b-H-OPEN SETS AND DECOMPOSITION OF CONTINUITY VIA HEREDITARY CLASSES

M. MURUGALINGAM, R. RAMESH, R. MARIAPPAN*

1Department of Mathematics, Thiruvalluvar College, Papanasam, (T.N.), India.

2Department of Science and Humanities, Dr. Mahalingam College of Engineering and Technology, Pollachi - 642 003, (T.N.), India.

(Received On: 25-06-15; Revised & Accepted On: 15-07-15)

ABSTRACT

In this paper, we introduce and study the notions of b-H-open sets and (bH, λ)-continuity in hereditary generalized topological spaces. We also find the decomposition of (µ, λ)-continuity and (σH, λ)-continuity.

Keywords: generalized topology, Hereditary classes and b-H-open.

2000 Mathematics Subject Classification: 54A05.

1. INTRODUCTION AND PRELIMINARIES

A family µ of subsets of X is called a generalized topology (GT)[1], if ∅ ∈ µ and µ is closed under arbitrary union. The generalized topology µ is said to be strong [7], if X ∈ µ. A hereditary class H of X is a non-empty collection of subsets of X such that A ⊆ B, B ∈ H implies A ∈ H [2]. If µ is a GT on X and A ⊆ X, x ∈ X then x ∈ Anµ[2] iff x ∈ M ∈ µ ⇒ M ∩ A /∈ H. A function f: (X, µ, H) → (Y, λ) is called (µ, λ)-continuous [1] (resp. (αH, λ)-continuous [9], (πH, λ)-continuous [9], (σH, λ)-continuous [9], (δH, λ)-continuous [8]) if the inverse image of each λ-open set in Y is µ-open (resp. α-H-open, π-H-open, σ-H-open, δ-H-open).

Definition 1.1: A subset A of a hereditary generalized topological space (X, µ, H) is said to be

(a) α - H -open [2] if A ⊆ iµ (cµ (iµ (A))),
(b) β - H -open [2] if A ⊆ cµ (iµ (cµ (A))),
(c) σ - H -open [2] if A ⊆ cµ (iµ (A)),
(d) π - H -open [2] if A ⊆ iµ (cµ (A)),
(e) δ - H -open [2] if iµ (cµ (A)) ⊆ cµ (iµ (A)),
(f) strong β - H -open [2] if A ⊆ cµ (iµ (cµ (A))),
(g) S - H -set [10] if iµ (A) = cµ (iµ (A)),
(h) t - H -set [10] if iµ (cµ (A)) = iµ (A),
(i) BH -set [10] if A = U ∩ V, where U ∈ µ and V is t - H -set.

Lemma 1.2: [6] Let (X, µ, H) be a hereditary generalized topological space and A, B be subsets of X. Then the following holds:

(a) If A ⊆ B, then A'⊆ B'.
(b) If G ∈ µ, then G ∩ A'⊆ (G ∩ A)'.
(c) A' = cµ (A') ⊆ cµ (A).

2. b-H-OPEN SETS

Definition 2.1: A subset A of a hereditary generalized topological space (X, µ, H) is said to be b - H-open, if A ⊆ iµ (cµ (A)) U cµ (iµ (A)).

Corresponding Author: R. Mariappan*, Department of Science and Humanities, Dr. Mahalingam College of Engineering and Technology, Pollachi - 642 003, (T.N.), India.
Proposition 2.2: Let (X, μ, H) be a hereditary generalized topological space. Then the following holds:

(a) Every σ - H-open set is b - H-open.
(b) Every π - H-open set is b - H-open.
(c) Every b - H-open set is strong β - H-open.
(d) Every b - H-open set is β - H-open.

Proof:

(a) Let A be σ - H-open. Then $A \subseteq c_\mu^\ast (i_\mu (A)) \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A))$. Hence A is b - H-open.

(b) Let A be π - H-open. Then $A \subseteq i_\mu (c_\mu^\ast (A)) \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A))$. Hence A is b - H-open.

(c) Let A be b-open.

Then $A \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A)) \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A)) = c_\mu^\ast (i_\mu (A)) \cup c_\mu^\ast (i_\mu (A)) = c_\mu^\ast (i_\mu (A))$. Hence A is strong β - H-open.

(d) Let A be b - H-open.

Then $A \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A)) \subseteq c_\mu^\ast (i_\mu (A)) \cup c_\mu^\ast (i_\mu (A)) = c_\mu^\ast (i_\mu (A)) \cup c_\mu^\ast (i_\mu (A)) = c_\mu^\ast (i_\mu (A))$. Hence A is β - H-open.

Remark 2.3: The following examples show that the converse of Proposition 2.2 need not be true.

Example 2.4: Let $X = \{a, b, c, d\}$, $\mu = \emptyset$, $\{b, c\}, \{b, c, d\}$, and $H = \emptyset$. Then

1. $A = \{a\}$ is b - H-open set but not σ - H-open.
2. $A = \{a, b\}$ is b - H-open set but not π - H-open.
3. $A = \{a, c\}$ is b - H-open but not b - H-open.

Theorem 2.5: Let (X, μ, H) be a hereditary generalized topological space and $A \subseteq X$. If A is b - H-open and S - H-set, then A is π - H-open.

Proof: If A is S - H-set, then $i_\mu (A) = c_\mu^\ast (i_\mu (A))$. Since A is b - H-open, then $A \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A)) = i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A)) = i_\mu (A) \cup c_\mu^\ast (i_\mu (A)) = i_\mu (A) \sqcup i_\mu (A) = i_\mu (A) \sqcup i_\mu (A) = i_\mu (c_\mu^\ast (A))$. Hence A is π - H-open.

Theorem 2.6: Let (X, μ, H) be a hereditary generalized topological space and $A \subseteq X$. If A is b - H-open and t - H-set, then A is σ - H-open.

Proof: If A is t - H-set, then $i_\mu (A) = c_\mu (i_\mu (A))$. Since A is b - H-open, then $A \subseteq i_\mu (c_\mu (A)) \cup c_\mu (i_\mu (A)) = i_\mu (c_\mu (A)) \cup c_\mu (i_\mu (A)) = i_\mu (A) \cup c_\mu (i_\mu (A)) = i_\mu (A) \cup (i_\mu (A))^* = i_\mu (A) \cup (i_\mu (A))^* = c_\mu^\ast (i_\mu (A))$. Hence A is σ - H-open.

Proposition 2.7: Let (X, μ, H) be a hereditary generalized topological space. Then the following are equivalent.

(a) Every β - H-open set is σ - H-open.
(b) Every β - H-open set is σ - H-open.
(c) Every π - H-open set is σ - H-open.

Proof: It follows from Proposition 2.2.

Proposition 2.8: Let (X, μ, H) be a hereditary generalized topological space. Then arbitrary union of b - H-open sets is b - H-open.

Proof: Let U_a be b - H-open for $a \in A$, we have $U_a \subseteq i_\mu (c_\mu^\ast (U_a)) \cup c_\mu^\ast (i_\mu (U_a))$. Then Lemma 1.2, we have $U_a \subseteq i_\mu (c_\mu^\ast (U_a)) \cup c_\mu^\ast (i_\mu (U_a)) = U_a \subseteq (U_a \cup i_\mu (U_a))^* \cup i_\mu (U_a \cup U_a)^* = U_a \cup U_a = U_a$. Hence U_a is b - H-open.

Proposition 2.9: Let (X, μ, H) be a hereditary generalized topological space and A, B be subsets of X. If A is b - H-open and B is μ - H-open, then $A \cap B$ is b - H-open.

Proof: If A is b - H-open, then $A \subseteq i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A))$ and $A \cap B \subseteq (i_\mu (c_\mu^\ast (A)) \cup c_\mu^\ast (i_\mu (A))) \cap B = (i_\mu (c_\mu^\ast (A)) \cap B) \cup (c_\mu^\ast (i_\mu (A)) \cap B) = (i_\mu (A \cup A^*) \cap B) \cup ((i_\mu (A))^* \cap B) = (i_\mu (A \cup A^*) \cap B) \cup ((i_\mu (A))^* \cap B) = (i_\mu (A) \cap B) \cup ((i_\mu (A))^* \cap B) = (i_\mu (A) \cap B) \cup ((i_\mu (A))^* \cap B) = i_\mu (A \cap B) \cup (i_\mu (A))^* \cap B = i_\mu (A \cap B) \cup i_\mu (A \cap B) = i_\mu (A \cap B) \cup i_\mu (A \cap B) = i_\mu (A \cap B)$. Hence $A \cap B$ is b - H-open.
Remark 2.10: The following examples show that the intersection of two \(b - H \)-open sets need not be \(b - H \)-open.

Example 2.11: Let \(X = \{a, b, c, d\} \), \(\mathcal{M} = \{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\} \) and \(H = \{\emptyset, \{a\}, \{b\}\} \).

Consider \(A = \{a, b\} \) and \(B = \{a, c, d\} \) are \(b - H \)-open sets, but \(A \cap B = \{b\} \) is not \(b - H \)-open set.

Proposition 2.12: Let \((X, \mu, H) \) be a hereditary generalized topological space and \(A \subseteq X \). Then the following are equivalent:

(a) \(A \) is \(\sigma - H \)-open.
(b) \(A \) is both \(b - H \)-open and \(\delta - H \)-open.

Proof:

(a) \(\Rightarrow \) (b): If \(A \) is \(\sigma - H \)-open, then \(A \subseteq c_{\mu}(i_{\mu}(A)) \). Now \(i_{\mu}(c_{\mu}(A)) \subseteq c_{\mu}(i_{\mu}(A)) \subseteq c_{\mu}(i_{\mu}(A)) \). Hence \(A \) is \(\delta - H \)-open. Obviously \(A \) is \(b - H \)-open.

(b) \(\Rightarrow \) (a): If \(A \) is \(b - H \)-open and \(\delta - H \)-open, then \(A \subseteq i_{\mu}(c_{\mu}(A)) \cup c_{\mu}(i_{\mu}(A)) \) and \(i_{\mu}(c_{\mu}(A)) \subseteq c_{\mu}(i_{\mu}(A)) \), therefore \(A \subseteq c_{\mu}(i_{\mu}(A)) \). Hence \(A \) is \(\sigma - H \)-open.

Remark 2.13: The following example shows that the notions \(b - H \)-open and \(\delta - H \)-open are independent.

Example 2.14: Let \(X = \{a, b, c, d\} \), \(\mathcal{M} = \{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\} \) and \(H = \{\emptyset, \{a\}, \{b\}\} \). Then

(a) \(A = \{c\} \) is \(b - H \)-open but not \(\delta - H \)-open.
(b) \(A = \{a\} \) is \(\delta - H \)-open but not \(b - H \)-open.

Proposition 2.15: Let \((X, \mu, H) \) be a hereditary generalized topological space and \(x \in X \). Then \(\{x\} \) is \(\mu \)-open if and only if \(\{x\} \) is \(\sigma - H \)-open.

Proof:

Let \(\{x\} \) be a \(\mu \)-open. Then \(\{x\} = i_{\mu}(\{x\}) \subseteq c_{\mu}(i_{\mu}(\{x\})) \). Hence \(\{x\} \) is \(\sigma - H \)-open. Conversely, assume that \(\{x\} \) is \(\sigma - H \)-open. Then \(\{x\} \subseteq c_{\mu}(i_{\mu}(\{x\})) \). Now \(i_{\mu}(\{x\}) \) is either \(\{x\} \) or \(\emptyset \). We have \(c_{\mu}(\emptyset) = \emptyset \), but \(\{x\} \subseteq c_{\mu}(i_{\mu}(\{x\})) \), so \(i_{\mu}(\{x\}) \neq \emptyset \). Hence \(i_{\mu}(\{x\}) = \{x\} \). Thus \(\{x\} \) is \(\mu \)-open.

Lemma 2.16: Let \((X, \mu, H) \) be a hereditary generalized topological space, \(A \subseteq X \) and \(U \in \mu \). If \(A \cap U = \emptyset \), then \(c_{\mu}(A) \cap U = \emptyset \).

Proposition 2.17: Let \((X, \mu, H) \) be a hereditary generalized topological space and \(x \in X \). Then the following are equivalent:

(a) \(\{x\} \) is \(\pi - H \)-open.
(b) \(\{x\} \) is \(b - H \)-open.
(c) \(\{x\} \) is strong \(\beta - H \)-open.

Proof:

(a) \(\Rightarrow \) (b) and (b) \(\Rightarrow \) (c) follows from Proposition 2.2.

(c) \(\Rightarrow \) (a): Assume that \(\{x\} \) is strong \(\beta - H \)-open and \(\{x\} \) is not \(\pi - H \)-open. Then \(\{x\} \not\subseteq i_{\mu}(c_{\mu}(\{x\})) \), that is, \(\{x\} \cap i_{\mu}(c_{\mu}(\{x\})) = \emptyset \). We have \(i_{\mu}(c_{\mu}(\{x\})) \) is \(\mu \)-open, it follows from Lemma 2.15, \(c_{\mu}(\{x\}) \cap i_{\mu}(c_{\mu}(\{x\})) = \emptyset \) and thus \(i_{\mu}(c_{\mu}(\{x\})) = \emptyset \). Therefore \(c_{\mu}(i_{\mu}(c_{\mu}(\{x\}))) = \emptyset \). But \(\{x\} \) is strong \(\beta - H \)-open, a contradiction. Hence \(\{x\} \) is \(\pi - H \)-open.

Proposition 2.18: Let \((X, \mu, H) \) be a hereditary generalized topological space and \(x \in X \). Then the following are equivalent:

(a) \(\{x\} \) is \(\pi - H \)-open.
(b) \(\{x\} \) is \(b - H \)-open.
(c) \(\{x\} \) is strong \(\beta - H \)-open.

Proof:

(a) \(\Rightarrow \) (b) and (b) \(\Rightarrow \) (c) follows from Proposition 2.2.

(c) \(\Rightarrow \) (a): Assume that \(\{x\} \) is strong \(\beta - H \)-open and \(\{x\} \) is not \(\pi - H \)-open. Then \(\{x\} \not\subseteq i_{\mu}(c_{\mu}(\{x\})) \), that is, \(\{x\} \cap i_{\mu}(c_{\mu}(\{x\})) = \emptyset \). We have \(i_{\mu}(c_{\mu}(\{x\})) \) is \(\mu \)-open, it follows from Lemma 2.15, \(c_{\mu}(\{x\}) \cap i_{\mu}(c_{\mu}(\{x\})) = \emptyset \) and thus \(i_{\mu}(c_{\mu}(\{x\})) = \emptyset \). Therefore \(c_{\mu}(i_{\mu}(c_{\mu}(\{x\}))) = \emptyset \). But \(\{x\} \) is strong \(\beta - H \)-open, a contradiction. Hence \(\{x\} \) is \(\pi - H \)-open.
Proposition 2.18: Let \((X, \mu, H)\) be a hereditary generalized topological space and \(A \subseteq X\) such that \((i_\mu(A^*)) \subseteq i_\mu(A^*)\). Then the following are equivalent:

(a) \(A \subseteq i_\mu(A^*)\).

(b) \(A\) is \(b\)-\(H\)-open and \(A \subseteq A^*\).

Proof:

(a) \(\Rightarrow\) (b): If \(A \subseteq i_\mu(A^*) \subseteq A^*\). Since \(A \subseteq i_\mu(A^*) \subseteq i_\mu(A^*) \cup i_\mu(A) \subseteq i_\mu(A \cup A) = i_\mu(c_\mu(A^*)) \subseteq i_\mu(c_\mu(A)) \cup c_\mu(i_\mu(A))\). Then \(A\) is \(b\)-\(H\)-open.

(b) \(\Rightarrow\) (a): If \(A\) is a \(b\)-\(H\)-open and \(A \subseteq A^*\), then \(A \subseteq i_\mu(c_\mu(A)) \subseteq i_\mu(c_\mu(A^*)) \cup i_\mu(A) = i_\mu(A \cup A^*) \cup (i_\mu(A) \cup (i_\mu(A))^*) \subseteq (i_\mu(A)^* \cup i_\mu(A)) \cup (i_\mu(A))^* = i_\mu(A^*) \cup (i_\mu(A))^* = i_\mu(A^*)\).

Definition 2.19: A subset \(A\) of a hereditary generalized topological space \((X, \mu, H)\) is said to be \(b\)-\(H\)-closed if its complement is \(b\)-\(H\)-open.

Theorem 2.20: Let \((X, \mu, H)\) be a hereditary generalized topological space and \(A \subseteq X\). If \(A\) is \(b\)-\(H\)-closed, then \(i_\mu(c_\mu(A)) \cap c_\mu(i_\mu(A)) \subseteq A\).

Proof: If \(A\) is \(b\)-\(H\)-closed, then \(X - A\) is \(b\)-\(H\)-open. We have \(X - A \subseteq c_\mu(i_\mu(X - A)) \cup i_\mu(c_\mu(X - A)) \subseteq c_\mu(i_\mu(A)) \cup i_\mu(c_\mu(A)) = (X - (i_\mu(c_\mu(A)))) \cup (X - (c_\mu(i_\mu(A)))) \subseteq (X - (i_\mu(c_\mu(A)))) \cup (X - (c_\mu(i_\mu(A)))) = X - (i_\mu(c_\mu(A)) \cup c_\mu(i_\mu(A)))\). Hence \(i_\mu(c_\mu(A)) \cup c_\mu(i_\mu(A)) \subseteq A\).

Remark 2.21: The following example shows that the converse of theorem 2.20 need not be true.

Example 2.22: Let \(X = \{a, b, c, d\}, \mu = \{\emptyset, \{a\}, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\}\) and \(H = \{\emptyset, \{a\}, \{b\}\}\). Let \(A = \{c\}\), then \(i_\mu(c_\mu(A)) \cap c_\mu(i_\mu(A)) \subseteq A\) but \(A\) is not \(b\)-\(H\)-closed.

Corollary 2.23: Let \((X, \mu, H)\) be a hereditary generalized topological space and \(A \subseteq X\) such that \(X - i_\mu(c_\mu(A)) = c_\mu(i_\mu(X - A))\) and \(X - c_\mu(i_\mu(A)) = i_\mu(c_\mu(X - A))\). Then \(A\) is \(b\)-\(H\)-closed if and only if \(i_\mu(c_\mu(A)) \cap c_\mu(i_\mu(A)) \subseteq A\).

Proof: By theorem 2.20, if \(A\) is \(b\)-\(H\)-closed, then \(i_\mu(c_\mu(A)) \cap c_\mu(i_\mu(A)) \subseteq A\). Conversely, if \(i_\mu(c_\mu(A)) \cap c_\mu(i_\mu(A)) \subseteq A\), then \(X - A \subseteq X - (i_\mu(c_\mu(A)) \cap c_\mu(i_\mu(A))) \subseteq (X - i_\mu(c_\mu(A))) \cup (X - c_\mu(i_\mu(A))) = i_\mu(c_\mu(X - A)) \cup i_\mu(c_\mu(X - A)) = c_\mu(i_\mu(X - A)) \cup i_\mu(c_\mu(X - A)) = c_\mu(i_\mu(X - A)) \cup i_\mu(c_\mu(X - A))\). Therefore, \(X - A\) is \(b\)-\(H\)-open and hence \(A\) is \(b\)-\(H\)-closed.

Definition 2.24: A subset \(A\) of a hereditary generalized topological space \((X, \mu, H)\) is said to be strong \(B_{H}\)-set if \(A = U \cap V\), where \(U \in \mu\) and \(V\) is a \(t\)-\(H\)-set and \(i_\mu(c_\mu(V)) = c_\mu(i_\mu(V))\).

Proposition 2.25: Let \((X, \mu, H)\) be a hereditary generalized topological space and \(A \subseteq X\). If \(A\) is a strong \(B_{H}\)-set, then \(A\) is \(B_{H}\)-set.

Proof: Obvious.

Remark 2.26: The following example shows that the converse of proposition 2.25 need not be true.

Example 2.27: Let \(X = \{a, b, c, d\}, \mu = \{\emptyset, \{a\}, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\}\) and \(H = \{\emptyset, \{a\}, \{b\}\}\). \(A = \{b\}\) is \(B_{H}\)-set but not strong \(B_{H}\)-set.

Proposition 2.28: Let \((X, \mu, H)\) be a strong hereditary generalized topological space and \(A \subseteq X\). Then the following are equivalent:

(a) \(A\) is \(\mu\)-open.

(b) \(A\) is \(b\)-\(H\)-open and a strong \(B_{H}\)-set.

Proof:

(a) \(\Rightarrow\) (b): Clearly every \(\mu\)-open set is \(b\)-\(H\)-open. Now every \(\mu\)-open set is strong \(B_{H}\)-set, because \(X\) is \(t\)-\(H\)-set and \(i_\mu(c_\mu(X)) = c_\mu(i_\mu(X))\).

(b) \(\Rightarrow\) (a): If \(A\) is \(b\)-\(H\)-open and strong \(B_{H}\)-set, then \(A \subseteq i_\mu(c_\mu(A)) \cup c_\mu(i_\mu(A)) = i_\mu(c_\mu(U \cap V)) \cup c_\mu(i_\mu(U \cap V))\), where \(U\) is \(\mu\)-open and \(V\) is \(t\)-\(H\)-set and \(i_\mu(c_\mu(V)) = c_\mu(i_\mu(V))\). Hence \(A \subseteq (i_\mu(c_\mu(U)) \cap i_\mu(c_\mu(V))) \cup (c_\mu(i_\mu(U)) \cap c_\mu(i_\mu(V))) \subseteq U \cap i_\mu(c_\mu(V)) \cup U \cap c_\mu(i_\mu(V)) = U \cap i_\mu(c_\mu(V)) = U \cap i_\mu(V) = i_\mu(U \cap V) = i_\mu(A)\). Hence \(A\) is \(\mu\)-open.

Remark 2.29: The following examples show that the notions of \(b\)-\(H\)-open and strong \(B_{H}\)-set are independent.
Example 2.30: Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{b\}, \{b, c\}, \{c, d\}, \{b, c, d\}\}$ and $H = \{\emptyset, \{a\}, \{b\}\}$.
1. $A = \{d\}$ is strong B_H-set but not b-H-open.
2. $A = \{a, b\}$ is b-H-open but not strong B_H-set.

3. DECOMPOSITION OF (μ, λ)-CONTINUITY AND $(\sigma_{\mathcal{H}}, \lambda)$-CONTINUITY

Definition 3.1: A function $f: (X, \mu, H) \to (Y, \lambda)$ is called $(b_{\mathcal{H}}, \lambda)$-Continuous function, if the inverse image of each λ-open set in Y is b-H-open in X.

Proposition 3.2: If a function $f: (X, \mu, H) \to (Y, \lambda)$ is either $(\sigma_{\mathcal{H}}, \lambda)$-continuous or $(\pi_{\mathcal{H}}, \lambda)$-continuous, then f is $(b_{\mathcal{H}}, \lambda)$-continuous.

Proof: Obvious.

Remark 3.3: The following example shows that the converse of Proposition 3.2 need not be true.

Example 3.4: Let $X = Y = \{a, b, c, d\}$, $\mu = \lambda = \{\emptyset, \{a\}, \{c\}, \{b, d\}, \{a, c\}, \{a, b, c\}, X\}$ and $H = \{\emptyset, \{a\}, \{b\}\}$. Define $f: (X, \mu, H) \to (Y, \lambda)$ by $f(a) = a$, $f(b) = b$. Then f is $(b_{\mathcal{H}}, \lambda)$-continuous but not strong B_H-continuous. In Example 3.8 f is strong B_H-continuous but not $(b_{\mathcal{H}}, \lambda)$-continuous.

Theorem 3.6: If a function $f: (X, \mu, H) \to (Y, \lambda)$ is strong B_H-continuous, then f is B_H-continuous.

Proof: It follows from Proposition 2.25.

Remark 3.7: The following example shows that the converse of Theorem 3.6 need not be true.

Example 3.8: Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, \{a, c\}\}$ and $H = \{\emptyset, \{a\}, \{b\}\}$. Also, let $Y = X$ and $\lambda = \{\emptyset, \{a\}, \{a, c\}\}$. Define $f: (X, \mu, H) \to (Y, \lambda)$ by $f(a) = a$, $f(b) = c$ and $f(c) = b$. Then f is strong B_H-continuous but not B_H-continuous.

Proposition 3.9: Let (X, μ, H) be a strong hereditary generalized topological space. For a function $f: (X, \mu, H) \to (Y, \lambda)$, the following are equivalent:
(a) f is (μ, λ)-continuous,
(b) f is $(b_{\mathcal{H}}, \lambda)$-continuous and strong B_H-continuous.

Proof: This is an immediate consequence from Proposition 2.28.

Remark 3.10: The following examples show that the notions of $(b_{\mathcal{H}}, \lambda)$-continuous and B_H-continuous are independent.

Example 3.11: Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}, X\}$ and $H = \{\emptyset, \{d\}\}$. Also, let $Y = \{a, b, c\}$ and $\lambda = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Define a function $f: (X, \mu, H) \to (Y, \lambda)$ such that $f(a) = f(b) = a$, $f(c) = d = f(d)$. Then f is $(b_{\mathcal{H}}, \lambda)$-continuous but not strong B_H-continuous. In Example 3.8 f is strong B_H-continuous but not $(b_{\mathcal{H}}, \lambda)$-continuous.

Proposition 3.12: Let (X, μ, H) be a hereditary generalized topological space. For a function $f: (X, \mu, H) \to (Y, \lambda)$, the following are equivalent:
(a) f is $(\sigma_{\mathcal{H}}, \lambda)$-continuous.
(b) f is $(b_{\mathcal{H}}, \lambda)$-continuous and $(\delta_{\mathcal{H}}, \lambda)$-continuous.

Proof: This is an immediate consequence from Proposition 2.12.

Remark 3.13: The notions of $(\delta_{\mathcal{H}}, \lambda)$-continuous and $(b_{\mathcal{H}}, \lambda)$-continuous are independent as shown in the following examples.

Example 3.14: Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{b, d\}, \{a, b, c\}, X\}$ and $H = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Also let $Y = X$ and $\lambda = \{\emptyset, \{a\}, \{c\}, \{b, d\}, \{a, c\}, \{a, b, c\}, X\}$. Define function $f: (X, \mu, H) \to (Y, \lambda)$ such that $f(a) = a$, $f(b) = f(c) = b$. Then f is $(\delta_{\mathcal{H}}, \lambda)$-continuous but neither $(b_{\mathcal{H}}, \lambda)$-continuous nor $(\sigma_{\mathcal{H}}, \lambda)$-continuous.
Example 3.15: Let \(X = \{a, b, c, d\} \), \(\mu = \{\emptyset, \{c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, X\} \) and \(H = \{\emptyset, \{a\}, \{b\}, \{d\}, \{a, d\}\} \). Let \(Y = \{a, b, c\} \), \(\lambda = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\} \). Define the identity function \(f: X \rightarrow Y \) is \((b_H, \lambda)\)-continuous but it is neither \((\delta_H, \lambda)\)-continuous nor \((\sigma_H, \lambda)\)-continuous.

REFERENCES

8. K. Karuppayi, On \(\delta - H \)-continuous functions in GTS with hereditary classes, IJMA, 5(4) (2014), 345-351.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]