pg**- CLOSED SETS IN TOPOLOGICAL SPACES

PUNITHA THARANI
Associate Professor, St. Mary’s College, Tuticorin.

PRISCILLA PACIFICA*
Assistant Professor, St. Mary’s College, Tuticorin.

(Received On: 23-06-15; Revised & Accepted On: 28-07-15)

ABSTRACT

In this paper we introduce a new class of sets called pg**- closed sets in topological spaces which is properly placed in between the class of closed sets and gsp-closed sets. As an application, we introduce new spaces namely, $\rho T_{1/2}^{**}$-space, $ap T_{c}^{**}$-space, $pT_{1/2}^{**}$-space, ρT_{c}^{**}-space and ρT_{c}-space. Further, pg** -continuous, pg**-irresolute mappings are also introduced and investigated.

Key words: pg**-closed set, pg** -continuous map, pg**-irresolute map, $\rho T_{1/2}^{**}$- space, $ap T_{c}^{**}$-space, $pT_{1/2}^{**}$-space, ρT_{c}^{**}-space, ρT_{c}-space and T_{c}^{**}-spaces.

1. INTRODUCTION

2. PRILIMINARIES

Throughout this paper $(X,\tau),(Y,\sigma)$ and (Z,η) represent non-empty topological spaces of which no separation axioms are assumed unless otherwise stated. For a subset A of a space (X,τ), cl(A) and int(A) denote the closure and the interior of A respectively. The class of all closed subsets of a space (X,τ) is denoted by C(X,τ). The smallest semi-closed (resp. pre-closed and α-closed) set containing a subset A of (X,τ) is called the semi-closure (resp. pre-closure and α-closure) of A and is denoted by scl(A) (resp. pcl(A) and $\alpha cl(A)$).

Definition 2.1: A subset A of a topological space (X,τ) is called

1. a pre-open set [14] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
2. a semi-open set [12] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
3. a semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set if $int(int(cl(A))) \subseteq A$.
4. an α-open set [16] if $A \subseteq cl(int(A))$ and an α-closed set [16] if $cl(int(A)) \subseteq A$.

Definition 2.2: A subset A of a topological space (X,τ) is called

1. a generalized closed set (briefly g-closed) [1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ).
2. generalized semi-closed set (briefly gs-closed) [3] if scl$(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ).
3. an α-generalized closed set (briefly αg-closed) [19] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ).
4. a generalized semi-pre-closed set (briefly gsp-closed) [9] if $sp cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ).
5. a regular generalized closed set (briefly rg-closed) [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ).
(6) a generalized pre-closed set (briefly gp-closed) \([13]\) if \(p \text{ cl} (A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).

(7) a generalized pre-regular-closed set (briefly gpr-closed) \([10]\) if \(p \text{ cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \((X, \tau)\).

(8) a generalized \(g^*\)-closed set \([18]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g^*\)-open in \((X, \tau)\).

(9) a generalized \(g^{**}\)-closed set \([20]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g^{**}\)-open in \((X, \tau)\).

Definition 2.3: A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called

1. \(g\)-continuous \([4]\) if \(f^{-1}(V)\) is a \(g\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

2. \(\alpha g\)-continuous \([10]\) if \(f^{-1}(V)\) is an \(\alpha g\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

3. \(gs\)-continuous \([7]\) if \(f^{-1}(V)\) is a \(gs\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

4. \(gsp\)-continuous \([9]\) if \(f^{-1}(V)\) is a \(gsp\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

5. \(rg\)-continuous \([17]\) if \(f^{-1}(V)\) is a \(rg\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

6. \(gp\)-continuous \([2]\) if \(f^{-1}(V)\) is a \(gp\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

7. \(gpr\)-continuous \([10]\) if \(f^{-1}(V)\) is a \(gpr\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

8. \(g^*\)-continuous \([18]\) if \(f^{-1}(V)\) is a \(g^*\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

9. \(g^*\)-irresolute \([18]\) if \(f^{-1}(V)\) is a \(g^*\)-closed set of \((X, \tau)\) for every \(g^*\)-closed set \(V\) of \((Y, \sigma)\).

10. \(wg\)-continuous \([16]\) if \(f^{-1}(V)\) is a \(wg\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

11. \(g^{**}\)-continuous \([20]\) if \(f^{-1}(V)\) is a \(g^{**}\)-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).

12. \(g^{**}\)-irresolute \([20]\) if \(f^{-1}(V)\) is a \(g^{**}\)-closed set of \((X, \tau)\) for every \(g^{**}\)-closed set \(V\) of \((Y, \sigma)\).

Definition 2.4: A topological space \((X, \tau)\) is said to be

1. a \(T_{1/2}^\rho\)-space \([11]\) if every \(g\)-closed set in it is closed.

2. a \(T_8\)-space \([6]\) if every \(gs\)-closed set in it is closed.

3. a \(gT_9\)-space \([8]\) if every \(\alpha g\)-closed set in it is closed.

4. a \(T_{1/2}^\gamma\)-space \([18]\) if every \(g^*\)-closed set in it is closed.

5. a \(T_{1/2}^\gamma\)-space \([20]\) if every \(g^{**}\)-closed set is closed.

6. a \(* T_{1/2}\)-space \([20]\) if every \(g^{**}\)-closed set is \(g^*\)-closed.

3. Basic properties of \(pg^{**}\)-closed sets

We introduce the following definition

Definition 3.1: A subset \(A\) of \((X, \tau)\) is said to be a \(pg^{**}\)-closed set if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g^*\)-open in \(X\).

The class of \(pg^{**}\)-closed subset of \((X, \tau)\) is denoted by \(PG^{**}C(X, \tau)\).

Proposition 3.2: Every closed set is \(pg^{**}\)-closed.

Proof follows from the definition.

The following example supports that a \(pg^{**}\)-closed set need not be closed in general.

Proposition 3.3: Every pre closed set is \(pg^{**}\)-closed.

Proof follows from the definition.

Proposition 3.4: Every \(g^{**}\)-closed set is \(pg^{**}\)-closed.

Proof follows from the definition.

Proposition 3.5: Every \(g^*\)-closed set is \(pg^{**}\)-closed.

Proof follows from the definition.

Proposition 3.6: Every \(g\)-closed set is \(pg^{**}\)-closed.

Proof follows from the definition.

The converse of the above propositions need not be true in general.
Example 3.7: Let \(X = \{a, b, c\} \), \(\tau = \{ \emptyset, X, \{a\} \} \). Let \(A = \{a\} \) then \(A \) is a \(pg^{**} \)-closed set but not a closed set and a \(g^{**} \)-closed set of \((X, \tau) \). So the class of \(pg^{**} \)-closed sets properly contains the class of closed sets and the class of \(g^{**} \)-closed sets. Also \(A = \{a\} \) is not a \(g \)-closed set.

Example 3.8: Let \(X = \{a, b, c\} \), \(\tau = \{ \emptyset, X, \{a\} \} \). Let \(A = \{a, b\} \) then \(A \) is a \(pg^{**} \)-closed set but not a pre closed set and a \(g^{*} \)-closed set of \((X, \tau) \). So the class of \(pg^{**} \)-closed sets properly contains the class of pre closed sets and the class of \(g^{*} \)-closed sets.

Proposition 3.9: Every \(pg^{**} \)-closed set is (1) \(rg \)-closed (2) \(gpr \)-closed (3) \(gsp \)-closed.

Proof follows from the definition.

The converse of the above propositions need not be true in general as seen in the following examples.

Example 3.10: In example (3.8), let \(A = \{a\} \) is \(gpr \)-closed and \(rg \)-closed but it is not \(pg^{**} \)-closed. Let \(X = \{a, b, c\} \), \(\tau = \{ \emptyset, X, \{a\}, \{b\}, \{a, b\} \} \). Let \(A = \{a\} \) then \(A \) is a \(gsp \)-closed set but not a \(pg^{**} \)-closed set of \((X, \tau) \). Therefore the class of \(pg^{**} \)-closed sets is properly contained in the class of \(gpr \)-closed, \(rg \)-closed, \(gsp \)-closed sets.

Remark 3.11: \(pg^{**} \)-closedness is independent from \(\alpha \)-closedness, \(semi-closedness \), \(sg \)-closedness, \(ga\alpha \)-closedness, \(ga^{*} \)-closedness and \(semi-preclosedness \).

Let \(X = \{a, b, c\} \), \(\tau = \{ \emptyset, X, \{a\}, \{a, c\} \} \). Let \(A = \{a, b\} \) then \(A \) is a \(pg^{**} \)-closed set. \(A \) is neither \(\alpha \)-closed nor semi-closed, in fact, it is not even a \(semi-preclosed \) set. Also it is not \(sg \)-closed, \(ga \)-closed and \(ga^{*} \)-closed set.

Proposition 3.12: If \(A \) and \(B \) are \(pg^{**} \)-closed sets, then \(A \cup B \) is also a \(pg^{**} \)-closed set.

Proof follows from the fact that \(pcl(A \cup B) = pcl(A) \cup pcl(B) \).

Proposition 3.13: If \(A \) is both \(g^{*} \)-open and \(pg^{**} \)-closed, then \(A \) is pre closed.

Proof follows from the definition of \(pg^{**} \)-closed sets.

Proposition 3.14: \(A \) is a \(pg^{**} \)-closed of \((X, \tau) \) if \(pcl(A) \setminus A \) does not contain any non-empty \(g^{*} \)-closed set.

Proof: Let \(F \) be a \(g^{*} \)-closed set of \((X, \tau) \) such that \(F \subseteq pcl(A) \setminus A \). Then \(A \subseteq X \setminus F \). Since \(A \) is \(pg^{**} \)-closed and \(X \setminus F \) is \(g^{*} \)-open, \(pcl(A) \subseteq X \setminus F \). This implies \(F \subseteq X \setminus pcl(A) \). So, \(F \subseteq (X \setminus pcl(A)) \cap (pcl(A) \setminus A) \subseteq (X \setminus pcl(A)) \cap (pcl(A) = \emptyset \). Therefore \(F = \emptyset \).

Proposition 3.15: If \(A \) is a \(pg^{**} \)-closed set of \((X, \tau) \) such that \(A \subseteq B \subseteq pcl(A) \), then \(B \) is also a \(pg^{**} \)-closed set of \((X, \tau) \).

Proof: Let \(U \) be a \(g^{*} \)-open set of \((X, \tau) \) such that \(B \subseteq U \). Then \(A \subseteq U \), since \(A \) is \(pg^{**} \)-closed, then \(pcl(A) \subseteq U \). Now \(pcl(B) \subseteq pcl(pcl(A)) = pcl(A) \subseteq U \). Therefore \(B \) is also a \(pg^{**} \)-closed set of \((X, \tau) \).

4. \(pg^{**} \)-continuous and \(pg^{**} \)- irresolute maps.

We introduce the following definitions.

Definition 4.1: A function \(f : (X, \tau) \to (Y, \sigma) \) is called \(pg^{**} \)- continuous if \(f^{-1}(V) \) is a \(pg^{**} \)-closed set of \((X, \tau) \) for every closed set of \((Y, \sigma) \).

Theorem 4.2: Every continuous map is \(pg^{**} \)-continuous.

Proof: Let \(f : (X, \tau) \to (Y, \sigma) \) be continuous and let \(F \) be any closed set of \(Y \), then \(f^{-1}(V) \) is closed in \(X \). Since every closed set is \(pg^{**} \)-closed, \(f^{-1}(V) \) is \(pg^{**} \)-closed. Therefore \(f \) is \(pg^{**} \)-continuous.

The following example shows that the converse of the above theorem need not be true in general.

Example 4.3: Let \(X = Y = \{a, b, c\} \), \(\tau = \{ \emptyset, X, \{a\} \} \), \(\sigma = \{ \emptyset, X, \{b\} \} \), \(f : (X, \tau) \to (Y, \sigma) \) is defined as the identity map. The inverse image of all the closed sets of \((Y, \sigma) \) are \(pg^{**} \)-closed in \((X, \tau) \). Therefore \(f \) is \(pg^{**} \)-continuous but not continuous.

Thus the class of all \(pg^{**} \)-continuous maps properly contains the class of continuous maps.
Theorem 4.4: Every pg**- continuous map is rg- continuous, gpr- continuous and gsp-continuous maps.

Proof: Let \(f : (X, \tau) \to (Y, \sigma) \) be a pg**- continuous map. Let \(V \) be a closed set of \((Y, \sigma)\). Since \(f \) is pg**- continuous, then \(f^{-1}(V) \) is pg**- closed in \((X, \tau)\). By proposition (3.9), \(f^{-1}(V) \) is rg-closed, gpr-closed and gsp-closed set of \((X, \tau)\).

The converse of the above theorem need not be true as seen in the following example.

Example 4.5: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, X, \{b, c\}\}\). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity map. Then \(f^{-1}(\{a\}) = \{a\} \) is not pg**- closed in \((X, \tau)\). But \{a\} is rg-closed and gpr-closed. Therefore \(f \) is rg- continuous and gpr-continuous but \(f \) is not pg**- continuous.

Example 4.6: Let \(X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, b\}\}, \sigma = \{\phi, X, \{b, c\}\}\). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity map. Then \(f^{-1}(\{a\}) = \{a\} \) is not pg**- closed in \((X, \tau)\). But \{a\} is gsp-closed. Therefore \(f \) is gsp-continuous but \(f \) is not pg**-continuous.

Thus the class of all pg**-continuous maps is properly contained in the classes of rg-continuous, gpr- continuous and gsp-continuous maps.

The following example shows that the compositions of two pg**- continuous maps need not be a pg**- continuous map.

Example 4.7: Let \(X = Y = Z = \{a, b, c\} \) and let \(f : (X, \tau) \to (Y, \sigma) \), \(g : (Y, \sigma) \to (Z, \eta) \), be the identity maps. \(\tau = \{\phi, X, \{a\}, \{a, c\}\}, \sigma = \{\phi, X, \{a\}\}, \eta = \{\phi, X, \{b\}\}\). \((f \circ g)^{-1}(\{a, c\}) = f^{-1}(g^{-1}(\{a, c\})) = f^{-1}(\{a, c\}) = \{a, c\}\) is not pg**- closed in \((X, \tau)\). But \(f \) and\(g \) are pg**-continuous maps.

Theorem 4.8: Every g*- continuous map is pg**- continuous map.

Proof: Let \(f : (X, \tau) \to (Y, \sigma) \) be g*-continuous and let \(V \) be a closed set of \(Y \). Then \(f^{-1}(V) \) is g*-closed and hence by proposition (3.5), it is pg**- closed. Hence \(f \) is pg**-continuous map.

The following example shows that the converse of the above theorem is not true in general.

Example 4.9: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, X, \{b\}\}\). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity map. Then \(A = \{a, c\} \) is closed in \((Y, \sigma)\) and is pg**- closed in \((X, \tau)\) but not g*-closed in \((X, \tau)\). Therefore isf \(f \) is pg**-continuous but not g*-continuous.

Theorem 4.10: Every g- continuous map is pg**- continuous map.

Proof: Let \(f : (X, \tau) \to (Y, \sigma) \) be g-continuous and let \(V \) be a closed set of \(Y \). Then \(f^{-1}(V) \) is g-closed and hence by proposition (3.6), it is pg**-closed. Hence \(f \) is pg**-continuous map.

The following example shows that the converse of the above theorem is not true in general.

Example 4.11: Let \(X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}, \sigma = \{\phi, X, \{a, b\}\}\). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity map. Then \(A = \{c\} \) is closed in \((Y, \sigma)\) and is pg**-closed in \((X, \tau)\) but not g- closed in \((X, \tau)\). Therefore isf \(f \) is pg**-continuous but not g-continuous.

Theorem 4.12: Every g**- continuous map is pg**- continuous map.

Proof: Let \(f : (X, \tau) \to (Y, \sigma) \) be g**-continuous and let \(V \) be a closed set of \(Y \). Then \(f^{-1}(V) \) is g**-closed and hence by proposition (3.4), it is pg**-closed. Hence \(f \) is pg**-continuous map.

The following example shows that the converse of the above theorem is not true in general.

Example 4.13: Let \(X = Y = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}, \sigma = \{\phi, X, \{b, c\}\}\). Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity map. Then \(A = \{a\} \) is closed in \((Y, \sigma)\) and is pg**-closed in \((X, \tau)\) but not g**-closed in \((X, \tau)\). Therefore isf \(f \) is pg**-continuous but not g**-continuous.

Definition 4.14: A function \(f : (X, \tau) \to (Y, \sigma) \) is called pg**- irresolute if \(f^{-1}(V) \) is a pg**-closed set of \((X, \tau)\) for every pg**-closed set \(V \) of \((Y, \sigma)\).
Definition 4.15: Let \((X, \tau)\) and \((Y, \sigma)\) be two topological spaces and \(f : (X, \tau) \to (Y, \sigma)\) is said to be pg**- resolute if
\(f(U)\) is pg**- open in \(Y\) whenever \(U\) is pg**- open in \(X\).

Definition 4.16: A function \(f : (X, \tau) \to (Y, \sigma)\) is called pg**-homeomorphism if
(i) \(f\) is one – one and onto.
(ii) \(f\) is pg**- irresolute and pg**- resolute.

Theorem 4.17: Every pg**- irresolute function is pg**- continuous.
Proof follows from the definition.

Theorem 4.18: Every g - irresolute function is pg**- continuous.
Proof follows from the definition.

Theorem 4.19: Every g* - irresolute function is pg**- continuous.
Proof follows from the definition.

Theorem 4.20: Every g** - irresolute function is pg**- continuous.
Proof follows from the definition.

Converse of the above theorems need not be true in general as seen in the following example.

Example 4.21: Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, X, \{a\}\}\). Let \(f : (X, \tau) \to (Y, \sigma)\) by \(f(a) = b, f(b) = a, f(c) = c\), \(\{b, c\}\) is the only closed set of \(Y\). \(f^{-1}(\{b, c\}) = \{a, c\}\) is pg**- closed in \((X, \tau)\). Therefore \(f\) is pg**- continuous. \(\{b, c\}\) is pg**- closed in \((X, \tau)\). Therefore \(f\) is not g – closed, g* - closed and g**- closed set in \(X\). Therefore \(f\) is not a pg**- irresolute. Hence \(f\) is pg**- continuous but not pg**- irresolute.

Theorem 4.22: Let \(f : (X, \tau) \to (Y, \sigma)\) and \(g : (Y, \sigma) \to (Z, \eta)\), be any two functions then,
(i) \(g \circ f\) is pg**- continuous if \(g\) is continuous and \(f\) is pg**- continuous.
(ii) \(g \circ f\) is pg**- irresolute if both \(f\) and \(g\) are pg**- irresolute.
(iii) \(g \circ f\) is pg**- continuous if \(g\) is pg**- continuous and \(f\) is pg**- irresolute.

5. Applications of pg**- closed sets

As applications of pg**- closed sets, new spaces, namely, \(p_{T^{\text{1/2}}_{*}}\) space, \(p_{T^{*}_{*}}\) space, \(p_{T^{1/2}_{*}}\) space, \(p_{T^{*}_{*}}\) space and \(p_{T_{c}}\) space are introduced.

We introduce the following definition.

Definition 5.1: A space \((X, \tau)\) is called a \(p_{T^{*}_{*}}\) space if every pg**- closed set is closed.

Theorem 5.2: Every \(p_{T^{*}_{*}}\) space is \(T_{1/2}\) space.
Proof follows from the definition.

Theorem 5.3: Every \(p_{T^{1/2}_{*}}\) space is \(T_{1/2}\) space.
Proof follows from the definition.

The converse need not be true in general as seen in the following example.

Example 5.4: Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, G^*(C(X,\tau)) = \{\phi, X, \{b, c\}\} = C(X,\tau)\). Therefore \((X, \tau)\) is a \(T_{1/2}\) space but not \(p_{T^{1/2}_{*}}\) space since \(\{a, b\}\) is a pg**- closed set but not a closed set of \((X, \tau)\).
Theorem 5.5: Every T_2-space is $\mathcal{P}T^{**}_{1/2}$-space.

Proof follows from the definition.

The converse need not be true in general as seen in the following example.

Example 5.6: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. (X,τ) is a $\mathcal{P}T^{**}_{1/2}$-space but not a T_2-space since $\{a\}$ is gs-closed but not closed.

Remark 5.7: T_d-ness is independent of $\mathcal{P}T^{**}_{1/2}$-ness as it can be seen from the following example.

Example 5.8: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. (X,τ) is a $\mathcal{P}T^{**}_{1/2}$-space but not a T_d-space since $\{a\}$ is gs-closed but not g-closed.

Example 5.9: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. (X,τ) is a T_d-space but not a $\mathcal{P}T^{**}_{1/2}$-space since $\{c\}$ is pg**-closed but not closed.

Theorem 5.10: The following conditions are equivalent in topological space (X,τ).

(i) (X,τ) is a $\mathcal{P}T^{**}_{1/2}$-space.

(ii) Every singleton of X is either g*-closed or open.

Proof:

(i) \Rightarrow (ii): Let (X,τ) be a $\mathcal{P}T^{**}_{1/2}$-space. Let $x \in X$ and suppose $\{x\}$ is not g*-closed. Then $X \setminus \{x\}$ is not g*-open. This implies that X is the only g*-open set containing $X \setminus \{x\}$. Therefore $X \setminus \{x\}$ is closed since (X,τ) is a $\mathcal{P}T^{**}_{1/2}$-space. Therefore $\{x\}$ is open in (X,τ).

(ii) \Rightarrow (i): Let A be a pg**-closed set of $(X,\tau)A \subseteq pcl(A) \subseteq cl(A)$ and let $x \in pcl(A)$ this implies $x \in cl(A)$.

We introduce the following definition.

Definition 5.11: A space (X,τ) is called an apT^*_c-space if every αg-closed set of (X,τ) is pg**-closed.

Theorem 5.12: Every αg-closed set is an apT^*_c-space but not conversely.

Example 5.13: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$. (X,τ) is an apT^*_c-space but not αg-closed but not closed.

Definition 5.14: A subset A of a space (X,τ) is called a pg**-open set if its complement is a pg**-closed set of (X,τ).

Theorem 5.15: If (X,τ) is an apT^*_c-space for each $x \in X$, $\{x\}$ is either αg-closed or pg**-open.

Proof: Let $x \in X$ suppose that $\{x\}$ is not an αg-closed set of (X,τ). Then $\{x\}$ is not a closed set since every closed set is an αg-closed set. Therefore $X \setminus \{x\}$ is not open. Therefore $X \setminus \{x\}$ is an αg-closed set since X is the only open set which contains $X \setminus \{x\}$. Since (X,τ) is an apT^*_c-space, $X \setminus \{x\}$ is a pg**-closed set or $\{x\}$ is pg**-open.

Remark 5.16: The converse of the above theorem is not true as it can be seen from the following example.

Example 5.17: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$. (X,τ) is not a apT^*_c-space but $\{b\}$ is αg-closed and $\{a\}$ and $\{c\}$ are pg**-open.

We introduce the following definition.

Definition 5.18: A space (X,τ) is called a $\mathcal{P}T^{**}_{1/2}$-space if every pg**-closed set of (X,τ) is a g*-closed set.
Theorem 5.19: Every $p_{1/2}^T$ space is $\gamma p_{1/2}$-space.

Proof: Let (X,τ) be a $p_{1/2}^T$ space. Let A be a pg^{**}- closed set of (X,τ). Since (X,τ) is a $p_{1/2}^T$-space, A is closed. But since every closed set is g^*- closed, A is g^*- closed. Therefore (X,τ) is a $p_{1/2}^T$-space.

Theorem 5.20: Every T_b-space is a $\gamma p_{1/2}$-space.

Proof: Let (X,τ) be a T_b-space. Then by theorem (4.5), it is a $p_{1/2}^T$ space. Therefore by theorem (4.19), it is $\gamma p_{1/2}$-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.21: Let $X = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\}$. (X,τ) is a $\gamma T_{1/2}$-space but not a T_b-space since $A = \{a\}$ is gs-closed but not closed.

Theorem 5.22: Every $\gamma T_{1/2}$-space is a $T_{1/2}$-space.

Proof: Let (X,τ) be a $\gamma T_{1/2}$- space. Let A be a g^*- closed set of (X,τ). Then by proposition (3.6), A is pg^{**}- closed. Since (X,τ) is an $\gamma T_{1/2}$- space, A is g^*- closed. Therefore it is a $T_{1/2}$- space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.23: Let $X = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a, c\}\}$. (X,τ) is a $T_{1/2}$-space but not a $\gamma T_{1/2}$- space since $A = \{c\}$ is g^*- closed but not g^{**}- closed.

Theorem 5.24: Every $\gamma T_{1/2}$-space is a $\gamma^* T_{1/2}$-space.

Proof: Let (X,τ) be a $\gamma T_{1/2}$- space. Let A be a g^{**}- closed set of (X,τ). Then by proposition (3.4), A is pg^{**}- closed. Since (X,τ) is a $\gamma T_{1/2}$- space, A is g^*- closed. Therefore it is a $\gamma^* T_{1/2}$- space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.25: Let $X = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}\}$. (X,τ) is a $\gamma^* T_{1/2}$-space but not a $\gamma T_{1/2}$- space since $A = \{c\}$ is g^*- closed but not g^{**}- closed.

Theorem 5.26: If (X,τ) is a $\gamma^* T_{1/2}$- space, then for each $x \in X$, $\{x\}$ is either closed or g^*-open.

Proof: Suppose (X,τ) is a $\gamma^* T_{1/2}$- space. Let $x \in X$ and let $\{x\}$ not be closed. Then $X \setminus \{x\}$ is not open set. Therefore $X \setminus \{x\}$ is a g-closed set since X is the only open set which contains $X \setminus \{x\}$. By theorem (3.6) $X \setminus \{x\}$ is a pg^{**}- closed set. Since (X,τ) is a $\gamma^* T_{1/2}$- space, $X \setminus \{x\}$ is g^*- closed set. Therefore $\{x\}$ is g^*-open.

Definition 5.27: A space (X,τ) is called an $p_{1/2}$-space if every pg^{**}-closed set of (X,τ) is g-closed.

Theorem 5.28: Every $p_{1/2}^T$-space is a $p_{1/2}^T$-space.

Proof: Let (X,τ) be a $p_{1/2}^T$-space. Let A be a pg^{**}- closed set of (X,τ). Then A is closed since (X,τ) is a $p_{1/2}^T$-space. But every closed set is g-closed set. Therefore (X,τ) is a $p_{1/2}^T$-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.29: Let $X = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}\}$. (X,τ) is a $p_{1/2}^T$-space but not a $p_{1/2}^T$-space since $A = \{c\}$ is pg^{**}- closed but not g^{**}- closed.

Theorem 5.30: The space (X,τ) is a $p_{1/2}^T$-space if and only if it is a $p_{1/2}^T$-space and a $T_{1/2}$- space.

Proof: Necessity: Let (X,τ) be a $p_{1/2}^T$-space. Let A be a g-closed set of (X,τ). Then by theorem (3.6) A is pg^{**}- closed. Also since (X,τ) is a $p_{1/2}^T$-space, A is a closed set. Therefore (X,τ) is a $T_{1/2}$- space. By theorem (4.24) (X,τ) is a $p_{1/2}^T$-space.

Sufficiency: Let (X,τ) be a $T_{1/2}$- space and a $p_{1/2}^T$-space. Let A be a pg^{**}- closed set. Then A is g-closed since (X,τ) is a $p_{1/2}^T$-space. Also since (X,τ) is a $T_{1/2}$-space, A is a closed set. Therefore (X,τ) is a $p_{1/2}^T$-space.
Theorem 5.31: Every \(\rho T_{1/2} \)-space is a \(\rho T_{1/2}^* \)-space.

Let \((X, \tau)\) be a \(\rho T_{1/2} \)-space. Let \(A \) be a pg**-closed set. Then \(A \) is g*-closed since \((X, \tau)\) is a \(\rho T_{1/2} \)-space. But every g*-closed set is g-closed, and hence \(A \) is a g-closed set. Therefore \((X, \tau)\) is a \(\rho T_{1/2}^* \)-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.32: Let \(X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}\} \), \((X, \tau)\) is a \(\rho T_{1/2} \)-space but not a \(\rho T_{1/2}^* \)-space since \(A = \{c\} \) is pg**-closed but not a g*-closed set.

We introduce the following definition

Definition 5.33: A space \((X, \tau)\) is called a \(\rho T_c \)-space if every gs-closed set of \((X, \tau)\) is a pg**-closed set.

Theorem 5.34: Every \(T_c \)-space is a \(\rho T_c \)-space.

Proof: Let \((X, \tau)\) be a \(T_c \)-space. Let \(A \) be a gs-closed set of \((X, \tau)\). Then \(A \) is g*-closed since \((X, \tau)\) is a \(T_c \)-space. But by proposition (3.5) \(A \) is pg**-closed set. Therefore \((X, \tau)\) is a \(\rho T_c \)-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.35: Let \(X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, c\}\} \), \((X, \tau)\) is a \(\rho T_c \)-space but not a \(T_c \)-space since \(A = \{c\} \) is gs-closed but not g*-closed set.

Theorem 5.36: Every \(T_h \)-space is a \(\rho T_c \)-space.

Proof: Let \((X, \tau)\) be a \(T_h \)-space. Let \(A \) be a gs-closed set of \((X, \tau)\). Then \(A \) is g*-closed since \((X, \tau)\) is a \(T_h \)-space. But by proposition (3.2) \(A \) is pg**-closed set. Therefore \((X, \tau)\) is a \(\rho T_c \)-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.37: Let \(X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, c\}\} \), \((X, \tau)\) is a \(\rho T_c \)-space but not a \(T_h \)-space since \(A = \{c\} \) is gs-closed but not aclosed set.

Theorem 5.38: If \((X, \tau)\) is a \(\rho T_c \)-space and a \(\rho T_{1/2}^* \)-space, then it is a \(aT_d \)-space.

Proof: Let \((X, \tau)\) be a \(\rho T_c \)-space and a \(\rho T_{1/2}^* \)-space. Let \(A \) be a pg**-closed set of \((X, \tau)\). Then \(A \) is also g*-closed. Since \((X, \tau)\) is a \(\rho T_c \)-space, \(A \) is pg**-closed. Also since \((X, \tau)\) is a \(\rho T_{1/2}^* \)-space, \(A \) is a g-closed set. Therefore \((X, \tau)\) is a \(aT_d \)-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.39: Let \(X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, c\}\} \), \((X, \tau)\) is a \(aT_d \)-space but not a \(\rho T_{1/2}^* \)-space since \(A = \{c\} \) is pg**-closed but not ag-closed set.

Theorem 5.40: If \((X, \tau)\) is a \(\rho T_c \)-space and a \(\rho T_{1/2}^* \)-space, then it is a \(aT_b \)-space.

Proof: Let \((X, \tau)\) be a \(\rho T_c \)-space and a \(\rho T_{1/2}^* \)-space. Let \(A \) be a pg**-closed set of \((X, \tau)\). Then \(A \) is also g*-closed. Since \((X, \tau)\) is a \(\rho T_c \)-space, \(A \) is pg**-closed. But every pg**-closed set is closed since \((X, \tau)\) is a \(\rho T_{1/2}^* \)-space, \(A \) is a closed set. Therefore \((X, \tau)\) is a \(aT_b \)-space.

Theorem 5.41: If \((X, \tau)\) is a \(\rho T_c \)-space and a \(\rho T_{1/2}^* \)-space, then it is a \(T_d \)-space.

Proof: Let \((X, \tau)\) be a \(\rho T_c \)-space and a \(\rho T_{1/2}^* \)-space. Let \(A \) be a gs-closed set of \((X, \tau)\). Since \((X, \tau)\) is a \(\rho T_c \)-space, \(A \) is pg**-closed. Also since \((X, \tau)\) is a \(\rho T_{1/2}^* \)-space, \(A \) is g-closed set. Therefore \((X, \tau)\) is a \(T_d \)-space.

The converse of the above theorem need not be true as seen in the following example.

Example 5.42: Let \(X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, c\}\} \), \((X, \tau)\) is a \(T_d \)-space but not a \(\rho T_{1/2}^* \)-space since \(A = \{c\} \) is pg**-closed but not ag-closed set.
Theorem 5.43: If \((X, \tau) \) is a \(T^*_c \)-space, then for each \(x \in X \), \(\{x\} \) is either semi-closed or pg**-open in \((X, \tau) \).

Proof: Suppose \((X, \tau) \) is a \(T^*_c \)-space. Let \(x \in X \) and let \(\{x\} \) not be semi-closed. Then \(X \setminus \{x\} \) is gs-closed. Also \(X \setminus \{x\} \) is pg**-closed set. Therefore \(\{x\} \) is pg**-open.

Theorem 5.44: Let \(f : (X, \tau) \to (Y, \sigma) \) be a pg**-continuous map. If \((X, \tau) \) is \(p^*_T/1/2 \)-space then \(f \) is continuous.

Theorem 5.45: Let \(f : (X, \tau) \to (Y, \sigma) \) be a pg**-continuous map. If \((X, \tau) \) is \(p^*_T/1/2 \)-space then \(f \) is \(g^* \)-continuous.

Theorem 5.46: Let \(f : (X, \tau) \to (Y, \sigma) \) be a pg**-continuous map. If \((X, \tau) \) is \(p^*_T/1/2 \)-space then \(f \) is \(g \)-continuous.

Theorem 5.47: Let \(f : (X, \tau) \to (Y, \sigma) \) be a gs-continuous map. If \((X, \tau) \) is \(p^*_T/1/2 \)-space then \(f \) is pg**-continuous.

Theorem 5.48: Let \(f : (X, \tau) \to (Y, \sigma) \) be ag**- irresolute map and a pre-closed map. Then \(f(A) \) is a pg**-closed set of \((Y, \sigma) \) for every pg**-closed set \(A \) of \((X, \tau) \).

Proof: Let \(A \) be a pg**-closed set of \((X, \tau) \). Let \(U \) be a \(g^* \)-open set of \((Y, \sigma) \) such that \(f(A) \subseteq U \). Since \(f \) is \(g^* \)-irresolute, \(f^{-1}(U) \) is \(g^* \)-open in \((X, \tau) \). Now \(f^{-1}(U) \) is \(g^* \)-open and \(A \) is pg**-closed set of \((X, \tau) \), then \(pcl(A) \subseteq f^{-1}(U) \). Then \(f(pcl(A)) = pcl(f(pcl(A))) \). Therefore \(pcl(f(A)) \subseteq pcl(f(pcl(A))) = f(pcl(A)) \subseteq U \). Therefore \(f(A) \) is a pg**-closed set of \((Y, \sigma) \).

Theorem 5.49: Let \(f : (X, \tau) \to (Y, \sigma) \) be onto, pg**- irresolute and closed. If \((X, \tau) \) is \(p^*_T/1/2 \) then \((Y, \sigma)\) is also a \(p^*_T/1/2 \)-space.

Definition 5.50: A function \(f : (X, \tau) \to (Y, \sigma) \) is called a pg**-closed map if \(f(A) \) is a pg**-closed set of \((Y, \sigma) \) for every pg**-closed set \(A \) of \((X, \tau) \).

Theorem 5.51: Let \(f : (X, \tau) \to (Y, \sigma) \) be onto, pg**- irresolute and pre - \(g^* \)- closed. If \((X, \tau) \) is \(p^*_T/1/2 \), then \((Y, \sigma)\) is also a \(p^*_T/1/2 \)-space.

Theorem 5.52: Let \(f : (X, \tau) \to (Y, \sigma) \) be onto, gs - irresolute and pg**-closed map. If \((X, \tau) \) is \(p^*_T/1/2 \), then \((Y, \sigma)\) is also a \(p^*_T/1/2 \)-space.

Theorem 5.53: Let \(f : (X, \tau) \to (Y, \sigma) \) be onto, pg** - irresolute and g-closed map. If \((X, \tau) \) is \(p^*_T/1/2 \), then \((Y, \sigma)\) is also a \(p^*_T/1/2 \)-space.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]