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ABSTRACT 
A function f: A →{0, 1} on A of a Hamiltonian graph G(V, A) is called Zone(zero-one) Hamiltonian Circuit Function 
(ZHCF) if for any e ∈ Hc, f (e) = 1 and f (e) = 0 for e ∉ Hc. A function f: A →{0, 1} on A of a Hamiltonian graph      
G(V, A) is called Zone(zero-one) Hamiltonian Path Function (ZHPF) if for any e ∈ Hp, f (e) = 1 and f (e) = 0 for       
e ∉ Hp. In this paper, we introduce zone (zero-one) Hamiltonian circuit function, Hamiltonian path function and study 
them. 
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INTRODUCTION 
 
We refer ‘Graph Theory with Application’ by J.A. Bondy and U.S.R. Murty for basic notations and definitions [3] and 
[4] for basic terminology in domination related concepts in graph theory. Let G(V, E) be a graph. A set S⊆V(G) is a 
dominating set if  the function  f : V(D) →{0, 1} with S = {v : f(v) = 1} satisfy condition that, for every v ∈ V(G),  
f(N[v]) ≥ 1. A Dominating set S⊆V(G) is called an efficient dominating set if for every vertex u ∈ V(G), |N[u] ∩ S| = 1. 
Benge et al. [2] introduced the following efficiency measure for a graph. The efficient domination number of a graph, 
denoted F(G), is the maximum number of vertices that can be dominated by a set S that dominates each vertex at most 
once. A graph G of order n = |V(G)| has an efficient dominating set if and only if F(G) = n. 
 
Lutz Volkmann [5] defined a signed dominating function on a finite simple digraph D to be a two-valued function f : 
V(D) →{-1, 1}. If ∑ 𝑓𝑓(𝑥𝑥) ≥ 𝑥𝑥∈𝑁𝑁−[𝑣𝑣] 1 for each v ∈ V(D), where N-[v] consists of v and all vertices of D from which arcs 
go into v, then f  is a signed dominating function on D. The sum f (V(D)) is called the weight w(f) of  f . The minimum 
of weights w(f), taken over all signed dominating functions f  on D, is the signed domination number  𝛾𝛾s(D) of D. A set 
{f1, f2,…, fd} of signed dominating function on D with the property that ∑ 𝑓𝑓𝑖𝑖 (𝑥𝑥)𝑑𝑑

𝑖𝑖=1  ≤ 1 for each x ∈ V(D), is called a 
signed dominating family ( of function) on D. The maximum number of functions in a signed dominating family on D 
is the domatic number of D, denoted by dS (D). 
 
K. Muthu Pandian et al. [6, 7, 8] defined a Twin Dominating Function (TDF) as follows, Let D(V, A) be any digraph. 
A function f : V → [0, 1] is called a twin dominating function if the sum of its function values over any closed out-
neighborhood is at least one as well as the sum of its function values over any closed in-neighborhood is at least one. A 
TDF f of D is called a minimal TDF if there is no TDF 𝑔𝑔 of D such that 𝑔𝑔 (v) ≤ f(v) for all v∈V and 𝑔𝑔 (v0) ≠ f(v0) for 
some v0 ∈ V. An in-dominating function (IDF) of a digraph D(V, A) is a function f : V → [0, 1] such that 
∑ 𝑓𝑓(𝑢𝑢) ≥ 𝑢𝑢∈𝑁𝑁−[𝑣𝑣] 1 for all v ∈V, where N-[v] =  N-(v) ∪ {v} and N-(v) denote the set of all vertices of D which are 
adjacent to v. In this paper, we focus our study on zone in-degree efficient dominating numbers for directed graphs. 
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1. PRELIMINARIES  
 
A graph G(V, A) with vertex set V and arc set A is considered. A Hamiltonian circuit in a connected graph G is defined 
as a closed walk that traverses every vertex of G exactly once, except of course the starting vertex, at which the walk 
also terminates. If we remove any one arc from a Hamiltonian circuit, we left a path. This path is called a Hamiltonian 
path. A set F ⊆ A is an arc dominating set if each arc in A is either in F or is adjacent to an arc in F. The arc 
domination number γ′(G) is the smallest cardinality among all minimal arc dominating sets.  For a graph G(V, A), a 
subset F of A is independent if no two arcs in F are adjacent.  
 
2. ZONE HAMILTONIAN CIRCUIT FUNCTION AND HAMILTONIAN PATH FUNCTION 
 
Definition 2.1: Let G(V, A) be a Hamiltonian graph and C be a Hamiltonian circuit, the set of all arcs in Hamiltonian 
circuit C of  G is denoted by Hc = {e : e is arc in Hamiltonian circuit}. 
 
Definition 2.2: Let G(V, A) be a Hamiltonian graph and P be a Hamiltonian path, the set of all arcs in Hamiltonian 
path P of  G is denoted by Hp = { e : e is arc in Hamiltonian path}. 
 
Definition 2.3: Let G(V, A) be a Hamiltonian graph. A function f: A →{0, 1} is said to be zone Hamiltonian circuit 
function (ZHCF) of G if  f (e) = 1 for e ∈ Hc  and  f (e) = 0 for e ∉ Hc.                   
 
Definition 2.4: Let G(V, A) be a Hamiltonian graph. A function f: A →{0, 1} is said to be zone Hamiltonian path 
function (ZHPF) of G if  f (e) = 1 for e ∈ Hp  and  f (e) = 0 for e ∉ Hp.  
 
Definition 2.5: Let G(V, A) be a Hamiltonian graph and  f : A →{0, 1} be the Hamiltonian function defined on G, the 
weight of  f : A →{0, 1} is defined as | f | = ∑ 𝑓𝑓(𝑒𝑒)𝑒𝑒∈𝐴𝐴  = f (A).  
 
Definition 2.6: A set F ⊆ A is a Hamiltonian arc dominating set if each arc in Hc is either in F or is adjacent to an arc 
in F. 
 
Definition 2.7: The Hamiltonian arc domination number γ′(Hc) is defined as the smallest cardinality among all 
minimal Hamiltonian arc dominating sets in Hamiltonian circuit. 
 
Example 2.8:  
 

 
 
Proposition 2.9: Let G(V, A) be a Hamiltonian graph and  f : A →{0, 1} be a zone Hamiltonian circuit function defined 
on G then | f | = | V |. 
 
Proof: Since a Hamiltonian circuit in G is a closed walk that traverses every vertex of G exactly once so that | f | = | V |.  
By definition of zone Hamiltonian circuit function, f (e) = 1 for e ∈ Hc otherwise the weight of each arc is zero hence 
∑ 𝑓𝑓(𝑒𝑒)𝑒𝑒∈𝐴𝐴  = | f | = | V |. 
 
Theorem 2.10: Let G(V, A) be a graph of Hamiltonian path of order n and f : A →{0, 1} be a zone Hamiltonian path 
function defined on G then | f | = n-1 
 
Proof: We remove any one arc from a Hamiltonian circuit we left with a path (this path is called Hamiltonian path). 
Since by definition of zone Hamiltonian path function, assuming numerical value 1 for each arc in Hp and 0 for arcs not 
in Hp. Clearly, a Hamiltonian path in a graph G traverses every vertex of G. Hence the sum of the numerical values is 
equal to the length of the Hamiltonian path so that | f | = n-1 
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Theorem 2.11: In a complete graph with n (n is odd n ≥ 3) vertices there are  𝑛𝑛−1

2
  distinct zone Hamiltonian circuit 

function such that each function consists arc – disjoint Hamiltonian circuit. 
 
Proof: There are  𝑛𝑛(𝑛𝑛−1)

2
  arcs in a complete graph G and a Hamiltonian circuit in G consists of n arcs. So that the 

number of arc - disjoint Hamiltonian circuit in G cannot exceed 𝑛𝑛  −1
2

 . That there are  𝑛𝑛  −1
2

 arc – disjoint Hamiltonian 
circuits, when n is odd, can be shown as follows; 
 
The subgraph of a complete graph of n vertices in fig.1.1 is a Hamiltonian circuit. Keeping the vertices fixed on a 
circle, rotate the polygonal pattern clockwise by  360

𝑛𝑛−1
, 2×360

𝑛𝑛−1
, 3×360

𝑛𝑛−1
,….𝑛𝑛−3

2
 360
𝑛𝑛−1

 degrees. 

 
 
Observe that each rotation produces a Hamiltonian circuit that has no arc in common with any of the previous once. 
Thus we have 𝑛𝑛−3

2
 new Hamiltonian circuit, all arc – disjoint from the one in fig.1.1 and also arc – disjoint among 

themselves. Hence we can consists 𝑛𝑛  −1
2

 distinct zone Hamiltonian functions.      
 
Theorem 2.12: Let G(V, A) be a Hamiltonian graph of order n (n is multiple number of 3) and f : A→ {0,1} be a ZHCF 
defined on G then  | 𝑓𝑓  |

3
  =  γ′(Hc).  

 
Proof: It is trivially true for n = 3 and γ′(Hc) = 1 since each Hamiltonian circuit in G has n arcs and n is multiple of 3. 
Let Hc = { e1, e2, e3,….en}, e1 is adjacent to e2, e2 is adjacent to e3, and so on en is adjacent to e1 denoted as e1→ e2 → e3 
→ …..→ en → e1. Construct the set F from Hc as follows; F = {e1+3r : 1+3r < n and r = 0, 1, 2,….m}. Clearly, F is the 
Hamiltonian arc dominating set with smallest cardinality and 3 × γ′(Hc) = | f | hence the theorem. 
 
Theorem 2.13: Let G(V, A) be a Hamiltonian graph of order n = 4+6r and f : A → {0,1} be a ZHCF defined on G then  
| 𝑓𝑓  |−2𝑟𝑟

2
  =  γ′(Hc) , r = 0, 1, 2,…..m. 

 
Proof: Let Hc = { e1, e2, e3,….en} and e1→ e2 → e3 → …..→ en → e1 . Construct the set F in Hc as follows;                       
F = {e1, e3i : 3i < n, i = 1, 2, 3,…..k}. Clearly the cardinalities of F are 2, 4, 6, and so on for i =1, 2, ….k. Hence              
| F | = 2+2r for r = 0, 1, 2,…..m. and γ′(H c) = 2+2r. Given n = 4+6r therefore | f | = 4+6r, i.e., 4+6𝑟𝑟−2𝑟𝑟

2
 =  4+4𝑟𝑟

2
 = 2+2r 

and hence the proof. 
 
Theorem 2.14: Let G(V, A) be a complete graph of order n (n ≥ 4 and n is even) and  f : A → {0,1} be a ZHCF defined 
on G then  | 𝑓𝑓  |

2
  =  γ′(G). 

 
Proof: It is trivially true for n = 4 and γ′(G) = 2. Decompose the graph G into two subgraphs G1 and G2 such that G1 is 
a complete graph of n-2 vertices and G2 is a graph of n vertices and 5+4r edges r = 0, 1, 2, ……m. It can be show that 
G2 is connected and symmetric by an edge say ei ∈ G2 such that ei is adjacent to all other edges in G2 (and no edge in G2 
not adjacent to ei ∈ G2). For n = 6, G1 of order n-2 has arc domination number 2 and the arc domination number G2 of 
order n and 5+4r edges has 1 for r = 1. For n = 8, G1 of order n-2 has arc domination number 3 and the arc domination 
number G2 of order n and 5+4r edges has 1 for r = 2. Similarly it can be prove for all n > 8 (n is even).  
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