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ABSTRACT 
Consider a single server retrial queueing system in which customers arrive in a Poisson process with arrival rate λ. 
These customers are identified as primary calls. Further assume that the service time follows a general distribution 
with probability density function ( )b x  and cumulative distribution function ( )B x . If the server is free at the time of a 
primary call arrival, the arriving call begins to be served immediately by the server and after completion of the service, 
the customer leaves the system and server becomes idle. If the server is busy, then the arriving customer goes to orbit 
of infinite capacity and makes a retrial at a later time. This pool of sources of repeated calls may be viewed as a sort of 
queue (FCFS). We assume that the access from the orbit to the service facility is governed by the constant retrial rate 
of policy, that is the retrial customer at the head of the retrial queue repeats its request for service with an 
exponentially distributed retrial times with retrial rate (1-δ0n)σ, where δ0n denotes Kronecker’s delta. If an incoming 
repeated call finds the server free, it is served in the same manner and leaves the system after service completion, while 
the source which produced this repeated call disappears. Otherwise, the system state does not change. The input flow 
of primary calls, interval between repetitions and service time are mutually independent.  The transient behaviour of 
this model is analysed by Supplementary variable technique. Steady state probability distributions and system 
performance measures have been derived for various service time distributions (Exponential and Erlang). Numerical  
study  have been done for Analysis of  Mean number of customers in the orbit, Probabilities of server free, busy for 
various values of  system parameters.  
 
Keywords: Retrial queue – Constant retrial policy – General Service time – elapsed service time - Supplementary 
variable technique. 
 
 
1. INTRODUCTION 
 
Queueing systems in which arriving customers who find server and waiting positions (if any) occupied may retry for 
service after a period of time are called Retrial queues. Models of retrial queues are an important part of queueing 
theory. These models arise because of the necessity to allow for the retrial effect in various networking systems and day 
to day life. Therefore, much attention is paid to the analysis of such models of queues. Retrial queueing models 
accurately describe the operation of many telecommunication networks. So their investigation is very important. Retrial 
queues have been considered as an interesting problem in tele-traffic theory and telephone networks where subscribers 
redial after receiving a busy signal. For example, peripherals in computer systems may make retrials to receive service 
from a central processor. Hosts in local area networking (LAN) may make many retrials in order to access the 
communication medium, which is clearly indicated in the carrier sense multiple access (CSMA) protocol that controls 
this access. We would like to point out that the Retrial queues can be directly applied to solve many practical problems. 
The detailed survey of retrial queues and bibliographical information have been obtained from Kulkarni (1983), Yang 
and Templeton (1987), K. Farahmand (1990), Templeton (1990), Falin (1990), Kulkarni and Liang (1996), monograph 
by Falin and Templeton (1997) and Artalejo (1995, 1999a, 1999b, 2010). Artalejo and Falin (2002) have compared 
standard and retrial queueing systems. Artalejo and Gomez–corral (2008) have studied a computational approach of 
retrial queueing systems. 
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2. DESCRIPTION OF RETRIAL QUEUEING SYSTEM 
 
This model is studied on the basis of the following assumptions. 
 
Assumptions 

1. Primary arrivals follows a Poisson process with rate λ i.e. the time between the primary arrivals is an 
exponential distribution with mean 1

λ
. 

2. The service time follows a General distribution with probability density function ( )b x  and distribution 
function is ( )B x . Let ( )x dxµ  be the conditional probability density of completion of a service during the 
interval ( , )x x x+ ∆  given that the elapsed service time x , so that 

                                 ( )( )
1 ( )

b xx
B x

µ =
−

                                                                                                                  (1) 

and ,therefore 

                           0
( )

( ) ( )
x

t dt
b x x e

µ
µ

−∫=                                                                                                             (2) 
3. The size of the population is infinite. 
4. The size of the orbit is infinite. 
5. The service will be given one by one. 
6. The probability of one primary arrival during the time interval (t, t + Δt) is λΔt+ O(∆t) . 
7. The Probability of repeated attempt during the interval (t, t + Δt) is given that  σ ∆t + O(∆t). 
8. The probability of more than one  primary / repeated arrival during the time interval (t, t + Δt) is 0. 
9. The probability of more than one departure during the time interval (t, t + Δt) is 0. 
10. The number of primary/repeated arrivals in non-overlapping intervals is statistically independent. 
11. The number of departures in non-overlapping intervals are statistically independent. 

 
Consider a single server retrial queueing system with constant retrial policy in which customers arrive in a Poisson 
process with arrival rate λ. These customers are identified as primary calls. Further assume that the service time follows 
a general distribution with probability density function ( )b x  and cumulative distribution function ( )B x . If the server is 
free at the time of a primary call arrival, the arriving call begins to be served immediately by the server and after 
completion of the service, the customer leaves the system and server becomes idle. If the server is busy, then the 
arriving customer goes to orbit of infinite capacity and makes a retrial at a later time. This pool of sources of repeated 
calls may be viewed as a sort of queue (FCFS). We assume that the access from the orbit to the service facility is 
governed by the constant retrial rate of policy, that is the retrial customer at the head of the retrial queue repeats its 
request for service with an exponentially distributed retrial times with retrial rate (1-δ0n)σ ,where δ0n denotes 
Kronecker’s delta. If an incoming repeated call finds the server free, it is served in the same manner and leaves the 
system after service completion, while the source which produced this repeated call disappears. Otherwise, the system 
state does not change. The input flow of primary calls, interval between repetitions and service time are mutually 
independent. The transient behaviour of this model is analysed by Supplementary variable technique. Steady state 
probability distributions and system performance measures have been derived for various service time distributions 
(Exponential and Erlang). Numerical  study  have been done for Analysis of  Mean number of customers in the orbit, 
Probabilities of server free, busy for various values of  system parameters.  

 
3. DEFINITIONS AND EQUATIONS GOVERNING THE SYSTEM 
 
Let 1( , )nP x t  be the probability that there are n≥0 customers in the orbit at time t excluding the one in service and 
elapsed service time of this customer is x, that is 
                            { }1 0( , ) ( ) ; ( )nP x t dx Prob N t n x X t x x= = < < + ∆  

0 ( ) is the elapsed service time of a customer who is in service at time twhere X t . Let 0 ( )nP t  be the 
probability that there are n≥0 customers in the orbit at time t when the server is idle in the system. 

1 1
0

( ) ( , )  n nP t P x t dx
∞

= ∫  is the probability that server is busy and there are  n customers in the orbit excluding the one in 

service irrespective of the elapsed time x. If the system is in steady state, we define 1 1( ) lim ( , )n nt
P x P x t

→∞
=  and 

1 1lim ( )n nt
P P t

→∞
= . 
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The governing equations are described as follows 

( )1 1 1 11( , ) ( , ) ( ) ( , ) ( , ) for n = 1,2,3,...n n n nP x t P x t x P x t P x t
x t

λ µ λ −

∂ ∂
+ + + =

∂ ∂
                                           (3) 

( )01 01 01( , ) ( , ) ( ) ( , ) 0P x t P x t x P x t
x t

λ µ∂ ∂
+ + + =

∂ ∂
                                                                                                (4) 

0 0( ) ( ) ( )n n
d P t P t
dt

λ σ+ + 1
0

( , ) ( )  for n = 1,2,3,...nP x t x dxµ
∞

= ∫
       

                                                                       (5) 

00 00 01
0

( ) ( ) ( , ) ( )d P t P t P x t x d x
dt

λ µ
∞

+ = ∫ 01
0

( , ) ( )P x t x dxµ
∞

= ∫
                

                                                                      (6) 

 
The above equations (3) to (6) are solved subject to the following boundary conditions 

1 0 10(0, ) ( ) ( )n n nP t P t P tλ σ += +                                                                                                                                     (7) 

01 00 10(0, ) ( ) ( )P t P t P tλ σ= +                                                                                                                                      (8) 
Initial condition is  

00 (0) 1P =                                                                                                                                                                         (9) 
 
We define the following probability generating functions for the server is idle/busy in the transient state   

0 0 1 1
0 0

( , ) ( )  and ( , ) ( )n n
n n

n n
P t z P t z P t z P t z

∞ ∞

= =

= =∑ ∑                                                                                                   (10) 

 
The Laplace transform of ( )f t  is defined by 

*

0
( ) ( )stf s e f t dt

∞ −= ∫                                                                                                                                                 (11) 

 
Apply Laplace to the equations (3) to (10), we get 

( )* * *
1 1 11( , ) ( ) ( , ) ( , ) for n = 1,2,3,...n n nP x s s x P x s P x s

x
λ µ λ −

∂
+ + + =

∂
                                                   (12) 

( )* *
01 01( , ) ( ) ( , ) 0P x s s x P x s

x
λ µ∂

+ + + =
∂

                                                                                                          (13) 

* *
0 1

0

( ) ( ) ( , ) ( )  for n = 1,2,3,...n ns P t P x s x dxλ σ µ
∞

+ + = ∫                                                                                            (14) 

( ) * *
00 01

0

( ) 1 ( , ) ( )  s P s P x s x dxλ µ
∞

+ = + ∫                                                                                                                 (15) 

 
The above equations (12) to (15) are solved subject to the following boundary conditions 

* * *
1 0 10(0, ) ( ) ( )n n nP s P s P sλ σ += +                                                                                                                               (16) 
* * *

01 00 10(0, ) ( ) ( )P s P s P sλ σ= +                                                                                                                                     (17) 
 
Theorem 1: For the M/G/1 retrial queueing system with constant retrial policy, 
a. The transient solution of the number of customers in the orbit when the server is idle in the system is given by  

                  ( )
* *

00 00
*

0

1 ( ) ( ) ( )
 ,

( ) ( )

P s P s b s z
zP s z

s b s z
z

σσ λ λ

σλ σ λ λ λ

+ − + −
=

 + + − + + − 
 

 

b. The transient solution of the number of customers in the orbit when the server is busy in the system is given by  

                  ( )( )

* *
00 00

*
00

*
1

1 ( ) ( ) ( )

( ) ( )
( , ) 1

P s P s b s z
z P

z zs b s z
zP s z b s z

s z

σσ λ λσ σλ
σλ σ λ λ λ

λ λ
λ λ

 
+ − + −   + −     + + − + + −    = − + −

+ −  
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c. The Steady state solution of the number of customers in the orbit when the server is idle in the system is given by  
                   00

0 00 1 1
1 ( )( )  where ( ) , 1  and ( )

1 ( )

p bP z z P E X
z b zz

λ λ σψ ρ ρ
λ σψ
σ

− +
= = = − =

  −−  
 

            

d. The Steady state solution of the number of customers in the orbit when the server is busy  in the system is given by  

                  
1 00

( )( )  
1 ( )

zP z P
z z

ψ
λ ψ
σ

 
 
 =

  −     

 

 
Proof: We define the generating functions 

                        1
0

( , , ) ( , ) n
n

n
w x t z P x t z

∞

=

=∑                                                                                                                     (18) 

                        
0 0

0
( , ) ( ) n

n
n

P t z P t z
∞

=

=∑                                                                                                                              (19) 

 
Apply the Laplace transform to the equations (18) and (19), we get 

* *
1

0
( , , ) ( , ) n

n
n

w x s z P x s z
∞

=

=∑                                                                                                                                   (20) 

* *
0 0

0
( , ) ( ) n

n
n

P s z P s z
∞

=

=∑                                                                                                                                                 (21) 

 
Partially differentiate (20) with respect to x 

* *
1

0
( , , ) ( , ) n

n
n

w x s z P x s z
x x

∞

=

∂ ∂
=

∂ ∂∑                                                                                                                             (22) 

 
Substituting (12) and (13) in (20), we get 

( )* *( , , ) ( ) ( , , ) 0w x s z s z x w x s z
x

λ λ µ∂
+ + − + =

∂
                                                                                              (23) 

 
Solving the above differential equation, we get 

( ) 0

( )
* *( , , ) (0, , )

x

x dx
s z xw x s z w s z e e

µ
λ λ

−
− + − ∫

=                                                                                                        (24) 
Where 

        * *
1

0
(0, , ) (0, ) n

n
n

w s z P s z
∞

=

=∑                                                                                                                            (25) 

 
Substituting (16) and (17) in (25), we get 

 * * *
0 00(0, , ) ( , )w s z P s z P

z z
σ σλ = + − 

 
                                                                                                                   (26) 

 
Multiplying the equation (24) by ( )xµ  and integrating with respect to x between 0 and ∞  

( ) 0

( )
* *

0 0

( , , ) ( ) (0, , ) ( )

x

x dx
s z xw x s z x dx w s z e e x dx

µ
λ λµ µ

∞ ∞ −
− + − ∫

=∫ ∫                                                                           (27) 

( )* *

0 0

( , , ) ( ) (0, , ) ( )s z xw x s z x dx w s z e b x dxλ λµ
∞ ∞

− + −=∫ ∫                                                                                       (28)                               

* *

0

( , , ) ( ) (0, , ) ( )w x s z x d x w s z b s zµ λ λ
∞

= + −∫                                                                                                             (29) 
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0

 ( ) ( )  is the Laplace transform of the service time dustributionsxwhere b s e b x dx
∞

−= ∫  

 
Integrating the equation (24) with respect to x between 0 and ∞, we get  

( )( )
*

*
1

(0, , )( , ) 1w s zP s z b s z
s z

λ λ
λ λ

= − + −
+ −

                                                                                                            (30) 

 
Substituting the equation (26) in (30), we get 

( )( )
* *

0 00
*

1

( , )
( , ) 1

P s z P
z zP s z b s z

s z

σ σλ
λ λ

λ λ

 + − 
 = − + −

+ −
                                                                                   (31) 

 

Multiplying the equation (14) by 
nz on both sides and summing over n = 1 to∞ , we get 

* *
0 1

1 10

( ) ( ) ( , ) ( )  n n
n ns P t z P x s z x dxλ σ µ

∞∞ ∞ + + =  
 

∑ ∑∫                                                                                                  (32) 

( )( ) ( )* * * *
0 00 01

0

( ) , ( ) ( , , ) ( , ) ( )  s P s z P s w x s z P x s x d xλ σ µ
∞

+ + − = −∫                                                                     (33) 

 
Substituting the equations (15) and (29) in (33), we get 

( )* * *
0 00( ) , 1 ( ) (0, , ) ( ) s P s z P s w s z b s zλ σ σ λ λ+ + = + + + −                                                                              (34) 

 
Substituting the equation (26) in (34), we get 

( )* * * *
0 00 0 00( ) , 1 ( ) ( , ) ( ) ( ) s P s z P s P s z P s b s z

z z
σ σλ σ σ λ λ λ  + + = + + + − + −    

                                         (35) 

( )
* *

00 00
*

0

1 ( ) ( ) ( )
 ,

( ) ( )

P s P s b s z
zP s z

s b s z
z

σσ λ λ

σλ σ λ λ λ

+ − + −
=

 + + − + + − 
 

                                                                                                       (36) 

 
The equation (36) represents Transient solutions of the number of customers in the orbit when the server is idle in the 
system. 

( )( )

* *
00 00

*
00

*
1

1 ( ) ( ) ( )

( ) ( )
( , ) 1

P s P s b s z
z P

z zs b s z
zP s z b s z

s z

σσ λ λσ σλ
σλ σ λ λ λ

λ λ
λ λ

 
+ − + −   + −     + + − + + −    = − + −

+ −
                                                      (37) 

 
The equation (37) represents Transient solutions of the number of customers in the orbit when the server is busy in the 
system. 
 
Apply the Tauberian theorem of the Laplace transform to the equation (35), we get 

( )0 00 0 00( ) ( ) ( ) P z P P z P b z
z z
σ σλ σ σ λ λ λ  + = + + − −    

                                                                                     (38) 

 
Simplify the equation (38), we get 

( )
( )

00
0 ( )

( )

p z b
P z

z z b

σ

λ σ σ λ

−
=

+ − +
                                                                                                                                        (39) 

00
0

1( )  where ( )
1 ( )

p bP z z
z b zz

ψ
λ ψ
σ

−
= =

  −−  
 

                                                                                                                      (40) 



Muthu Ganapathi Subramanian* G. Ayyappan, Gopal Sekar /  
Transient Behaviour of M/G/1 Retrial Queueing System with Constant Retrial Policy by Supplementary.../ IJMA- 6(7), July-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                     111   

 
The equation (40) represents the steady state probability generating function of the number of customers in the orbit 
when the server is idle in the system. 
 
Apply the Tauberian theorem of the Laplace transform to the equation (31), we get 

( )( )
0 00

1

( )
( ) 1

P z P
z zP z b z

z

σ σλ
λ λ

λ λ

 + − 
 = − −

−
                                                                                                             (41) 

 
Substituting the equation (40) in (41), we get 

1 00
( )( )  

1 ( )

zP z P
z z

ψ
λ ψ
σ

 
 
 =

  −     

                                                                                                                                        (42) 

 
The equation (42) represents the steady state probability generating function of the number of customers in the orbit 
when the server is busy in the system. 
 
The normalised condition is 

0 1(1) (1) 1P P+ =                                                     (43) 

( )(1)  where ( )
1 ( ) 1

E X E X
E X

λ ρψ ρ λ
λ ρ

= = =
− −

                                                                                                          (44) 

( )

2 2
'

2
( )(1)

2 1
E Xλψ

ρ
=

−
                                                                                                                                                          (45)                                                                                                               

00
0 0 001 1

1

1(1) lim ( ) lim
11 ( )

z z

pP P z P
z z

ρ
λ ρψ
σ

→ →

 −
= = =  −   −  

 

                                                                                                       (46) 

1 1 00 001 1
1

( )(1) lim ( ) lim
11 ( )

z z

zP P z P P
z z

ψ ρ
λ ρψ
σ

→ →

 
   
 = = =  −    −     

                                                                                                     (47)                                                                                                           

 
Substituting the equations (46) and (47) in (43), we get                                                                                                            

00 11P ρ= −                                                                                                                                                                   (48) 
 
Theorem 2: The system performance measures of M/G/1 retrial queueing system with constant retrial policy are given 
below 

a.  Probability that the server is idle in the system   = 0 1P ρ= −   
b.  Probability that the server is busy in the system  = 

1P ρ=   

c.  Average number of customers in the orbit = qL =  
( )

2 2

1

1 ( )L  = 1
1 2q

E Xλ λ λρ
ρ σ σ

  + +  −   
 

d.  Average number of customers in the system = 
s qL L ρ= +  

 
Proof 
When the steady state prevails, the equation (10) becomes 

0 0 1 1
0 0

( )  and ( )  n n
n n

n n
P z P z P z P z

∞ ∞

= =

= =∑ ∑                                                                                                                      (49) 

Probability that the server is idle in the system 
            = 

0 0
0

(1) n
n

P P
∞

=

=∑ 00
1

1 1
1

P ρ ρ
ρ

 −
= = − − 

                                                                                                                       (50) 

Probability that the server is busy in the system 

            = 
1 1

0
(1) n

n
P P

∞

=

=∑ 00
11

P ρ ρ
ρ

 
= = − 

                                                                                                                        (51) 
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Differentiate (40) with respect to z, we get 

( )'
00

'
0 2

( ) ( )
( )

1 ( )

P z z z
P z

z z

λ ψ ψ
σ

λ ψ
σ

  + 
 =
 − 
 

                                                                                                                                        (52) 

( ) ( )( )

( )

2' '
00

'
0 2

1

(1) (1) (1) (1) 1
(1)  

1
1 (1)

P
P

λ λψ ψ ψ ψ ρ
σ σ

ρλψ
σ

   + + −   
   = =

− − 
 

                                                                                         (53) 

( )

( )

2 2

'
0

1

( ) 1
2

(1)  
1

E X

P

λ λ ρ ρ
σ

ρ

   + −  
  =

−
                                                                                                                               (54) 

 
Differentiate (42) with respect to z, we get 

' ' '
1 0 0( ) ( ) ( ) ( ) ( )P z P z z P z zψ ψ= +                                                                                                                               (55) 

 

( )

2 2
2

'
1

1

( )
2

(1)  
1

E X

P

λ λ ρ
σ

ρ

 
+ 

 =
−

                                                                                                                                           (56) 
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Average number of customers in the system = ( )0 1 1
1

( ) ( ) (1)q q
z

d P z zP z L P L
dz

ρ
=

+ = + = +
 

4. STABILITY CONDITION 
 

The stability analysis is very important for every queueing system. Single server retrial queueing system with constant 
retrial policy is stable provided  
                 1 ( ) 1E Xλ λ

σ
 + < 
 

 

• If the service time follows an exponential distribution then the stability of the system is  1 1λ λ
σ µ

 + < 
 

 

• If the service time follows an Erlang distribution with k stages then the stability of the system is 

1 1kλ λ
σ µ

 + < 
 

 

 
5. SPECIAL CASES 
 
We note that many particular cases of this work can be derived for various Service time distributions 
 
Case-1: The service time distribution follows an exponential distribution 
 
This model becomes M/M/1 single server retrial queueing system with constant retrial policy which was discussed by 
Fayolle in 1986, where the retrial queue was investigated for a telephone exchange model where the customers in the 
retrial group form a queue and only the customer at the head of the orbit can request service after an exponentially 
distributed retrial time. 
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The probability density function of exponential distribution is 
                                    ( ) , 0xb x e xµµ −= >                                                                                                                 (59) 
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After the simplification of equation (67), we get 
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The equation (68) represents the steady state probability generating function of number of customers in the orbit when 
the server is idle in the system.                                                                          
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After the simplification of equation (69), we get 
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The equation (70) represents the steady state probability generating function of number of customers in the orbit when 
the server is busy in the system. 
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After the simplification of equation (71), we get 
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The equation (72) represents the average number of customers in the orbit. 
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The equation (73) represents the average number of customers in the system. 
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Case-2: The service time distribution follows an Erlang distribution with k phases 
 
This model becomes M/Ek/1 single server retrial queueing system with constant retrial policy  
 
The probability density function of Erlang distribution is 
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After the simplification of equation (76), we get 
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The equation (77) represents the steady state probability generating function of number of customers in the orbit when 
the server is idle in the system.                                                   
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After the simplification of equation (78), we get 
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The equation (79) represents the steady state probability generating function of number of customers in the orbit when 
the server is busy in the system. 
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After the simplification of equation (80), we get 
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The equation (81) represents the average number of customers in the orbit. 
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The equation (82) represents the average number of customers in the system. 
 
Case-3: As σ→∞, this model becomes M/G/1 queueing model 
 
The probability generating function of the number of customers in the system is given by 
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As σ→∞, the equation (83) becomes 
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The Equation (85) represents the Pollaczek – Khinchine formula for M/G/1 queueing system 
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The equation (86) represents the average number of customers in the queue. 
 
6. NUMERICAL STUDY 

 
The values of parameters λ, µ and σ will be chosen so that it satisfies the stability condition which is discussed in 
section 4. The System performance measures of this model have been done and expressed in the form of tables which 
are shown below for various service distributions.  
 
Tables 1and 2 show the impact of σ over Mean number of customers in the orbit if the service distribution follows an 
exponential distribution. Further, we infer the following 

• Mean number of customers in the orbit decreases as retrial rate σ increases. 
• Mean number of customers in the orbit increases as arrival rate increases. 
• P0 and P1 are independent of retrial rate σ. 
• This model becomes standard single server queueing model if σ is large. 

 
Tables 3 and 4 show the impact of σ over Mean number of customers in the orbit if the service distribution follows an 
Erlang distribution. Further, we infer the following 

• Mean number of customers in the orbit decreases as retrial rate σ increases. 
• Mean number of customers in the orbit increases as arrival rate increases. 
• P0 and P1 are independent of retrial rate σ. 
• This model becomes standard single server queueing model with Erlang type service if σ is large. 
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Table-1:  System performance measures for λ = 5 and µ = 10 for various values of σ. 
σ P0 P1 Lq Ls Wq Ws 
10 0.5 0.5 2.5000 3.0000 0.5000 0.6000 
30 0.5 0.5 0.9000 1.4000 0.1800 0.2800 
50 0.5 0.5 0.7222 1.2222 0.1444 0.2444 
70 0.5 0.5 0.6538 1.1538 0.1308 0.2308 
90 0.5 0.5 0.6176 1.1176 0.1235 0.2235 

100 0.5 0.5 0.6053 1.1053 0.1211 0.2211 
300 0.5 0.5 0.5339 1.0339 0.1068 0.2068 
500 0.5 0.5 0.5202 1.0202 0.1040 0.2040 
700 0.5 0.5 0.5144 1.0144 0.1029 0.2029 
900 0.5 0.5 0.5112 1.0112 0.1022 0.2022 

1000 0.5 0.5 0.5101 1.0101 0.1020 0.2020 
3000 0.5 0.5 0.5033 1.0033 0.1007 0.2007 
5000 0.5 0.5 0.5020 1.0020 0.1004 0.2004 

 
Table-2:  System performance measures for λ = 8 and µ = 15 for various values of σ. 

σ P0 P1 Lq Ls Wq Ws 
10 0.466667 0.53333 23.4667 24.0000 2.9333 3.0000 
30 0.466667 0.53333 1.5489 2.0822 0.1936 0.2603 
50 0.466667 0.53333 1.0890 1.6224 0.1361 0.2028 
70 0.466667 0.53333 0.9315 1.4648 0.1164 0.1831 
90 0.466667 0.53333 0.8518 1.3852 0.1065 0.1731 

100 0.466667 0.53333 0.8252 1.3585 0.1031 0.1698 
300 0.466667 0.53333 0.6769 1.2102 0.0846 0.1513 
500 0.466667 0.53333 0.6494 1.1828 0.0812 0.1478 
700 0.466667 0.53333 0.6379 1.1712 0.0797 0.1464 
900 0.466667 0.53333 0.6315 1.1648 0.0789 0.1456 

1000 0.466667 0.53333 0.6293 1.1626 0.0787 0.1453 
3000 0.466667 0.53333 0.6161 1.1494 0.0770 0.1437 
5000 0.466667 0.53333 0.6134 1.1468 0.0767 0.1433 

 
Table-3:  System performance measures for λ = 5, µ = 50 and k = 3 for various values of σ. 

σ P0 P1 Lq Ls Wq Ws 
10 0.7 0.3 0.4364 0.7364 0.0873 0.1073 
30 0.7 0.3 0.1846 0.4846 0.0369 0.0569 
50 0.7 0.3 0.1433 0.4433 0.0287 0.0487 
70 0.7 0.3 0.1263 0.4263 0.0253 0.0453 
80 0.7 0.3 0.1211 0.4211 0.0242 0.0442 
90 0.7 0.3 0.1171 0.4171 0.0234 0.0434 

100 0.7 0.3 0.1139 0.4139 0.0228 0.0428 
300 0.7 0.3 0.0950 0.3950 0.0190 0.0390 
500 0.7 0.3 0.0912 0.3912 0.0182 0.0382 
700 0.7 0.3 0.0897 0.3897 0.0179 0.0379 
900 0.7 0.3 0.0888 0.3888 0.0178 0.0378 

1000 0.7 0.3 0.0885 0.3885 0.0177 0.0377 
3000 0.7 0.3 0.0866 0.3866 0.0173 0.0373 
5000 0.7 0.3 0.0863 0.3863 0.0173 0.0373 

 
Table-4:  System performance measures for λ = 8, µ = 50 and k = 3 for various values of σ. 

σ P0 P1 Lq Ls Wq Ws 
10 0.52 0.48 4.8565 5.3365 0.6071 0.6271 
30 0.52 0.48 0.8229 1.3029 0.1029 0.1229 
50 0.52 0.48 0.5753 1.0553 0.0719 0.0919 
70 0.52 0.48 0.4859 0.9659 0.0607 0.0807 
90 0.52 0.48 0.4398 0.9198 0.0550 0.0750 

100 0.52 0.48 0.4242 0.9042 0.0530 0.0730 
300 0.52 0.48 0.3362 0.8162 0.0420 0.0620 
500 0.52 0.48 0.3196 0.7996 0.0400 0.0600 
700 0.52 0.48 0.3126 0.7926 0.0391 0.0591 
900 0.52 0.48 0.3087 0.7887 0.0386 0.0586 

1000 0.52 0.48 0.3074 0.7874 0.0384 0.0584 
3000 0.52 0.48 0.2994 0.7794 0.0374 0.0574 
5000 0.52 0.48 0.2978 0.7778 0.0372 0.0572 
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7. CONCLUSION 
 
Single server retrial queueing system with general service for constant retrial policy is discussed and derived the 
probability generating functions for number of customers in the orbit when the server is idle / busy. Various special 
cases have been verified for different service time distributions. Numerical studies have been done in elaborate manner. 
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