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ABSTRACT 
This article considers the problem of bivariate stratified sampling in presence of partial response. Each stratum of 
population is divided into complete non respondents, partial respondents and complete respondents. Here it is assumed 
that respondents of questions of category II is also the respondents to questions of category I, but the converse is not 
necessarily true. In sample survey problems uncertainty is inherent because only a sample is studied in place of whole 
population, therefore, the problem is formulated as a stochastic biobjective nonlinear programming problem where 
sampling variances are considered to be random. The formulated nondeterministic problem is converted into 
equivalent deterministic form by adopting the Modified E-model technique. To derive the compromise allocation four 
different techniques viz Distance based lexicographic programming, -constraint, Euclidean distance and Khuri and 
Cornell are adopted. A simulation study has been done to adjudge their significance from the point of precision. Data 
has been generated through R software and problems are solved by an optimization software LINGO.  
 
Keywords: Compromise allocation, Stochastic programming, Non response, Stratified sampling.  
 
 
1. INTRODUCTION 
 
In sample surveys non response is the failure to obtain a valid response from a sampled unit. Non response has the 
potential to introduce bias into a survey estimates and reduce the precision of survey estimates. All types of non 
response result in missing data. Non response can be classified as follows: when a sampled unit fails to respond at all to 
the data collection efforts, such type of missing data is called unit non response (the failure of a sample unit to respond 
to the survey). Partial non response is another form of missing data that occurs when a unit responds to some of the 
data items in the survey but fails to answer one or more items or when only a portion of the survey is completed. Non 
response may occur for various reasons, but most non response may be classified into two broad categories (i) 
accessibility issues, refers to the ability to make contact with the sampled unit (ii) amenability issues, refers to the units 
willingness to cooperate with the survey request after contact has been made. A third and generally less significant 
cause of non response is loss due to administrative issues, such as mail questionnaires that are received too late or are 
lost in processing.  
 
Firstly, the problem of non response has been discussed by Hansen and Hurwitz (1946) and in 1956 El-Badry extends 
this technique. After that several authors discuss the problem of complete non response in univariate as well as in 
multivariate case such as Khare (1987), Fabian and Hyunshik (2000), Najmussehar and Bari (2002) etc. Recently, 
problem of complete non response formulated as mathematical programming problem by some authors such as Khan et 
al. (2008), Varshney et al. (2011), Raghav et al. (2012), Gupta et al. (2012) etc. The second type of non response i.e. 
partial non response was first discussed by Tripathi and Khare (1997). They estimate the population mean in presence 
of partial response and after that Maqbool and Pirzada (2005) discuss it in two variate stratified sample surveys and 
find out the optimum sample size and sub-sampling fraction for a fixed budget.   
 
Stochastic programming, as the name implies, is mathematical (i.e. linear, integer, mixed-integer, nonlinear) 
programming but with a stochastic element present in the data. Stochastic programming therefore deals with situations 
where some of the data incorporated into the objective or constraints is uncertain. Uncertainty is usually characterized 
by a probability distribution on the parameters. Several authors has been discussed the stochastic multivariate sample 
allocation problem in stratified sample surveys. Among them are Diaz-Garcia and Cortez (2006, 2008), Diaz-Garcia 
and Garay Tapia (2007), Khan et al. (2012), Ali et al. (2013), Gupta et al. (2013) and many others.   
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In this article, we consider the problem of bivariate stratified sample survey in presence of partial response and 
formulate it as an Stochastic Biobjective Nonlinear Programming Problem (SBONLPP) in which the sampling 
variances are considered as random. Rest of the paper is organized as follows: Section 3 presents Modified E-model 
technique to convert the nondeterministic problem into equivalent deterministic form. In section 4, four different 
methods viz Distance based lexicographic programming, silon-constraint, Euclidean distance and Khuri and Cornell 
has been described to derive the compromise allocation of the BONLPP. In section 5 simulation study has been carried 
out for comparing the efficiency of the suggested methods. Finally section 6 gives the conclusion of the work.  
 
2. PROBLEM SAMPLE SURVEYS IN PRESENCE OF PARTIAL RESPONSE 
 
The sampling scheme used in formulation is as in Maqbool and Pirzada (2005). However, for the sake of continuity 
they are reproduced here.   
 
Let 1 2, , , , 1, 2, , ; 1, 2, ,

hhj hj hjNX X X j p h L= =   be the measurement of hN  units who respond to thj  

character in thh  stratum. Questionnaire is assumed to have the questions of two categories. Character I are measured 
by questions of category I and character II by those of category II.   
 
First of all in phase one select a random sample from each stratum and send a mail questionnaire to all of the selected 
units in each stratum. After that identify the partial respondents (those who reply the questions of category I only) and 
the complete respondents (those who reply the questions of both the categories) in each stratum. Now by personnel 
interview or through some additional efforts collect data from the selected non-respondents and the partial respondents 
from each stratum in the sub sample. To make sure that a respondent to questions of category II always responds to 
questions of category I, it is assumed that the questions of category I are simple. Therefore the whole population is 
divided into three groups’ viz. non response, partial response and complete response. In second attempt it is assumed 
that through extra efforts information from non respondents and partial respondents in each stratum are collected and 
each unit of the sub sample yields information on both the categories.  
 
The suffix ‘h’ denotes the stratum number; subscripts designate the attempts 1 and 2 while superscripts designate 
characters. The superscripts with bar will stand for the character under study corresponding to non respondents.   
 
Notations:  

hn = sample size drawn using SRSWOR  
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1hn  = number of respondents to questions of category I only at first phase,   
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1hn = number of complete respondents to questions of categories I and II both at first phase,   
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1hn  = number of complete non-respondents at first phase.   
 
In second phase by personnel interview or through other extensive methods information is collected from the complete 
non-respondents and partial respondents for questions of both the categories.   
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1hn , all of which respond to questions of both the categories at second attempt.   
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Here proportion of unit’s viz. hk  selected for second attempt out of the partial respondents and the total non 
respondents are assumed to be same.   
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                of (1,2)
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characters I and II respectively.   
 
After ignoring the terms independent of  in variances of two estimators, expressions (1) and (2) can be written as:  
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The cost function is defined as:  
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where = overhead cost   
= cost of including a unit in the sample in thh  stratum.   
)1(

1hc = cost incurred/unit in enumerating questions of category I in thh stratum in first attempt.   
)2(

1hc = cost incurred/unit in enumerating questions of category II in thh stratum in first attempt.   

2hc = cost incurred/unit in thh  stratum in enumerating both the characters in second attempt.   
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2.1. Stochastic Biobjective Nonlinear Programming Problem 
 
Usually, a sample surveys problem is subject to certain uncertainty because only a sample has been studied instead of 
the whole population. There are several ways to deal with such uncertainty in data. Therefore, in this section a 
SBONLPP is formulated in which 2

1hs and 2
2hs are considered as random. The problem can be formulated as follows:  
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To deal with the randomness in objective functions technique discussed by Diaz-Garcia and Tapia (2007) has been 
used and for the sake of continuity reproduced according to our sample survey problem in the next section.  
 
3. Conversion of SBONLPP to equivalent DBONLPP 
 
In this section probabilistic sampling variances converted into equivalent deterministic form by Modified E model 
technique as follows:  
 
3.1. Modified E-model 
 
Consider the stochastic programming problem in (9). By using the limiting distribution of the sample variances (see 
Melaku, 1986), consider the random variable  defined as  
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From Diaz-Garcia and Tapia (2007) the objective function is given by  
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Now from eq. (10) the deterministic objective function can be written as:  
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But the objective function is given in terms of the population variances 2

1hs , which are unknown (by hypothesis), 

therefore we will use the sample variances 2
1hs . Thus, the equivalent deterministic objective function will be:  
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Similarly we can write the deterministic form of the second objective function as  

( )2
4

2

1
2

22
2

4
1

4

2
2
2

2

1
41 )1(1

)1(
))((

)1(
1

)1(
1)( hh

L

h hh

hhh
hh

L

h
h

h

h

h

wk
nn

sCPsPw
n
k

n
nf −+

−
−

+















−
−

+







−

= ∑∑
==

ββ  

 
Here 21 and ββ  are non-negative constants. Now the transformed BONLPP (8) can be presented as:  
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4. OPTIMIZATION TECHNIQUES 
 
This section provides a detail description of various techniques used for obtaining a compromise allocation of 
DBONLPP (13).  
 
4.1. Distance based Lexicographic Goal Programming 
 
This is a modified form of lexicographic goal programming, in this method a set of solutions is obtained by giving 
priorities to the objectives one after the other. Out of these solutions, an ideal solution is identified. A general procedure 
with two objectives is as follows:  
 
If priority is given to the variance of first characteristic, then we have to solve the following lexicographic goal 
programming problem  



















≥≤≤

≤







++++

≤−

≤−

∑∑∑∑

∑

====

=

0;2

)()(

)()(toSubject

Minimize

0
1

43
2

1
2

)2(
1

1
1

)1(
1

1

)2(*
2

)2(

)1(*
1

)1(

2

1
j

hhh

L

h h

h

h

h
hh

L

h
hhh

L

h
hhh

L

h
nh

j

kNn

C
k
w

k
wncwncwncnc

xVxV

xVxV

δ

δ

δ

                           (14) 

Similarly if priority is given to variance of second characteristic, then we have to solve the following lexicographic 
goal programming problem  
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We will obtain P! (Factorial) different solutions by solving the P! problems arising for P! different priority structures as 
follows:   

 
Table-1: Calculations for ideal solutions 
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From the calculations done in Table 1 ideal solution is given as: Ideal so solution 
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solution can never be achieved because it may violate the constraint. Therefore, the solution, which is closest to the 
ideal solution, is acceptable as the best compromise solution, and the corresponding priority structure is identified as 
most appropriate priority structure in the planning context. Distances of different solutions from the ideal solution 
defined in (16) below are then calculated. The solution corresponding to the minimum distance gives the best 
compromise solution.   
Now,  
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Therefore, the optimal distance from the ideal solution is given as  
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Let the minimum be attained for r = t.  
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tt kkknnn  is the best compromise solution of the problem.  

 
4.2. ɛ-Constraint Method 
 
In the ɛ-constraint method, investigator needs to identify the most important characteristic and the objective functions 
corresponding to that characteristic is selected to be optimized and the other entire objective functions are converted 
into constraints by setting an upper bound to each of them (see Miettinen, 1999).   
 
Let the lth characteristic },,2,1{ pl ∈ , be the most important. Then the problem to be solved is of the form   
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where },,2,1{ pl ∈ . Problem (18) is called an ɛ-constraint problem.  
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4.3. Euclidean Distance Method 
 
In the situations where it is difficult to decide which is the most important characteristic of the survey distance based 
method can be used. It requires only a vector of ideal goals that can be determined with the null information expressed 
in the problem (see Rios et al., 1989 and Steuer, 1986).   
 
Using this method compromise allocation is obtained by minimizing the distances between the vector of individual 
optimum variances and their vector of targets.  
 
Consider the vector of target α  as  
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After computingα , under Euclidean distance method the optimization problem can be formulated as:  
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where the objective function represents the squared distance between the vectors 
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belongs to n-dimensional Euclidean space.  
 
4.4. Khuri and Cornell Method 
 
In 1986, Khuri and Cornell proposed an alternative distance model. Formulated problem according to his method is 
given as:  
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5. SIMULATION STUDY AND DISCUSSION 
 
For comparing the efficiency of the suggested techniques, a simulation study has been carried out. The R language 
(2004) has been used to perform the simulations and data analysis. We have generated two populations with sizes 
N=100 and 1050. From these populations four strata are randomly generated. The characteristics for the two 
populations have generated in the following way:  

)95,300(~and)150,500(~
)2()1(

NXNX  
 
Data obtained by simulation study for the two populations are divided into four strata and categorized into two 
characteristic shown in Table (3) and Table (4):   
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Table-3: Data for two characteristics and four strata 

h  hN  hP  2
1hS  2

2hS  hc  )1(
1hc  )2(

1hc  2hc  4
1hC  4

2hC  
1  26  0.26  5395.387  2485.661  0.5  8.5  8.7  25  89713790  23062924  
2  35  0.35  2821.256  776.6979  0.7  7.4  7.6  20  11196593  1145433   
3  16  0.16  109.6188  294.5205  0.4  7  7.2  18  21423.18  150959   
4  23  0.23  5016.379  1028.69  0.6  9  9.2  25  54215891  2280157   

 
In addition to the above, it is assumed that the relative value of the variances of the non-respondents and respondents, 
that is, 25.022

2 =jhjh SS  for 4,,2,12,1 == handj . Further, let the total amount available for the survey be 

C0=1700 units for the problem (8). The proportions of respondents are 3.0and4.0 21 == hh ww  and the 

proportions of non-respondents are 7.0and6.0 43 == hh ww  for the character I and II respectively.   
 

Table-4: Data for two characteristics and four strata 

h  hN  hP  2
1hS  2

2hS  4
1hC  4

2hC  
1 306 0.291429 5800.17 2385.23 144345206 24762269 
2 205 0.195238 555.248 160.637 552045.7 48203.06 
3 353 0.33619 1592.11 684.948 4712352 911132.7 
4 186 0.177143 5464.03 1749.39 115612562 12573051 

 
5.1. Compromise allocation for the small population 
 
The compromise allocation Lhkn hh ,,2,1);,( **

=  corresponding to different methods discuss in section 4 are 
summarized into the Table (5).   

Table-5: Compromise allocations 

Methods 
Allocations 

1n  2n  3n  4n  1k  2k  3k  4k  

1D -distance 26 29 5 23 1.9021 2.2553 2.3927 2.1725 
ɛ-Constraint 26 25 8 19 1.6292 2.0332 2.1274 2.1993 

Eucliedian distance 26 28 6 23 1.8561 2.2182 2.4117 2.2616 
Khuri n Cornell 26 27 7 23 1.8078 2.1735 2.4965 2.3599 

 

Using the allocations given in Table (5), values of variances 2,1);(
)(

=jxV
j

 and trace values are calculated and 
summarized into the Table (6).   

 
Table-6: Variances & Trace value 

Methods 
Variances Trace 

)()(
)2()1( xVxVV +=  )(

)1(xV  )(
)2(xV  

1D -distance 9.239585 5.032199 14.27178 
ɛ -Constraint 9.844362 4.694511 14.53887 

Eucliedian distance 9.316274 4.871827 14.18810 
Khuri n Cornell 9.413643 4.790833 14.20448 

 
5.2. Compromise allocation for the large population 
 
The compromise allocation Lhkn hh ,,2,1);,( **

=  corresponding to different methods discuss in section 4 are 
summarized into the Table (7).   

Table-7: Compromise allocations 

Methods 
Allocations 

1n  2n  3n  4n  1k  2k  3k  4k  

1D -distance  41 8 23 23 2.6635 2.4695 2.3518 2.5879 
ɛ-Constraint 40 7 23 21 2.4682 2.3293 2.1669 2.4784 

Eucliedian distance 40 8 23 23 2.5588 2.5331 2.2957 2.6310 
Khuri n Cornell 40 8 23 22 2.5369 2.5491 2.2662 2.5162 
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Using the allocations given in Table (7), values of variances 2,1);(
)(

=jxV
j

 and trace values are calculated and 
summarized into the Table (8).   

 
Table-8: Variances & Trace value 

Methods 
Variances Trace 

)()(
)2()1(

xVxVV +=  )(
)1(

xV  )(
)2(

xV  

1D -distance 11.49681  4.642227  16.13904   

ɛ-Constraint 11.60296  4.615816  16.21878   
Eucliedian distance 11.50543  4.633290  16.13872   

Khuri n Cornell 11.51934  4.625682  16.14502   
 
6. CONCLUSION 
 
In this article, we consider a bivariate stratified population in presence of partial response. In real world problems, 
several uncertainties are present in data, so an SBONLPP has been formulated to deal with these uncertainties. In 
SBONLPP sampling variances are considered as random variables. SBONLPP has been converted into equivalent 
deterministic form by Modified E-model technique. Since the problem is bivariate it is not necessary the optimum 
allocation for one characteristic is also optimum for second characteristic, so we have to obtain a compromise 
allocation which is optimum for both the characteristics in some sense. Therefore, we obtain the compromise 
allocations by using four different methods such as Distance based lexicographic goal programming, ɛ-Constraint, 
Euclidean distance and Khuri and Cornell. To check the efficiency of the methods two different populations have been 
generated through simulation study by R-software (2004). All the formulated problems have been solved by an 
optimizing software LINGO (2013).  
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