International Journal of Mathematical Archive-6(7), 2015, 145-151

A NEW FORM OF CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

¹C. JANAKI, ²M. ANANDHI, ³N. GOWRIMANOHARI*

^{1,2}Asst. Professor, L. R. G. Govt. Arts College for Women, Tirupur, (T.N.), India.

³Asst. Professor, Michael Job College of Arts and Science for Women, Sulur, (T.N.), India.

(Received On: 08-07-15; Revised & Accepted On: 27-07-15)

ABSTRACT

In this paper, we introduce the notion of $I_{\pi gb}$ -closed sets in ideal topological spaces and obtain their characterizations. Further, we discuss the continuity and irresoluteness via $I_{\pi ab}$ -closed sets.

Keywords: $I_{\pi gb}$ -closed, $I_{\pi gb}$ -open, $I_{\pi gb}$ -continuous, $I_{\pi gb}$ - $T_{1/2}$ space.

Mathematics Subject Classification: 54A05, 54A10.

I. INTRODUCTION

The notion of generalized open sets in a topological space called b-open sets was introduced by Andrijevic [3]. Jankovic and Hamlet [16] introduced the notion of I-open sets in topological spaces. The concept of ideals gained importance by the paper of Vaidyanathaswamy [29]. Navaneethakrishnan *et.al* [22, 23] has introduced regular g-closed sets and g-closed sets in ideal topological spaces. The class of b-open sets is contained in the class of semi-open and pre open sets. The class of generalized semi-closed, generalized semi-pre-open sets were discussed in [4, 7]. With advent of these notions, several research papers with interesting results came to existence [1, 3, 10, 11]

The aim of this paper is to study the notion of $I_{\pi gb}$ -closed sets and obtain their characterizations. In section 3, we study basic properties of $I_{\pi gb}$ -closed sets. In section 4, we characterize $I_{\pi gb}$ -open sets. Finally in section 5, $I_{\pi gb}$ -continuous and $I_{\pi gb}$ -irresolute functions are studied.

II. PRELIMINARIES

An ideal on a set X is a nonempty collection of subsets of X which satisfies

(i) $A \in I$ and $B \subseteq A$ implies $B \in I$,

(ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. If I is an ideal on X, then (X, τ, I) is called an ideal topological space. For an ideal space (X, τ, I) and $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every open set } U \text{ containing } x \}$ is called the local function [18] of A with respect to I and τ . We simply write A* instead of $A^*(I, \tau)$ in case there is no confusion. For every ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ generated by $\beta(I, \tau) = \{U - J : U \in \tau \text{ and } J \in I\}$. A subset A of an ideal topological space (X, τ, I) is said to be τ^* -closed [16] or simply *-closed (resp.*-perfect in itself [14]) if $A^* \subseteq A$ (resp.A=A*). A Kuratowski closure operator cl*() for a topology $\tau^*(I, \tau)$ called the *-topology defined by cl*(A) = A \cup A^*(X, \tau).

Throughout this paper (X,τ, I) and (Y,σ,I) represent topological spaces on which no separation axioms are assumed unless explicitly stated. The closure and interior of a subset A of a space (X,τ, I) will be denoted by cl(A) and int(A). We can replace (X,τ,I) by X to avoid the chance of confusion.

Definition 2.1: A subset A of a space X is called

- i) regular open set [24] if A= int(cl(A))
- ii) b-open[2] or sp-open[6] or γ -open[5] if $A \subseteq cl(int(A)) \cup int(cl(A))$

Corresponding Author: ³N. Gowrimanohari* ³Asst. Professor, Michael Job College of Arts and Science for Women, Sulur, (T.N.), India.

The complement of b-open (regular open) is called b-closed(regular closed). The finite union(intersection) of regular open set is called π -open(π -closed). If A is a subset of a space (X, τ ,I) then the b-I-closure of A[20], denoted by cl*_b(A) is the smallest b-I-closed set containing A; the b-I-interior of A[20], denoted by int _b I(A), is the largest b-I-open set contained in A.

The family of all b-open (resp. α -open, semi open, pre open, b-closed, pre closed) subsets of a space X is denoted by $(\alpha O(X), SO(X), PO(X), bC(X), PC(X))$.

Definition 2.2: A subset A of a space X is called

- i) g-closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- ii) gb-closed [9, 13] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- iii) gp-closed [21] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- iv) π g-closed [9] if cl(A) \subseteq U whenever A \subseteq U and U is π -open in X.
- v) $\pi g\alpha$ -closed [15] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in X.
- vi) π gb-closed [28] if bcl(A) \subseteq U whenever A \subseteq U and U is π -open in X.

The complement of g-closed (gb-closed, gp-closed, π g-closed, π g α -closed, π gb-closed) is called g-open (gb-open, gp-open, π go-open, π g α -open, π gb-open) respectively.

Definition 2.3: [15] A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is π -open map if f(F) is π -open map in Y for every π -open in X.

Definition 2.4: [27] Let (X,τ) be a topological space, then a set $A \subseteq (X,\tau)$ is said to be **Q-set** if int(cl(A)) = cl(int(A)).

Definition 2.5: A subset A of an ideal space(X, τ , I) is said to be

- i) I-open [19] if $A \subseteq int(A^*)$
- ii) I_g-closed [8] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- i) $I_{\pi g}$ -closed [26] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .

Definition 2.6: [12] A subset A of an ideal space(X, τ , I) is said t be

- i) pre-I-closed if $cl^*(int(A)) \subseteq A$;
- ii) semi-I-closed if $int(cl^*(A)) \subseteq A$;
- iii) α -I-closed if cl*(int(cl*(A))) \subseteq A;
- iv) b-I-closed if $cl^*(int(A) \cap int(cl^*(A)) \subseteq A$.

Definition 2.7: A function f: $(X,\tau, I) \rightarrow (Y,\sigma, I)$ is called

- i) bI-irresolute [17] if for each bI-open set V in Y, $f^{1}(V)$ is bI-open in X.
- ii) bI-continuous [12] if for each open set V in Y, $f^{1}(V)$ is bI-open in X.

III. $I_{\pi gb}$ -CLOSED SETS

Definition 3.1: A subset A of (X,τ,I) is called $I_{\pi gb}$ -closed set if $bIcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X,τ) . By $I\pi GBC(X)$ we mean the family of all $I_{\pi gb}$ -closed subsets of the space (X,τ, I) .

Example 3.2: Consider X={a, b, c}, τ ={X, ϕ , {a}, {b}, {a, b}} and I={ ϕ , {b}}.Let A={a, c}, then A is I_{ngb}-closed set.

Theorem 3.3:

- 1. Every closed set is $I_{\pi gb}$ -closed set.
- 2. Every I-closed set is $I_{\pi gb}$ -closed set.
- 3. Every g-closed is $I_{\pi gb}$ -closed set.
- 4. Every π g-closed is I_{π gb}-closed set.
- 5. Every gb-closed is $I_{\pi gb}$ -closed set.
- 6. Every gp-closed is $I_{\pi gb}$ -closed set.
- 7. Every $\pi g\alpha$ -closed is $I_{\pi gb}$ -closed set.
- 8. Every π gb-closed set is $I_{\pi gb}$ -closed set.
- 9. Every pI-closed set is $I_{\pi gb}$ -closed set.
- 10. Every sI-closed set is $I_{\pi gb}$ -closed set.
- 11. Every α I-closed set is $I_{\pi gb}$ -closed set.
- 12. Every *-closed set is $I_{\pi gb}$ -closed set.

Proof: Straight forward. Converse of the above need not be true as seen in the following examples. *©* 2015, IJMA. All Rights Reserved

Example 3.4: Consider X={a, b, c}, τ ={X, ϕ ,{a},{b, c}} and I={ ϕ ,{c}}. Let A={b},then A is I_{π gb}-closed set but not closed, I-closed.

Example 3.5: Let X={a, b, c}, $\tau =$ {X, ϕ ,{a},{c},{a, c}} and I={ ϕ ,{c}}. Let A={c}, then A is I_{ngb}-closed set but not g-closed, π g-closed set.

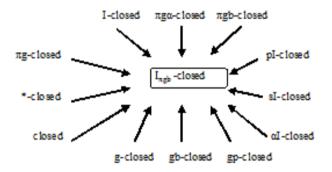
Example 3.6: Let X={a, b, c, d}, $\tau =$ {X, ϕ ,{a},{d},{a, d},{c, d},{a, c, d}} and I={ ϕ , {d}}.Let A={a, c},then A is I_{ngb}-closed set but not gb-closed, gp-closed, ng α -closed and not ngb-closed set.

Example 3.7: Let X={a, b, c}, τ ={X, ϕ ,{a},{b}, a, b} and I={ ϕ ,{b}}. Let A={a}, then A is I_{ngb}-closed set but not pI-closed set.

Example 3.8: Consider X={a, b, c, d, e}, $\tau =$ {X, φ ,{a},{e},{a, e},{c, d},{a, c, d},{c, d, e},{a, c, d, e},{b, c, d, e}} and I={ φ ,{b},{e},{b, e}}.Let A={a, b, c, e},then A is I_{agb}-closed set but not sI-closed set.

Example 3.9: Let $X=\{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $I=\{\phi, \{c\}\}$. Let $A=\{a, b\}$, then A is $I_{\pi gb}$ -closed set but not αI -closed set, *-closed.

Remark 3.10: The above discussions are shown in the figure below.



Theorem 3.11: If A is π -open and $I_{\pi gb}$ -closed set, then A is bI-closed

Proof: Let A be π -open and $I_{\pi gb}$ -closed set. Since A \subseteq A and A is π -open we have A is $I_{\pi gb}$ -closed, bIcl(A) \subseteq A. Then A= bIcl(A). Hence A is bI-closed.

Theorem 3.12: If A is $I_{\pi gb}$ -closed in (X, τ ,I), then bIcl(A) – A does not contain any non empty π -closed set.

Proof: Let F be a non empty π -closed set such that $F \subseteq blcl(A) - A$. Since A is $I_{\pi gb}$ -closed, $A \subseteq X - F$ where X - F is π -open implies $blcl(A) \subseteq X - F$. Hence $F \subseteq X - blcl(A)$.Now $F \subseteq blcl(A) \cap (X - blcl(A))$ implies $F = \varphi$ which is a contradiction. Therefore blcl(A) does not contain any non empty π -closed set.

Corollary 3.13: Let A be $I_{\pi gb}$ -closed in (X, τ ,I). Then A is bI-closed if and only if bIcl(A) – A is π -closed.

Proof:

Necessity: Let A be bI-closed, then bIcl(A)=A. This implies $bIcl(A) - A = \phi$ which is π -closed.

Sufficiency: Assume bIcl(A)-A is π -closed. Then bIcl(A)-A= ϕ . Hence bIcl(A)=A implies A is bI-closed.

Remark 3.14: Finite Union of $I_{\pi gb}$ -closed sets need not be $I_{\pi gb}$ -closed.

Example 3.15: Consider X={a, b, c}, τ ={X, φ , {a}, {c}, {a, c}} and I={ φ , {c}}. Let A={a}, B={c}. Here A and B are I_{ngb}-closed set but A \cup B = {a, c} is not I_{ngb}-closed set.

Remark 3.16: Finite Intersection of $I_{\pi gb}$ -closed set need not be $I_{\pi gb}$ -closed.

Example 3.17: Let X={a, b, c, d, e}, $\tau = \{X, \varphi, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}\}$ and I={ $\varphi, \{b\}, \{e\}, \{e\}, \{b, e\}\}$.Let A={b, c, e}, B={a, c, d, e} are I_{ngb} -closed set but A \cap B={c,e} is not I_{ngb}-closed set.

Theorem 3.18: If A is $I_{\pi gb}$ -closed and B is any set such that $A \subseteq B \subseteq bIcl(A)$, then B is $I_{\pi gb}$ -closed set.

Proof: Let $B \subseteq U$ and U be π -open. Given $A \subseteq B$. Then $A \subseteq U$. Since A is $I_{\pi gb}$ -closed, $A \subseteq U$ implies $bIcl(A) \subseteq U$. By assumption it follows that $bIcl(B) \subseteq bIcl(A) \subseteq U$. Hence B is $I_{\pi gb}$ -closed.

IV. $I_{\pi gb}$ -OPEN SETS

Definition 4.1: A set $A \subseteq X$ is called $I_{\pi gb}$ -open if its complement is $I_{\pi gb}$ -closed.

Remark 4.2: bIcl(X - A) = X - bIint(A).

By I π GBO(X) we mean the family of all I_{π gb}-open subsets of the space(X, τ , I).

Theorem 4.3: A set $A \subseteq X$ is $I_{\pi gb}$ -open if and only if $F \subseteq bI$ -int(A) whenever F is π -closed and $F \subseteq A$.

Proof:

Necessity: Let A be a $I_{\pi gb}$ -open. Let F be a closed set and $F \subseteq A$, then $X - A \subseteq X - F$ where X - F is π -open. By assumption, $bIcl(X - A) \subseteq X - F$. By remark 4.2, X - bI int(A) $\subseteq X - F$. Thus $F \subseteq bI$ int(A).

Sufficiency: Suppose F is π -closed and F \subseteq A such that F \subseteq bI int(A). Let X – A \subseteq U where U is π -open. Then X – U \subseteq A where X – U is π -closed. By hypothesis, X – U \subseteq bI int(A) implies X – bI int(A) \subseteq U implies bIcl(X– A) \subseteq U. Thus X–A is I_{π gb}-closed and A is I_{π gb}-open.

Theorem 4.4: If bI int(A) \subseteq B \subseteq A and A is I_{ngb}-open ,then B is I_{ngb}-open.

Proof: Let bI int(A) \subseteq B \subseteq A. Thus X-A \subseteq X-B \subseteq bIcl(X -A).Since X-A is I_{π gb}-closed, By theorem 3.18, (X-A) \subseteq (X-B) \subseteq bIcl(A) implies (X-B) is I_{π gb}-closed. Hence B is I_{π gb}-open.

Remark 4.5: For any $A \subseteq X$, bI int(bIcl(A)-A) = φ .

Example 4.6: Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}, I = \{\phi, \{d\}\}.$ Let $A = \{a, d\}$ be any subset of X. bIcl $\{a, d\} - \{a, d\} = \{b, c\}$. Then bI int [bIcl $\{a, d\} - \{a, d\} = b$ int $\{b, c\} = \phi$.

Theorem 4.7: If $A \subseteq X$ is $I_{\pi gb}$ -closed, then bIcl(A)-A is $I_{\pi gb}$ -open.

Proof: Let A be $I_{\pi gb}$ -closed.Let F be π -closed. F \subseteq blcl(A)-A by theorem 3.12,F= φ . By remark 4.5, bI int(blcl(A)-A)= φ . Thus F \subseteq bI int(blcl(A)-A).Thus blcl(A)-A is $I_{\pi gb}$ -open.

Corollary 4.8: Let A be a π -open, $I_{\pi gb}$ -closed set. Then A \cap F is $I_{\pi gb}$ -closed whenever F \in blcl(X).

Proof: Since A is $I_{\pi gb}$ -closed and π -open, bIcl(A) \subseteq A and thus A is bI-closed. Hence A \cap F is bI-closed in X which implies A \cap F is $I_{\pi gb}$ -closed set in X.

Lemma 4.9[25]: Let $A \subseteq X$. If A is open or dense, then $\pi O(A, \tau/A) = V \cap A$ such that $V \in \pi O(X, \tau)$.

Theorem 4.10: Let $B \subseteq A \subseteq X$ where A is $I_{\pi gb}$ -closed and π -open set. Then B is $I_{\pi gb}$ - closed relative to A iff B is $I_{\pi gb}$ - closed in X.

Proof: Let $B \subseteq A \subseteq X$, where A is $I_{\pi gb}$ -closed and π -open set. Let B be $I_{\pi gb}$ -closed in A. Let $B \subseteq U$ where U is π -open in X. Since $B \subseteq A$, $B = B \cap A \subseteq U \cap A$, this implies $bIcl(B) = bIcl_A(B) \subseteq U \cap A \subseteq U$. Hence, B is $I_{\pi gb}$ -closed in X. Let B be $I_{\pi gb}$ - closed in X. Let $B \subseteq O$ where O is π -open in A. Then $O = U \cap A$ where U is π -open in X. This implies $B \subseteq O = U \cap A \subseteq U$. Since B is $I_{\pi gb}$ -closed in X, $bIcl(B) \subseteq U$. Thus $bIcl_A(B) = A \cap bIcl(B) \subseteq U \cap A = O$. Hence, B is $I_{\pi gb}$ - closed relative to A.

Definition 4.11: A space (X, τ , I) is called an I_{π gb}-T_{1/2} space if every I_{π gb}-closed is bI-closed.

Theorem 4.12:

- i) $BIO(\tau) \subseteq I\pi GBO(\tau)$.
- ii) A space (X, τ ,I) is $I_{\pi gb}$ $T_{1/2}$ space if and only if BIO(τ) =I π GBO(τ).

Proof: i) Let A be a bI-open, then X-A is bI-closed. So X-A is $I_{\pi gb}$ -closed. Thus A is $I_{\pi gb}$ -open. Hence BIO(τ) \subseteq I π GBO(τ).

ii) **Necessity**: Let (X,τ,I) be $I_{\pi gb}$ - $T_{1/2}$ space. Let $A \in I\pi GBO(\tau)$. Then X-A is $I_{\pi gb}$ -closed. By hypothesis, X-A is bI-closed, thus $A \in BIO(\tau)$. Hence $BIO(\tau) = I\pi GBO(\tau)$. **Sufficiency**: Let $BIO(\tau) = I\pi GBO(\tau)$. Let A be $I_{\pi gb}$ -closed. Then X-A is $I_{\pi gb}$ -open. We have X-A $\in I\pi GBO(\tau)$ implies X-A $\in BIO(\tau)$. Hence A is bI-closed this implies (X,τ,I) is $I_{\pi gb}$ - $T_{1/2}$ space..

Theorem 4.13: For an ideal topological space (X, τ, I) , the following are equivalent.

- i) X is $I_{\pi gb}$ $T_{1/2}$ space.
- ii) Every singleton set is either π -closed or bI-open.

Proof:

(i) \Rightarrow (ii): Let X be a $I_{\pi gb}$ - $T_{1/2}$ space. Let $x \in X$ and assume that $\{x\}$ is not π -closed. Then clearly X- $\{x\}$ is trivially $I_{\pi gb}$ -closed. Since X is $I_{\pi gb}$ - $T_{1/2}$ space, X- $\{x\}$ is bI-closed or $\{x\}$ is bI-open.

(ii) \Rightarrow (i): Assume every singleton of X is either π -closed or bI-open. Let A be a $I_{\pi gb}$ -closed set. Let $\{x\} \in bIcl(A)$.

Case-(i): Let $\{x\}$ be π -closed. Suppose $\{x\}$ does not belong to A, then $\{x\} \in \text{bIcl}(A)$ -A by theorem 3.12, $\{x\} \in A$. Hence $\text{bIcl}(A) \subseteq A$.

Case-(ii): Let $\{x\}$ be bI-open. Since $\{x\} \in \text{bIcl}(A)$, we have $\{x\} \cap A \neq \phi$ implies $\{x\} \in A$. Therefore $\text{bIcl}(A) \subseteq A$ and A is bI-closed.

V. $I_{\pi gb}$ -CONTINUOUS and $I_{\pi gb}$ -IRRESOLUTE FUNCTIONS

Definition 5.1: A function f: $(X,\tau, I) \rightarrow (Y,\sigma)$ is called $I_{\pi gb}$ -continuous if every f¹(V) is $I_{\pi gb}$ -closed in (X,τ, I) for every closed set V of (Y,σ) .

Definition 5.2: A function f: $(X,\tau, I) \rightarrow (Y,\sigma,I)$ is called $I_{\pi gb}$ -irresolute if every $f^{-1}(V)$ is $I_{\pi gb}$ -closed in (X,τ, I) for $I_{\pi gb}$ -closed set V in (Y,σ,I) .

Theorem 5.3: Every $I_{\pi gb}$ -irresolute is $I_{\pi gb}$ -continuous function.

Proof: Let f: $(X,\tau,I) \rightarrow (Y,\sigma,I)$ be $I_{\pi gb}$ - continuous and V be $I_{\pi gb}$ - closed in (Y,σ,I) .But every $I_{\pi gb}$ - closed sets need not be closed in (Y,σ, I) .So there exists some sets which is not closed in (Y,σ) .By definition, there exists some sets which are not $I_{\pi gb}$ - closed in (X,τ,I) which implies f is not $I_{\pi gb}$ -irresolute.

Example 5.4: Let X={a, b, c}, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}, \sigma = \{X, \phi, \{a\}, \{a, c\}, \{a, b\}\}$ and I={ $\phi, \{c\}\}$. Let f: (X, τ ,I) \rightarrow (X, σ ,I) be the identity function, then f is I_{ngb}-continuous function but not I_{ngb}-irresolute.

Remark 5.5: Composition of two $I_{\pi gb}$ – continuous need not be $I_{\pi gb}$ –continuous.

Example 5.6: Let X={a, b, c, d}, τ ={X, φ ,{b},{c},{b, c}}, σ ={X, φ ,{a, b, d}}, η ={X, φ ,{a,d}} and I={ φ ,{b}}.Define f: (X, τ ,I) \rightarrow (X, σ) by f(a) = a, f(b) = c, f(c) = b, f(d) = d. Define g : (X, σ ,I) \rightarrow (X, η) by g(a) = d, g(b) = c, g(c) = b, g(d) = a. Then f and g are I_{π gb}- continuous but g \circ f is not I_{π gb}- continuous.

Remark 5.7:

- 1. Every continuous function implies *-continuous function.
- 2. Every *-continuous function implies π gb-continuous function.
- 3. (3)Every π gb-continuous function implies I_{π gb} continuous function.

Definition 5.8: A function $f : (X,\tau,I) \to (Y,\sigma,I)$ is said to be pre-bI-closed if f(U) is bI-closed in Y for each bI-closed set in X.

Proposition 5.9: Let $f : (X,\tau,I) \to (Y,\sigma,I)$ be π -irresolute and pre-bI-closed map. Then f(A) is $I_{\pi gb}$ -closed in Y for every $I_{\pi gb}$ -closed set A of X.

Proof: Let A be $I_{\pi gb}$ - closed in X. Let $f(A) \subseteq V$ where V is π -open in Y. Then $A \subseteq f^1(V)$ and A is $I_{\pi gb}$ -closed in X implies $bIcl(A) \subseteq f^1(V)$. Hence $f(bIcl(A)) \subseteq V$. Since f is pre-bI-closed, $bIcl(f(A)) \subseteq bIcl(f(bIcl(A))) = f(bIcl(A)) \subseteq V$. Hence f(A) is $I_{\pi gb}$ - closed in Y.

Theorem 5.10: Let (X, τ, I) be a topological space if $A \subseteq X$ is nowhere dense, then A is $I_{\pi eb}$ - closed.

Proof: Let $A \subseteq U$ where U is π -open in X. Since A is nowhere dense, $int(cl(A)) = \varphi$.

Now $bIcl(A) \subseteq cl(A) \subseteq int(cl(A)) = \phi \subseteq U$. Therefore A is $I_{\pi gb}$ - closed in X.

Theorem 5.11: If an ideal topological space (X, τ, I) for each $x \in X, X \setminus \{x\}$ is either $I_{\pi eb}$ -closed or π -open in X.

Proof: Suppose $X \setminus \{x\}$ is not π -open, then X is the only π -open containing $X \setminus \{x\}$. Hence $bIcl(X \setminus \{x\}) \subseteq X$ implies $X \setminus \{x\}$ is $I_{\pi gb}$ -closed.

Definition 5.12: The intersection of all $I_{\pi eb}$ -closed set containing A is called $I_{\pi eb}$ -closure of A is denoted by $I_{\pi eb}$ -cl(A).

Theorem 5.13: Let $A \subseteq (X, \tau, I)$ and $x \in X$. Then $x \in I_{\pi gb}$ -cl(A) if and only if $\mathbb{V} \cap A \neq \phi$ for every $I_{\pi gb}$ - open V containing x.

Proof: Suppose $x \in I_{\pi gb}$ -cl(A) and let V be an $I_{\pi gb}$ – open such that $x \in V$. Assume $V \cap A \neq \phi$, then $A \subseteq X \setminus V$ implies $I_{\pi gb}$ -cl(A) $\subseteq X \setminus V$ which implies $x \in X \setminus V$, thus $V \cap A \neq \phi$ for every $I_{\pi gb}$ - open set V containing x. Conversely, suppose $x \notin I_{\pi gb}$ -cl(A) which implies $x \in X \setminus I_{\pi gb}$ -cl(A) = V(say). Then V is $I_{\pi gb}$ - open & $x \in V$. Also since $A \subseteq I_{\pi gb}$ -cl(A), $A \not\subset V$ implies $V \cap A = \phi$. Hence the proof.

Definition 5.14: An ideal topological space X is a $I_{\pi gb}$ -space if every $I_{\pi gb}$ -closed set is I-closed.

Theorem 5.15: If f: X \rightarrow Y is π -open, bI-irresolute, pre bI-closed surjective function, if X is $I_{\pi gb}$ - $T_{1/2}$ space, then Y is $I_{\pi gb}$ - $T_{1/2}$ space.

Proof: Let F be a $I_{\pi gb}$ - closed set in Y. Let $f^{1}(F) \subseteq U$ where U is π -open in X. Then $F \subseteq f(U)$ and F is a $I_{\pi gb}$ - closed in Y implies $bIcl(F) \subseteq f(U)$. Since f is bI-irresolute, $bIcl(f^{1}(F)) \subseteq bIcl(f^{1}(bIcl(F))) = f^{1}(bIcl(F)) \subseteq U$. Therefore $f^{1}(F)$ is $I_{\pi gb}$ -closed in X.Since X is $I_{\pi gb}$ - $T_{1/2}$ space, $f^{1}(F)$ is bI-closed in X.Since f is pre-bI-closed, $f(f^{1}(F)) = F$ is bI-closed in Y. Hence Y is $I_{\pi gb}$ - $T_{1/2}$ space.

Proposition 5.16: Every $I_{\pi gb}$ -space is $I_{\pi gb}$ - $T_{1/2}$ space.

Proof: Let X be $I_{\pi gb}$ -space, then every $I_{\pi gb}$ -closed set is I-closed which implies (X, τ, I) is $I_{\pi gb}$ - $T_{1/2}$ space.

Theorem 5.17: For an ideal topological space (X, τ, I) , the following are equivalent.

- (i) X is $I_{\pi gb}$ $T_{1/2}$ space.
- (ii) For every subset $A \subseteq X$, A is $I_{\pi gb}$ open if and only if A is bI-open.

Proof:

(i) \Rightarrow (ii): Let $A \subseteq X$ be $I_{\pi gb^-}$ open. Then (X-A) is $I_{\pi gb^-}$ closed and by (i),(X-A) is bI-closed implies A is bI-open.

Conversely, assume A is bI-open. Then (X-A) is bI-closed. As every bI-closed set is $I_{\pi gb}$ - closed, (X-A) is $I_{\pi gb}$ - closed implies A is $I_{\pi gb}$ - open.

(ii) \Rightarrow (i): Let A be $I_{\pi gb}$ - closed set in X. Then (X-A) is $I_{\pi gb}$ - open. Hence by (ii), (X-A) is bI-open implies A is bI-closed. Hence X is $I_{\pi gb}$ - $T_{1/2}$ space.

Theorem 5.18: Let f: $(X,\tau,I) \rightarrow (Y,\sigma,I)$ be a function.

- (i) If f is $I_{\pi gb}$ -irresolute and X is $I_{\pi gb}$ $T_{1/2}$ space, then f is bI-irresolute.
- (ii) If f is $I_{\pi gb}$ -continuous and X is $I_{\pi gb}$ $T_{1/2}$ space, then f is bI-continuous.

Proof:

- (i) Let V be bI-closed in Y. Since f is $I_{\pi gb}$ irresolute, $f^{-1}(V)$ is $I_{\pi gb}$ -closed in X. Since X is $I_{\pi gb}$ $T_{1/2}$ space, $f^{-1}(V)$ is bI-closed in X. Hence f is bI-irresolute.
- (ii) Let V be bI-closed in Y. Since f is $I_{\pi gb}$ -continuous, $f^{-1}(V)$ is $I_{\pi gb}$ -closed in X. By assumption it is bI-closed in X. Hence f is bI-continuous.

Theorem 5.19: If the bijective f: $(X,\tau, I) \rightarrow (Y,\sigma,I)$ is bI-irresolute and π -open map, then f is $I_{\pi gb}$ - irresolute.

Proof: Let V be $I_{\pi gb}$ -closed in Y. Let $f^{-1}(V) \subseteq U$ where U is π -open in X. Hence $V \subseteq f(U)$ and f(U) is π -open implies $bIcl(V) \subseteq f(U)$. Since f is bI-irresolute, $f^{-1}(bIcl(V))$ is bI-closed.

Hence $bIcl(f^1(V)) \subseteq bIcl(f^1(bIclV)) = f^1(bIcl(V)) \subseteq U$. Therefore f is $I_{\pi eb}$ -irresolute.

Theorem 5.20: For a set $A \subseteq (X, \tau, I)$ if A is π -clopen, then A is Q-set, $I_{\pi eb}$ -closed.

Proof: Let A be π -clopen, then A is both π -open and π -closed. Hence A is both open and closed. Therefore cl(int(A)) = int(cl(A)) which shows that A is Q-set. Also $blcl(A) \subseteq cl(A) = A$, hence A is $I_{\pi eb}$ -closed.

REFERENCES

- 1. A.Acikgoz and S.Yuksel, Some new sets & decompositions, I-R continuity,τI-continuity, continuity via idealization,Acta.Math.Hungar,114(1-2)(2007),79-89.
- 2. D.Andijevic, On b-open sets, Mat.Vesnik 48(1996), 59-64(20).
- 3. D.Andijevic, Semi pre open sets, Mat. Vesnik 38(1986),24-32.
- S.P.Arya & T.M.Nour, Characterizations of S-normal spaces, Indian Jour.pure Appl.Math 21(1990) no.8,717-719
- 5. M.Caldas & S.Jafari, On some applications of b-open sets in topological spaces, Kochi J.Math 2(2007),11-19..
- 6. J.Dontchev and M.Przeemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math.Hungar, 71(1996), 109-120.
- 7. J.Dontchev, On generalizing semi pre-open setts, Mem fac.Sci.Kochi Univ.A.Math 16(1995), 35-48.
- 8. J.Dontchev, M.Ganster and T.Noiri, Unified Approach of generalized closed sets via topological ideals, Math. Japan, 49(1999), 395-401.
- 9. J.Dontchev and T.Noiri, Quasi normal spaces and πg-closed sets, Acta.Math.Hungar, 89(2000), 211-219.
- 10. E.Ekici and M.Caldas, Slightly-continuous functions, Bol.Soc.Parana.Math(3), 22(2004),63-74.
- 11. E.Ekici, On γ-normal spaces, Bull.Math.Soc.Sci.Math.Roumanie Tome 50(98) No.3, 2007,259-272
- 12. Erdal Ekici, On pre-I-open sets, semi-I-open sets and bI-open sets in ideal topological spaces, Acta univ.Apulensis ISSN: 1582-5329, no.30/2012, pp 293-303.
- 13. M.Ganster and M.Steiner, On bt-closed sets, Appl.Gen.Topol.8 (2007), no.2, 243-247.
- 14. Hayashi E: Topologies defined by local properties, Math.Ann., 156(1964), 205-215.
- 15. C.Janaki, Studies on $\pi g\alpha$ -closed sets in topology, Ph.D., Thesis, Bharathiar University, Coimbatore (2009).
- 16. D. Jankovic & T.R. Hamlet, New topologies from old via ideals, Amer Math.Monthly, 97(4) (1990), 295-310
- 17. S.P.Jothiprakash, On bI identification maps, Int.Jou.of Res. Vol(1), 2013, 52-57.
- 18. Kuratowski k.: Topology, Vol 1, Academic Press, New York(1996).
- 19. N.Levine, Generalized closed sets in topology, Rend.circ.Math.Palermo(2),19(1970),89-96.
- 20. Metin Akdag, On bI-open sets and bI-continuous function, Int.Jour.Math and Math.Sci. vol(1), 2007, Id 75721.
- H. Maki, J. Umehara and T. Noiri., "Every topological space is pre-T1/2", Mem.Fac.Sci. Kochi Univ. Ser. A Math., 17, (1996), 33-42.
- 22. Navaneethakrishnan M.and Pauraj joseph J, g-closed sets in ideal topological spaces, Acta Math Hungar, 119(4), (2008), 365-371.
- 23. Navaneethakrishnan M.and Sivaraj.D, Regular generalized closed sets in ideal topological spaces, Journal of Advanced research in pure Mathematics, Vol 2 issue 3(2010), 24-33.
- 24. T.Noiri, On α -continuous function, casopis pest Math.109 (1984), 118-126.
- 25. J.H.Park, On π gp-closed sets in Topological spaces, Indian J.Pure Appl.Math.,(To appear).
- 26. M.Rajamani,V. Indumathi and S.Krishnaprakash, Iπg-closed sets and Iπg-continuity, Journal of Advanced research in pure math.2(4)(2010),63-72.
- 27. M.S.Sarasak & N.Rajesh,π-generalized semi-preclosed sets, International Mathematical forum,5(2010), 573-578.
- 28. D.Sreeja and C.Janaki, On πgb-closed sets in topological spaces, IJMA-2(8), 2011, 1314-1320.
- 29. R.Vaidyanathasamy, The localization theory in set topology, Proc. Indian Acad.Sci.Math.Sci.20 (1945),51-61.

Source of support: Nil, Conflict of interest: None Declared