ µN(x, q) for all x, e' in F and q in Ω. 
 
2.2 Theorem: If A = M∪N is an anti Ω-fuzzy subbigroup of a bigroup G = E∪F, then 

(i) µM(x−y, q) = µM(e, q) gives µM(x, q) = µM(y, q) for all x, y and e in E and q in Ω 
(ii) µN(xy−1, q) = µN(e', q) gives µN(x, q) = µN(y, q) for all x, y and e' in F and q in Ω. 

 
Proof:  

(i) Let x, y and e in E and q in Ω. Then µM(x, q) = µM(x−y+y, q) ≤ max {µM(x−y, q), µM(y, q)} = max {µM(e, q), 
µM(y, q)}= µM(y, q) = µM(y−x+x, q) ≤ max {µM(y−x, q), µM(x, q)}= max {µM(e, q), µM(x, q)}= µM(x, q). 
Therefore µM(x, q) = µM(y, q) for all x and y in E and q in Ω.  

(ii) Let x, y and e' in F and q in Ω. Then µN(x, q) = µN(xy−1y, q) ≤ max {µN(xy−1, q), µN(y, q)} = max {µN(e', q), 
µN(y, q)}= µN(y, q) = µN(yx−1x, q) ≤ max {µN(yx−1, q), µN(x, q)}= max {µN(e', q),  µN(x, q)}= µN(x, q). 
Therefore µN(x, q) = µN(y, q) for all x and y in F and q in Ω. 

 
2.3 Theorem: If A= M∪N is an anti Ω-fuzzy subbigroup of a bigroup G = E∪F, then                                

(i) H1= {x / x∈E and µM(x, q) = 0} is either empty or a subgroup of E. 
(ii) H2 = {x / x∈F and µN(x, q) = 0} is either empty or a subgroup of F. 
(iii) K = H1 ∪ H2 is either empty or a subbigroup of G. 

 
Proof: If no element satisfies this condition, then H1 and H2 are empty. Also K = H1∪H2 is empty.  

(i) If x and y in H1, then µM(x−y, q) ≤ max {µM(x, q), µM(y, q) }≤ max {0, 0}= 0. Therefore µM(x−y, q) = 0. We 
get x−y in H1. Hence H1 is a subgroup of G1.  

(ii) If x and y in H2, then µN(xy−1, q) ≤ max {µN(x, q), µN(y, q)} = max {0, 0} = 0. Therefore µN( xy−1, q) = 0. We 
get xy−1 in H2. Hence H2 is a subgroup of G2.  

(iii) From (i) and (ii) we get K = H1 ∪ H2 is a subbigroup of G. 
 
2.4 Theorem: If A = M∪N is an anti Ω-fuzzy subbigroup of a bigroup G = E∪F, then  

(i) H1= {x / x∈E and µM(x, q) = µM(e, q)} is a subgroup of E 
(ii) H2 = {x / x∈F and µN(x, q) = µN(e', q)} is a subgroup of F 
(iii) K = H1∪H2 is a subbigroup of G. 

 
Proof:  

(i) Clearly e in H1 so H1 is a non empty. Let x and y be in H1. Then µM(x–y, q) ≤ max {µM(x, q), µM(y, q)}           
= max {µM(e, q), µM(e, q)}= µM(e, q). Therefore µM(x–y, q) ≤ µM(e, q) for all x and y in H1 and q in Ω. We get 
µM( x–y, q) = µM(e, q) for all x and y in H1 and q in Ω. Therefore x–y in H1. Hence H1 is a subgroup of E.  

(ii) Clearly e' in H2 so H2 is a non empty. Let x and y be in H2. Then µN(xy−1, q) ≤ max {µN(x, q), µN(y, q)}           
= max {µN(e', q), µN(e', q)} = µN(e', q). Therefore µN(xy−1, q) ≤ µN(e', q) for all x and y in H2 and q in Ω. We 
get µN( xy−1, q) = µN(e', q) for all x and y in H2 and q in Ω. Therefore xy−1 in H2. Hence H2 is a subgroup of F. 
(iii) From (i) and (ii) we get K = H1 ∪ H2 is a subbigroup of G. 

 
2.5 Theorem: Let A= M∪N be an anti Ω-fuzzy subbigroup of a bigroup G = E∪F. 

(i) If µM(x–y, q) = 0, then µM(x, q) = µM(y, q) for all x and y in E and q in Ω. 
(ii) If µN(xy−1, q) = 0, then µN(x, q) = µN(y, q) for all x and y in F and q in Ω. 
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Proof:  

(i) Let x and y belongs to E and q in Ω. Then µM(x, q) = µM(x–y+y, q) ≤ max {µM(x–y, q), µM(y, q)}                    
= max {0, µM(y, q)} = µM(y, q) = µM(–y, q) = µM(–x+x–y, q) ≤ max { µM(–x, q), µM(x–y, q)}                           
= max {µM(–x, q), 0} = µM(–x, q) = µM(x, q). Therefore µM(x, q) = µM(y, q) for all x and y in E and q in Ω.  

(ii) Let x and y belongs to F and q in Ω. Then µN(x, q) = µN( xy-1y, q) ≤ max {µN(xy-1, q), µN(y, q)}                         
= max{0, µN(y, q)}= µN(y, q) = µN(y-1, q) = µN(x-1xy-1, q) ≤ max{ µN(x-1, q), µN(xy-1, q)} = max {µN(x-1, q), 0} 
= µN(x-1, q) = µN(x, q). Therefore µN(x, q) = µN(y, q) for all x and y in F and q in Ω. 

 
2.6 Theorem: If A= M∪N is an anti Ω-fuzzy subbigroup of a bigroup G = E∪F, then 

(i) µM(x+y, q) = max{µM(x, q), µM(y, q) } for each x and y in E and q in Ω with µM(x, q) ≠ µM(y, q)  
(ii) µN(xy, q) = max{ µN(x, q), µN(y, q)} for each x and y in F and q in Ω with µN(x, q) ≠ µN(y, q). 

 
Proof:  

(i) Let x and y belongs to E and q in Ω. Assume that µM(x, q) < µM(y, q), then µM(y, q) = µM(−x+x+y, q)               
≤ max{µM(−x, q), µ M(x+y, q)}≤ max{ µM(x, q), µM(x+y, q)}= µM(x+y, q) ≤ max{µM(x, q), µM(y, q)}               
= µM(y, q). Therefore µM(x+y, q) = µM(y, q) = max{µM(x, q), µM(y, q)} for x and y in E and q in Ω.  

(ii) Let x and y belongs to F and q in Ω. Assume that µN(x, q) < µN(y, q), then µN(y, q) = µN(x-1xy, q)                     
≤ max{µN(x-1, q), µN(xy, q)}≤ max{µN(x, q), µN(xy, q)} = µN(xy, q) ≤ max{µN(x, q), µN(y, q)}= µN(y, q). 
Therefore µN(xy, q) = µN(y, q) = max{µN(x, q), µ N(y, q)} for x and y in F and q in Ω. 

 
2.7 Theorem: If A = M∪N and B = O∪P are two anti Ω-fuzzy subbigroups of a bigroup G = E∪F, then their union 
A∪B is an anti Ω-fuzzy subbigroup of G. 
 
Proof: Let A = M∪N = {〈(x, q), µA(x, q)〉 / x∈G and q∈Ω} where M = {〈(x, q), µM(x, q) 〉 / x∈E and q∈Ω} and           
N = {〈(x, q), µN(x, q)〉 / x∈F and q∈Ω } and B = O∪P = {〈(x, q), µB(x, q)〉 / x∈G and q∈Ω} where O = {〈 (x, q),     
µO(x, q)〉/x∈E and q∈Ω} and P = {〈(x, q), µP(x, q)〉/ x∈F and q∈Ω}. Let C = A∪B = R∪S where C = {〈(x, q),         
µC(x, q)〉/ x∈G and q∈Ω}, R = M∪O = {〈(x, q), µR(x, q)〉 / x∈E and q∈Ω} and S = N∪P = {〈(x, q), µS(x, q)〉 / x∈F and 
q∈Ω}. Let x and y belong to E and q in Ω. Then µR(x−y, q) = max{µM(x−y, q), µO(x−y, q)}≤ max{max{µM(x, q),   
µM(y, q)}, max {µO(x, q), µO(y, q)}}≤ max {max {µM(x, q), µO(x, q)}, max {µM(y, q), µO(y, q)}}= max {µR(x, q),    
µR(y, q)}. Therefore µR(x−y, q) ≤ max{µR(x, q), µR(y, q)} for all x and y in E and q in Ω. Let x and y belong to F and q 
in Ω. Then µS(xy-1,q)= max{µN(xy-1, q), µP(xy-1, q)}≤ max{max{µN(x, q), µN(y, q)}, max{µP(x, q), µP(y, q)}}                
≤ max{max{µN(x, q), µP(x, q)}, max{µN(y, q), µP(y, q)}= max{µS(x, q), µS(y, q)}. Therefore µS(xy-1, q)                        
≤ max{µS(x, q), µS(y, q)} for all x and y in F and q in Ω. Hence A∪B is an anti Ω-fuzzy subbigroup of G. 
 
2.8 Theorem: The union of a family of anti Ω-fuzzy subbigroups of a bigroup G is an anti Ω-fuzzy subbigroup of G. 
 
Proof: It is trivial. 
 
2.9 Theorem: If A= M∪N is an anti Ω-fuzzy subbigroup of a bigroup G = E∪F, then                       

(i) µM(x+y, q) = µM(y+x, q) if and only if µM(x, q) = µM(−y+x+y, q) for all x and y in E and q in Ω  
(ii) µN(xy, q) = µN(yx, q) if and only if µN(x, q) = µN(y-1xy, q) for all x and y in F and q in Ω. 

 
Proof:  

(i) Let x and y be in E and q in Ω. Assume that µM(x+y, q) = µM(y+x, q), then µM(−y+x+y, q) = µM(−y+y+x, q) = 
µM(e1+x, q) = µM(x, q). Therefore µM(x, q) = µM(−y+x+y, q) for all x and y in E and q in Ω. Conversely 
assume that µM(x, q) = µM(−y+x+y, q), then µM(x+y, q) = µM(x+y−x+x, q) = µM(y+x, q). Therefore µM(x+y, q) 
= µM(y+x, q) for all x and y in E and q in Ω.  

(ii) Let x and y be in F and q in Ω. Assume that µN(x+y, q) = µN(y+x, q), then µN(y-1xy, q) = µN(y-1yx, q) =   
µN(e2x, q) = µN(x, q). Therefore µN(x, q) = µN(y-1xy, q) for all x and y in F and q in Ω. Conversely, assume that 
µN(x, q) = µN(y-1xy, q), then µN(xy, q) = µN(xyxx-1, q) = µN(yx, q). Therefore µN(xy, q) = µN(yx, q) for all x 
and y in F and q in Ω. 
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