International Journal of Mathematical Archive-6(8), 2015, 12-20 (ᄌ) MA Available online through www.ijma.info ISSN 2229-5046

BASIC PROPERTIES OF TOTAL BLOCK-EDGE TRANSFORMATION GRAPHS $\boldsymbol{G}^{a b c}$

B. BASAVANAGOUD*, SHREEKANT PATIL
Department of Mathematics, Karnatak University, Dharwad - 580 003, India.

(Received On: 16-07-15; Revised \& Accepted On: 12-08-15)

Abstract

In this paper, we investigate some basic properties such as connectedness, graph equations and diameters of total block-edge transformation graphs.

2010 Mathematics Subject Classification: 05C40,05C12,
Keywords: line graph, block graph, jump graph, qlick graph, total block-edge transformation graphs $G^{a b c}$.

1. INTRODUCTION

Throughout the paper we only consider simple graphs without isolated vertices. We refer to [8] for unexplained terminology and notation. A block of a graph is connected nontrivial graph having no cutvertices. Let $G=(V, E)$ be a graph with block set $U(G)=\left\{B_{i} ; B_{i}\right.$ is a block of $\left.G\right\}$. If a block $B \in U(G)$ with the edge set $\left\{e_{1}, e_{2}, \ldots, e_{r} ; r \geq 1\right\}$, then we say that an edge e_{i} and a block B are incident with each other, where $1 \leq i \leq r$. The line graph $L(G)$ of a graph G is the graph with vertex set as the edge set of G and two vertices of $L(G)$ are adjacent whenever the corresponding edges in G have a vertex in common. The jump graph $J(G)$ of a graph G is the graph whose the vertex set is the edge set of G and two vertices of $J(G)$ are adjacent if and only if the corresponding edges in G are not adjacent in G. The block graph $B(G)$ of a graph G is the graph whose vertices are the blocks of G and in which two vertices are adjacent whenever the corresponding blocks have a cutvertex in common.

The edges and blocks of G are called members of G. The qlick graph $Q(G)$ of a graph G is the graph whose set of vertices is the union of the set of edges and blocks of G and in which two vertices are adjacent if and only if the corresponding member of G are adjacent or incident. This concept is introduced by V. R. Kulli [10] and was studied in [4, 5, 12].

In [16], Wu and Meng generalized the concept of total graph and introduced the total transformation graphs and defined as follows:

Definition: Let $G=(V, E)$ be a graph, and x, y, z be three variables taking values + or - . The transformation graph $G^{x y z}$ is the graph having $V(G) \cup E(G)$ as the vertex set, and for $\alpha, \beta \in V(G) \cup E(G), \alpha$ and β are adjacent in $G^{x y z}$ if and only if one of the following holds:
(i) $\alpha, \beta \in V(G) . \alpha$ and β are adjacent in G if $x=+; \alpha$ and β are not adjacent in G if $x=-$.
(ii) $\alpha, \beta \in E(G) . \alpha$ and β are adjacent in G if $y=+; \alpha$ and β are not adjacent in G if $y=-$.
(iii) $\alpha \in V(G), \beta \in E(G) . \alpha$ and β are incident in G if $z=+; \alpha$ and β are not incident in G if $z=-$.

In [2], B. Basavanagoud et. al generalized the concept of total block graph and introduced the block-transformation graphs and defined as follows:

Definition: Let $G=(V, E)$ be a graph with block set $U(G)$, and let α, β, γ be three variables taking values 0 or 1 . The block-transformation graph $G^{\alpha \beta \gamma}$ is the graph having $V(G) \cup U(G)$ as the vertex set. For any two vertices x and $y \in V(G) \cup U(G)$ we define α, β, γ as follows:
(i) Suppose x, y are in $V(G) . \alpha=1$ if x and y are adjacent in $G . \alpha=0$ if x and y are not adjacent in G.
(ii) Suppose x, y are in $U(G) . \beta=1$ if x and y are adjacent in $G . \beta=0$ if x and y are not adjacent in G.
(iii) $x \in V(G)$ and $y \in U(G) . \gamma=1$ if x and y are incident with each other in $G . \gamma=0$ if x and y are not incident with each other in G.

B. Basavanagoud*, Shreekant Patil /Basic Properties of Total Block-Edge Transformation Graphs Gabc /IJMA-6(8), August-2015.

Inspired by the definition of total transformation graphs [16] and block-transformation graphs [2], Basavanagoud [1] generalized the concept of qlick graph and obtained the four pairs of transformation graphs namely total block-edge transformation graphs.

Definition: Let $G=(V, E)$ be a graph with a block set $U(G)$ and a, b, c be three variables taking values + or - . The total block-edge transformation graph $G^{a b c}$ is a graph whose vertex set is $E(G) \cup U(G)$, and two vertices x and y of $G^{a b c}$ are joined by an edge if and only if one of the following holds:
(i) $x, y \in E(G) . x$ and y are adjacent in G if $a=+; x$ and y are not adjacent in G if $a=-$.
(ii) $x, y \in U(G)$. x and y are adjacent in G if $b=+; x$ and y are not adjacent in G if $b=-$.
(iii) $x \in E(G), y \in U(G) . x$ and y are incident with each other in G if $c=+; x$ and y are not incident with each other in G if $c=-$.

Thus, we obtain eight kinds of total block-edge transformation graphs, in which G^{+++}is the qlick graph $Q(G)$ of G and G^{---}is its complement. Also G^{--+}, G^{-+-}and G^{-++}are the complements of G^{++-}, G^{+-+}and G^{+--}respectively. Some other graph valued functions were studied in $[2,3,6,7,9,11,13,14,16]$. The vertex $e_{i}^{\prime}\left(B_{i}^{\prime}\right)$ of $G^{a b c}$ corresponding to edge e_{i} (block B_{i}) of G and is referred as edge (block)-vertex.

The following will be useful in the proof of our results.
Remark 1.1: $L(G)$ is an induced subgraph of $G^{+b c}$.
Remark 1.2: $J(G)$ is an induced subgraph of $G^{-b c}$.
Remark 1.3: $B(G)$ is an induced subgraph of G^{a+c}.
Remark 1.4: $\overline{B(G)}$ is an induced subgraph of G^{a-c}.
Remark 1.5: [7] If a disconnected graph G has no isolated vertices, then $J(G)$ is connected.
Theorem 1.1: [8] If G is connected, then $L(G)$ is connected.
Theorem 1.2: [8] If G is connected, then $B(G)$ is connected.
Theorem 1.3: [17] Let G be a graph of size $q \geq 1$. Then $J(G)$ is connected if and only if G contains no edge that is adjacent to every other edge of G unless $G=K_{4}$ or C_{4}.

In this paper, we investigate some basic properties of these eight kinds of total block-edge transformation graphs.

2. CONNECTEDNESS OF $\boldsymbol{G}^{a b c}$

The first theorem is obvious from the notion of $G^{a b c}$.
Theorem 2.1: For a given graph G, G^{+++}is connected if and only if G is connected.
Theorem 2.2: For a given graph G, G^{++-}is connected if and only if $G \neq B_{i} \cup B_{j}$ is not a block, where B_{i} and B_{j} are blocks.

Proof: Suppose $G \neq B_{i} \cup B_{j}$ is not a block. Then we consider the following cases:
Case-1. Suppose G is connected. Then it has at least two blocks. Hence by Theorem 1.2 and Remark 1.3, $B(G)$ is a connected induced subgraph of G^{++-}, and also each edge-vertex e_{i}^{\prime} in G^{++-}is adjacent to at least one block-vertex B_{x}^{\prime}, where B_{x} is not incident with e_{i} in G. Therefore for every pair of vertices in G^{++-}are connected. Thus G^{++-}is connected.

Case-2. Suppose G is disconnected. Then it has at least three blocks. If e_{i} and e_{j} are adjacent edges in G, then e_{i} and e_{j}^{\prime} are adjacent in G^{++-}. If e_{i} and e_{j} are not adjacent edges in G, then e_{i}^{\prime} and e_{j}^{\prime} are connected through the block-vertex B_{x}^{\prime}, where B_{x} is not incident with e_{i} and e_{j} in G. If B_{x} and B_{y} are adjacent blocks in G, then B_{x}^{\prime} and B_{y}^{\prime} are adjacent in G^{++-}. If B_{x} and B_{y} are not adjacent blocks in G, then B_{x}^{\prime} and B_{y}^{\prime} are connected through the edge-vertex e_{i}^{\prime}, where e_{i} is not incident with B_{x} and B_{y} in G. If e is not incident with B in G, then e^{\prime} and B^{\prime} are adjacent in G^{++-}. If e is incident with B in G, then there exists not incident edge e_{1} and block B_{1} are not incident with B and e respectively such that e^{\prime} and B^{\prime} are connected in G^{++-}. Otherwise, there is a block B_{1} is not incident with e, and is adjacent to B, such that e^{\prime} and B^{\prime} are connected in G^{++-}. Since in such a case, there is a path between any two vertices of G^{++-}. Hence G^{++-}is connected.

Conversely, suppose G^{++-}is connected. If G is a block, then $G^{++-}=L(G) \cup K_{1}$ is disconnected, a contradiction. If $G=B_{i} \cup B_{j}$, then $G^{++-}=\left(L\left(B_{i}\right)+K_{1}\right) \cup\left(L\left(B_{j}\right)+K_{1}\right)$ is a disconnected graph, a contradiction.

Theorem 2.3: G^{+-+}is connected for any graph G.
Proof: If G is connected, then by Remark 1.1 and Theorem 1.1, $L(G)$ is a connected induced subgraph of G^{+-+}, and each block-vertex B_{x}^{\prime} in G^{+-+}is adjacent to at least one edge-vertex e_{i}^{\prime}, where e_{i} is incident with B_{x} in G. Thus G^{+-+}is connected.

If G is disconnected, then $\overline{B(G)}$ is a connected induced subgraph of G^{+-+}, and each edge-vertex e_{i}^{\prime} in G^{+-+}is adjacent to exactly one block-vertex B_{x}^{\prime}, where B_{x} is incident with e_{i} in G. Thus G^{+-+}is connected.

Theorem 2.4: For a given graph G, G^{+--}is connected if and only if G is not a block.
Proof: If G is a connected graph with at least two blocks, then by Remark 1.1 and Theorem 1.1, $L(G)$ is a connected induced subgraph of G^{+--}, and in G^{+--}, each block-vertex B_{x}^{\prime} is adjacent to at least one edge-vertex e_{i}^{\prime}, where e_{i} is not incident with B_{x} in G. Thus G^{+--}is connected.

If G is disconnected, then $\overline{B(G)}$ is a connected induced subgraph of G^{+--}, and in G^{+--}, each edge-vertex e_{i}^{\prime} is adjacent to at least one block-vertex B_{x}^{\prime}, where B_{x} not is incident with e_{i} in G. Thus G^{+--}is connected.

Conversely, if G is a block, then $G^{+--}=L(G) \cup K_{1}$ is disconnected, a contradiction.
Theorem 2.5: G^{-++}is connected for any graph G.
Proof: If G is connected, then by Remark 1.3 and Theorem 1.2, $B(G)$ is a connected induced subgraph of G^{-++}, and each edge-vertex e_{i}^{\prime} in G^{-++}is adjacent to exactly one block-vertex B_{x}^{\prime}, where B_{x} is incident with e_{i} in G. Thus G^{-++}is connected.

If G is disconnected, then by Remarks 1.2 and $1.5, J(G)$ is a connected induced subgraph of G^{-++}, and each block-vertex B_{x}^{\prime} in G^{-++}is adjacent to at least one edge-vertex e_{i}^{\prime}, where e_{i} is incident with B_{x} in G. Thus G^{-++}is connected.

Theorem 2.6: For a given graph G, G^{-+-}is connected if and only if G is not a block.
Proof: If G is a connected graph with at least two blocks, then by Remark 1.3 and Theorem 1.2, $B(G)$ is a connected induced subgraph of G^{-+-}, and in G^{-+-}, each edge-vertex e_{i}^{\prime} is adjacent to at least one block-vertex B_{x}^{\prime}, where B_{x} is not incident with e_{i} in G. Thus G^{-+-}is connected.

If G is disconnected, then by Remarks 1.2 and $1.5, J(G)$ is a connected induced subgraph of G^{-+-}, and in G^{-+-}, each block-vertex B_{x}^{\prime} is adjacent to at least one edge-vertex e_{i}^{\prime}, where e_{i} is not incident with B_{x} in G. Thus G^{-+-}is connected.

Conversely, if G is a block, then $G^{-+-}=J(G) \cup K_{1}$ is disconnected, a contradiction.
Theorem 2.7: For a given graph G, G^{--+}is connected if and only if G contains no block K_{2} that is adjacent to every other edge of G.

Proof: Suppose a graph G contains no block K_{2} that is adjacent to every other edge of G. If G is a block, then $G^{--+}=J(G)+K_{1}$ is connected. If G has more than one block, then we consider the following two cases:

Case-1. Suppose G contains no edge that is adjacent to every other edge of G. Then by Remark 1.2 and Theorem 1.3, $J(G)$ is a connected induced subgraph of G^{--+}, and each block-vertex B_{x}^{\prime} is adjacent to at least one edge-vertex e_{i}^{\prime} in G^{--+}, where e_{i} is incident with B_{x}. Thus G^{--+}is connected.

Case-2. Suppose G contains an edge e that is adjacent to every other edge of G. Then e is incident with a block B of size more than 2 and e^{\prime} is isolated vertex in $J(G)$ such that $e^{\prime}, B^{\prime}, e^{\prime}$ is a path in G^{--+}, where e_{1} is incident with B. Therefore every pair of edge-vertices are connected in G^{--+}and each block-vertices B_{x}^{\prime} is adjacent to at least one edge-vertex e_{i}^{\prime} in G^{--+}, where e_{i} is incident with B_{x} in G. Thus G^{--+}is connected.

Conversely, suppose G^{--+}is connected. Assume G contains a block K_{2}, say e, that is adjacent to every other edge of G. Then it is easy to see that $G^{--+}=(G-e)^{--+} \cup K_{2}$ is disconnected, a contradiction.

B. Basavanagoud*, Shreekant Patil /Basic Properties of Total Block-Edge Transformation Graphs G ${ }^{\text {abc } / \text { IJMA- 6(8), August-2015. }}$

Theorem 2.8: For a given graph G, G^{---}is connected if and only if $G \neq P_{3}$ is not a block.
Proof: Suppose $G \neq P_{3}$ is not a block. We consider the following two cases:
Case-1. Suppose G contains no edge that is adjacent to every other edge of G. Then by Remark 1.2 and Theorem 1.3, $J(G)$ is a connected induced subgraph of G^{---}, and each block-vertex B_{x}^{\prime} is adjacent to at least one edge-vertex e_{i}^{\prime} in G^{---}, where e_{i} is not incident with B_{x} in G. Thus G^{---}is connected.

Case-2. Suppose G contains an edge e that is adjacent to all other edge of G. Then by definition of G^{---}, each edge-vertex e_{i}^{\prime} is adjacent to edge-vertex e_{k}^{\prime} and to at least one block-vertex B_{j}^{\prime}, where B_{j} is not incident with e_{i}, and e_{k} is not adjacent to e_{i} in G. And also each block-vertex B_{x}^{\prime} is adjacent to block-vertex B_{y} and to at least one edge-vertex e_{i}^{\prime}, where e_{i} is not incident with B_{x}, and B_{y} not adjacent to B_{x} in G. Hence there is a path between any two vertices of G^{---}. Therefore G^{---}is connected.

Conversely, suppose G^{---}is connected. If G is a block, then $G^{---}=J(G) \cup K_{1}$ is disconnected, a contradiction. If $G=P_{3}$, then $G^{---}=2 K_{2}$ is disconnected, a contradiction.

3. GRAPH EQUATIONS AND ITERATIONS OF $\boldsymbol{G}^{a b c}$

For a given graph operator Φ, which graph is fixed under Φ ?, that is $\Phi(G)=G$. It is well known in [15] that for a given graph G, the interchange graph $G^{\prime}=G$ if and only if G is a 2-regular graph.

For a given total block-edge transformation graph $G^{a b c}$, we define the iteration of $G^{a b c}$ as follows:
(1). $G^{(a b c)^{1}}=G^{a b c}$
(2). $G^{(a b c)^{n}}=\left[G^{(a b c)^{n-1}}\right]^{a b c}$ for $n \geq 2$.

Theorem 3.1: Let G be a connected graph. The graphs G and $G^{a b+}$ are isomorphic if and only if $G=K_{2}$.
Proof: Suppose $G^{a b+}=G$. Assume G is a connected graph with $p \geq 3$ vertices. We consider the following two cases:
Case-1. Suppose G is not a tree with p vertices. Then G has at least p edges and at least one block. Thus $G^{a b+}$ has at least $p+1$ vertices. Hence $G^{a b+} \neq G$, a contradiction.

Case-2. Suppose G is a tree with p vertices. Then it has $p-1$ edges and $p-1$ blocks. Thus $G^{a b+}$ has $2 p-2$ vertices. Hence $|V(G)|<\left|V\left(G^{a b+}\right)\right|$. Therefore $G^{a b+} \neq G$, a contradiction.

Conversely, suppose $G=K_{2}$. Then it is easy to see that $G^{a b+}=K_{2}=G$.
Corollary 3.2: Let G be a connected graph. The graphs G and $G^{(a b+)^{n}}$ are isomorphic if and only if $G=K_{2}$.
Theorem 3.3: The graphs G and G^{++-}are isomorphic if and only if $G=2 K_{2}$.
Proof: Suppose $G^{++-}=G$. Assume $G \neq 2 K_{2}$. We consider the following two cases:
Case-1. Suppose G is a block. Then clearly $G^{++-}=L(G) \cup K_{1}$ is disconnected. Thus $G^{++-} \neq G$, a contradiction.
Case-2. Suppose G has at least two blocks with q edges. Then G^{++-}has at least $2 q-1$ edges. Hence the number of edges in G is less than that in G^{++-}. Thus $G^{++-} \neq G$, a contradiction.

Conversely, suppose $G=2 K_{2}$. Then it is easy to see that $G^{++-}=2 K_{2}=G$.
Corollary 3.4: The graphs G and $G^{(++-)^{n}}$ are isomorphic if and only if $G=2 K_{2}$.
Theorem 3.5: For any graph $G, G^{a b-} \neq G$, where $G^{a b-} \neq G^{++-}$.
Proof: If $G=K_{2}$, then $G^{a b-}=2 K_{1} \neq G$. We consider the following two cases:
Case-1. Suppose $G \neq K_{2}$ is a connected graph. By the definitions of $G^{a b+}$ and $G^{a b-}$, we have $\left|V\left(G^{a b+}\right)\right|=$ $\left|V\left(G^{a b-}\right)\right|$. By proof of the Theorem 3.1, we have $|V(G)| \neq\left|V\left(G^{a b+}\right)\right|$. Hence $|V(G)| \neq\left|V\left(G^{a b-}\right)\right|$. Therefore $G^{a b-} \neq G$.

Case-2. Suppose G is a disconnected graph with q edges. Then $G^{a b-}$ has at least $q+1$ edges. Hence $|E(G)| \neq\left|E\left(G^{a b-}\right)\right|$. Therefore $G^{a b-} \neq G$. From all the above two cases, we have $G^{a b-} \neq G$.
© 2015, IJMA. All Rights Reserved

Corollary 3.6: For any graph $G, G^{(a b-)^{n}} \neq G$, where $G^{(a b-)^{n}} \neq G^{(++-)^{n}}$.

4 DIAMETERS OF $\boldsymbol{G}^{\boldsymbol{a b c}}$

The distance between two vertices v_{i} and v_{j}, denoted by $d\left(v_{i}, v_{j}\right)$, is the length of the shortest path between the vertices v_{i} and v_{j} in G. The shortest $v_{i}-v_{j}$ path is often called geodesic. The diameter of a connected graph G, denoted by $\operatorname{diam}(G)$, is the length of any longest geodesic.

In this section, we consider the diameters of $G^{a b c}$.
Theorem 4.1: If G is a connected graph, then $\operatorname{diam}\left(G^{+++}\right) \leq \operatorname{diam}(G)+1$.
Proof: Let G be a connected graph. We consider the following three cases:
Case-1. Assume G is a tree. Then it is easy to see that $\operatorname{diam}\left(G^{+++}\right)=\operatorname{diam}(G)$.
Case-2. Assume G is a cycle C_{n} for $n \geq 3$. Then $G^{+++}=W_{n+1}$ and $\operatorname{diam}\left(G^{+++}\right)<\operatorname{diam}(G)+1$.
Case-3. Assume G contains a cycle C_{n} for $n \geq 3$. Corresponding to cycle C_{n}, W_{n+1} appears as subgraph in G^{+++}. Therefore $\operatorname{diam}\left(G^{+++}\right) \leq \operatorname{diam}(G)+1$.

From all the above three cases, we have $\operatorname{diam}\left(G^{+++}\right) \leq \operatorname{diam}(G)+1$.
Theorem 4.2: If G is neither a block nor a union of two blocks, then diam $\left(G^{++-}\right) \leq 3$.
Proof: Let e_{1}^{\prime}, e_{2}^{\prime} be the two edge-vertices of G^{++-}. If e_{1} and e_{2} are adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{++-}. If e_{1} and e_{2} are not adjacent edges in G, then we have following cases:

Case-1. If e_{1} and e_{2} are incident with same block, then there exists a block B is incident with neither e_{1} nor e_{2} such that $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{++-}.

Case-2. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} in G respectively, then we have the following subcases:

Subcase-2.1. If B_{1} and B_{2} are adjacent in G, then $e_{1}^{\prime}, B_{2}^{\prime}, B_{1}^{\prime}, e_{2}^{\prime}$ is a path of length 3 in G^{++-}.
Subcase-2.2. If B_{1} and B_{2} are not adjacent in G, then there exists a block B_{3} is incident with neither e_{1} nor e_{2} such that $e_{1}^{\prime}, B_{3}^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{++-}.

Let $B_{1}^{\prime}, B_{2}^{\prime}$ be the two block-vertices of G^{++-}. If B_{1} and B_{2} are not adjacent blocks in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{++-}. If B_{1} and B_{2} are adjacent blocks in G, then there exists an edge e is incident with neither B_{1} nor B_{2} such that $B_{1}^{\prime}, e^{\prime}, B_{2}^{\prime}$ is a path in G^{++-}of length 2.

Let e^{\prime} and B^{\prime} be the edge-vertex and block-vertex of G^{++-}respectively. If e is not incident with B in G, then e^{\prime} and B^{\prime} are adjacent in G^{++-}. If e is incident with B in G, then there exists not incident edge e_{1} and block B_{1} are not incident with B and e respectively such that $e^{\prime}, B_{1}^{\prime}, e_{1}^{\prime}, B^{\prime}$ is a path in G^{++-}of length 3 . Otherwise, there is a block B_{1} is not incident with e, and is adjacent to B, such that $e^{\prime}, B_{1}^{\prime}, B^{\prime}$ is a path in G^{++-}of length 2 .

Theorem 4.3: For a given graph G, $\operatorname{diam}\left(G^{+-+}\right) \leq 5$.
Proof: Let $e_{1}^{\prime}, e_{2}^{\prime}$ be the two edge-vertices of G^{+-+}. If e_{1} and e_{2} are adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{+-+}. If e_{1} and e_{2} are not adjacent edges in G, then we have the following cases:

Case-1. If e_{1} and e_{2} are incident with same block B, then $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{+-+}.
Case-2. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} in G respectively, then we have the following subcases:

Subcase-2.1. If B_{1} and B_{2} are adjacent, then there exists two adjacent edges e_{3} in B_{1} and e_{4} in B_{2}, then $e_{1}^{\prime}, B_{1}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}, B_{2}^{\prime}, e_{2}^{\prime}$ is a path of length at most 5 in G^{+-+}.

Subcase-2.2. If B_{1} and B_{2} are not adjacent, then $e_{1}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}, e_{2}^{\prime}$ is a path of length 3 in G^{+-+}.

Let $B_{1}^{\prime}, B_{2}^{\prime}$ be the two block-vertices of G^{+-+}. If B_{1} and B_{2} are not adjacent blocks in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{+-+}. If B_{1} and B_{2} are adjacent blocks in G, then there exists two adjacent edges e_{1} in B_{1} and e_{2} in B_{2} such that $B_{1}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}, B_{2}^{\prime}$ is a path in G^{+-+}of length 3.

Let e_{1}^{\prime} and B_{2}^{\prime} be the edge-vertex and block-vertex of G^{+-+}respectively. If e_{1} is incident with B_{2} in G, then e_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{+-+}. If e_{1} in B_{1}, is not incident with B_{2} in G, then we have the following cases:

Case-1. If B_{1} and B_{2} are adjacent in G, then there exists two adjacent edges e in B_{1} and e_{2} in B_{2} such that $e_{1}^{\prime}, B_{1}^{\prime}, e^{\prime}, e_{2}^{\prime}, B_{2}^{\prime}$ is a path in G^{+-+}of length at most 4.

Case-2. If B_{1} and B_{2} are not adjacent in G, then $e_{1}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}$ is a path in G^{+-+}of length 2.
Theorem 4.4: If G is neither a block nor a connected graph with two blocks, then diam $\left(G^{+--}\right) \leq 3$.
Proof: Let $e_{1}^{\prime}, e_{2}^{\prime}$ be the two edge-vertices of G^{+--}. If e_{1} and e_{2} are adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{+--}. If e_{1} and e_{2} are not adjacent edges in G, then we have following cases:

Case-1. If e_{1} and e_{2} are incident with same block, then there exists a block B is incident with neither e_{1} nor e_{2} such that $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{+--}.

Case-2. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} in G respectively, then we have the following subcases:

Subcase-2.1. If B_{1} and B_{2} are not adjacent in G, then $e_{1}^{\prime}, B_{2}^{\prime}, B_{1}^{\prime}, e_{2}^{\prime}$ is a path of length 3 in G^{+--}.
Subcase-2.2. If B_{1} and B_{2} are adjacent in G, then there exists a block B is incident with neither e_{1} nor e_{2} such that $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{+--}.

Let $B_{1}^{\prime}, B_{2}^{\prime}$ be the two block-vertices of G^{+--}. If B_{1} and B_{2} are not adjacent blocks in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{+--}. If B_{1} and B_{2} are adjacent blocks in G, then there exists an edge e is incident with neither B_{1} nor B_{2} such that $B_{1}^{\prime}, e^{\prime}, B_{2}^{\prime}$ is a path in G^{+--}of length 2.

Let e^{\prime} and B^{\prime} be the edge-vertex and block-vertex of G^{+--}respectively. If e is not incident with B in G, then e^{\prime} and B^{\prime} are adjacent in G^{+--}. If e is incident with B in G, then we have the following cases:

Case-1. If there is a block B_{1} is not adjacent to B, and is not incident with e, then $e^{\prime}, e_{1}^{\prime}, B^{\prime}$ is a path in G^{+--}of length 2.

Case-2. If there is an edge e_{1} is adjacent to e, and is not incident with B, then $e^{\prime}, B_{1}^{\prime}, B^{\prime}$ is a path in G^{+--}of length 2 .
Lemma 4.5: If a connected graph G has two blocks, then $\operatorname{diam}\left(G^{+--}\right) \leq 5$.
Proof: Suppose G is a connected graph with two blocks B_{1} and B_{2} of size q_{1} and q_{2} respectively. Then $K_{1, q_{1}}$ and $K_{1, q_{2}}$ are two edge-disjoint subgraphs of G^{+--}. And there exists at least one edge e^{\prime} in G^{+--}is incident with exactly one pendant vertex of $K_{1, q_{1}}$ and $K_{1, q_{2}}$. It is easy that see that the diameter of star is at most 2 .

Hence $\operatorname{diam}\left(G^{+--}\right)=\operatorname{diam}\left(K_{1, q_{1}}\right)+\operatorname{diam}\left(K_{1, q_{2}}\right)+1 \leq 2+2+1=5$.
Theorem 4.6: For a given graph G, $\operatorname{diam}\left(G^{-++}\right) \leq 3$.
Proof: Let $e_{1}^{\prime}, e_{2}^{\prime}$ be the two edge-vertices of G^{-++}. If e_{1} and e_{2} are not adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{-++}. If e_{1} and e_{2} are adjacent edges in G, then we have the following cases:

Case-1. If there is an edge e is not adjacent to both e_{1} and e_{2} in G, then $e_{1}^{\prime}, e^{\prime}, e_{2}^{\prime}$ is a path in G^{-++}of length 2 .
Case-2. If e_{1} and e_{2} are incident with same block B, then $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{-++}.
Case-3. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} respectively, then $e_{1}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}, e_{2}^{\prime}$ is a path of length 3 in G^{-++}.

Let $B_{1}^{\prime}, B_{2}^{\prime}$ be the two block-vertices of G^{-++}. If B_{1} and B_{2} are adjacent blocks in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{-++}. If B_{1} and B_{2} are not adjacent blocks in G, then we have two cases:

B. Basavanagoud*, Shreekant Patil/Basic Properties of Total Block-Edge Transformation Graphs Gabc/IJMA-6(8), August-2015.

Case-1. If there is a block B is adjacent to both B_{1} and B_{2} in G, then $B_{1}^{\prime}, B^{\prime}, B_{2}^{\prime}$ is a path in G^{-++}of length 2 .
Case-2. If there are two not adjacent edges e_{1} in B_{1} and e_{2} in B_{2}, then $B_{1}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}, B_{2}^{\prime}$ is a path in G^{-++}of length 3 .
Let e^{\prime} and B^{\prime} be the edge-vertex and block-vertex of G^{-++}respectively. If e is incident with B in G, then e^{\prime} and B^{\prime} are adjacent in G^{-++}. If e is not incident with B in G, then we consider the following two cases:

Case-1. If there is a block B_{1} is incident with e, and is adjacent to B, then $e^{\prime}, B_{1}^{\prime}, B^{\prime}$ is a path in G^{-++}of length 2 .
Case-2. If there is an edge e_{1} is incident with B, and is not adjacent to e, then $e^{\prime}, e_{1}{ }^{\prime}, b^{\prime}$ is a path in G^{-++}of length 2 .
Theorem 4.7: If a graph G is not a block, then $\operatorname{diam}\left(G^{-+-}\right) \leq 3$.
Proof: Let e_{1}^{\prime}, e_{2}^{\prime} be the two edge-vertices of G^{-+-}. If e_{1} and e_{2} are not adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{-+-}. If e_{1} and e_{2} are adjacent edges in G, then we have one of the following case:

Case-1. If e_{1} and e_{2} are incident with same block, then there exists a block B is incident with neither e_{1} nor e_{2} such that $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{-+-}.

Case-2. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} respectively in G, then $e_{1}^{\prime}, B_{2}^{\prime}, B_{1}^{\prime}, e_{2}^{\prime}$ is a path in G^{-+-}of length 3.

Let $B_{1}^{\prime}, B_{2}^{\prime}$ be two block-vertices of G^{-+-}. If B_{1} and B_{2} are adjacent in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{-+-}. If B_{1} and B_{2} are not adjacent in G, then there exists two not adjacent edges e_{1} and e_{2} are incident with B_{1} and B_{2} respectively such that $B_{1}^{\prime}, e_{2}^{\prime}, e_{1}^{\prime}, B_{2}^{\prime}$ is a path of length 3 in G^{-+-}. Otherwise, there is an edge e is incident with neither B_{1} nor B_{2}, then $B_{1}^{\prime}, e^{\prime}, B_{2}^{\prime}$ is a path of length 2 in G^{-+-}.

Let e^{\prime} and B^{\prime} be the edge-vertex and block-vertex of G^{-+-}respectively. If e is not incident with B in G, then e^{\prime} and B^{\prime} are adjacent in G^{-+-}. If e is incident with B in G, then we have the following cases:

Case-1. If there is an edge e_{1} is incident with B, and is not adjacent to edge e in G, then $e^{\prime}, e_{1}^{\prime}, B^{\prime}$ is a path in G^{-+-}of length 2.

Case-2. If there is a block B_{1} which is incident with B, and is not adjacent to an edge e, then $e^{\prime}, B_{2}^{\prime}, B^{\prime}$ is a path of length 2 in G^{-+-}.

Theorem 4.8: If a graph G contains no block K_{2} that is adjacent to other edge, then diam $\left(G^{--+}\right) \leq 4$.
Proof: Let $e_{1}^{\prime}, e_{2}^{\prime}$ be the two edge-vertices of G^{--+}. If e_{1} and e_{2} are not adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{--+}. If e_{1} and e_{2} are adjacent edges in G, then we have one of the following case:

Case-1. If e_{1} and e_{2} are incident with same block B, then $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{--+}.
Case-2. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} respectively, then we have the following subcases:
Subcase-2.1. If there is an edge e which is adjacent to neither e_{1} nor e_{2} in G, then $e_{1}^{\prime}, e^{\prime}, e_{2}^{\prime}$ is a path in G^{--+}of length 2.

Subcase-2.2. If there is an edge e which is incident with B_{2}, and is not adjacent to e_{1}, then $e_{1}^{\prime}, e^{\prime}, B_{2}^{\prime}, e_{2}^{\prime}$ is a path in G^{--+}of length 3.

Subcase-2.3. If there are two not adjacent edges e_{3} and e_{4}, where e_{3} and e_{4} are not adjacent to e_{1} and e_{2} respectively, then $e_{1}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}, e_{2}^{\prime}$ is a path in G^{--+}of length 3 .

Let $B_{1}^{\prime}, B_{2}^{\prime}$ be the two block-vertices of G^{--+}. If B_{1} and B_{2} are not adjacent blocks in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{-+-}. If B_{1} and B_{2} are adjacent blocks in G and are incident with e_{1} and e_{2} respectively, then we have the following cases:
Case-1. If e_{1} and e_{2} are not adjacent in G, then $B_{1}^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}, B_{2}^{\prime}$ is a path of length 3 in G^{--+}. Otherwise, there is an edge e is not adjacent to e_{1} and e_{2} such that $B_{1}^{\prime}, e_{1}^{\prime}, e^{\prime}, e_{2}^{\prime}, B_{2}^{\prime}$ is a path of length 4 in G^{--+}.

Case-2. If there is a block B is adjacent to neither B_{1} nor B_{2} in G, then $B_{1}^{\prime}, B^{\prime}, B_{2}^{\prime}$ is a path of length 2 in G^{--+}. Otherwise, there are two not adjacent blocks B_{3} and B_{4}, are not adjacent to B_{2} and B_{1} respectively such that $B_{1}^{\prime}, B_{4}^{\prime}, B_{3}^{\prime}, B_{2}^{\prime}$ is a path in G^{--+}of length 3.
© 2015, IJMA. All Rights Reserved

Let e_{1}^{\prime} and B_{2}^{\prime} be the edge-vertex and block-vertex of G^{--+}respectively. If e_{1} is incident with B_{2} in G, then e_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{--+}. If e_{1} is not incident with B_{2} in G, then we have the following cases:

Case-1. If there is an edge e_{2} is incident with B_{2}, where e_{2} is not adjacent to e_{1} in G, then $B_{2}^{\prime}, e_{2}^{\prime}, e_{1}^{\prime}$ is a path in G^{--+} of length 2.

Case-2. If there are two not adjacent edges $e_{2 x}$ and $e_{1 x}$, where $e_{2 x}$ and $e_{1 x}$ are incident with B_{1} and B_{2} respectively, and e_{1} is adjacent to $e_{2 x}$ and $e_{1 x}$, then $B_{2}^{\prime}, e_{2 x}^{\prime}, e_{1 x}^{\prime}, B_{1}, e_{1}^{\prime}$ is a path in G^{--+}of length 4.

Case-3. If there is an edge e_{3} is not adjacent to both e_{1} and e_{2}, where e_{1} in B_{1} and e_{2} in B_{2}, then $B_{2}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{1}^{\prime}$ is a path in G^{--+}of length 3.

Theorem 4.9: If a graph $G \neq P_{3}$ is not a block, then $\operatorname{diam}\left(G^{---}\right) \leq 4$.
Proof: Let $e_{1}^{\prime}, e_{2}^{\prime}$ be the two edge-vertices of G^{---}. If e_{1} and e_{2} are not adjacent edges in G, then e_{1}^{\prime} and e_{2}^{\prime} are adjacent in G^{---}. If e_{1} and e_{2} are adjacent edges in G, then we have one of the following case:

Case-1. If e_{1} and e_{2} are incident with same block, then there exists a block B is incident with neither e_{1} nor e_{2} such that $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path of length 2 in G^{---}.

Case-2. If e_{1} and e_{2} are incident with different blocks B_{1} and B_{2} respectively in G, then we have the following subcases:

Subcase-2.1. If there is a block B which is incident with neither e_{1} nor e_{2} in G, then $e_{1}^{\prime}, B^{\prime}, e_{2}^{\prime}$ is a path in G^{---}of length 2.

Subcase-2.2. If there is an edge e is incident with block B_{2}, and is not adjacent to e_{1}, then $e_{2}^{\prime}, B_{1}^{\prime}, e^{\prime}, e_{1}^{\prime}$ is a path in G^{---}of length 3.

Subcase-2.3. If there is an edge e_{3} which is adjacent to neither e_{1} nor e_{2}, then $e_{1}^{\prime}, e_{3}^{\prime}, e_{2}^{\prime}$ is a path in G^{---}of length 2 .
Let $B_{1}^{\prime}, B_{2}^{\prime}$ be two block-vertices of G^{---}. If B_{1} and B_{2} are not adjacent blocks in G, then B_{1}^{\prime} and B_{2}^{\prime} are adjacent in G^{---}. If B_{1} and B_{2} are adjacent blocks in G, then we have the following cases:

Case-1. If there is an edge e is incident with neither B_{1} nor B_{2}, then $B_{1}^{\prime}, e^{\prime}, B_{2}^{\prime}$ is a path of length 2 in G^{---}.
Case-2. If there are two not adjacent edges e_{1} and e_{2} are incident with B_{1} and B_{2} respectively, then $B_{1}^{\prime}, e_{2}^{\prime}, e_{1}^{\prime}, B_{2}^{\prime}$ is a path of length 3 in G^{---}.

Let e^{\prime} and B^{\prime} be the edge-vertex and block-vertex of G^{---}respectively. If e is not incident with B in G, then e^{\prime} and B^{\prime} are adjacent in G^{---}. If e is incident with B in G, then we have the following cases:

Case-1. If there is an edge e_{1} is not incident with B, and is not adjacent to edge e in G, then $e^{\prime}, e_{1}^{\prime}, B^{\prime}$ is a path in G^{---} of length 2.

Case-2. If there are not incident edge e_{2} and block B_{3}, where e_{2} is not incident with B, and B_{3} is not incident to e, then $e^{\prime}, B_{3}^{\prime}, e_{2}^{\prime}, B^{\prime}$ is a path of length 3 in G^{---}.

Case-3. If there is an edge e_{1} which is incident with B_{1}, and is not adjacent to an edge e_{2}, where e_{2} is incident with B, then $B^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}, B_{1}^{\prime}, e^{\prime}$ is a path of length 4 in G^{---}.

5. ACKNOWLEDGEMENT

*This research is supported by UGC-MRP, New Delhi, India: F.No.41-784/2012 dated: 17-07-2012.
${ }^{1}$ This research is supported by UGC-UPE (Non-NET)-Fellowship, K. U. Dharwad, No. KU/Sch/UGC-UPE/2014-15/ 897, dated: 24 Nov 2014.

REFERENCES

1. B. Basavanagoud, On the total block-edge transformation graphs, Pre-conference Abstract Procedings of $23^{\text {rd }}$ International Conference of Forum for Interdisciplinary Mathematics(FIM) on Interdisciplinary Mathematical, Statistical and Computational Techniques, 18-20 Dec, 2014 was held at NIT Karnataka, Surathkal, Mangalore-575 025, India.
2. B. Basavanagoud, H. P. Patil, Jaishri B. Veeragoudar, On the block-transformation graphs, graph equations and diameters, International Journal of Advances in Science and Technology 2(2)(2011), 62-74.
3. B. Basavanagoud, V. R. Kulli, Hamiltonian and eulerian properties of plick graphs. The Mathematics Student,73(2005), 175-181.
4. B. Basavanagoud, Veena N. Mathad, Graph equations for line graphs, qlick graphs and plick graphs, Proceedings of the National Conference on Graphs, Combinatorics, Algorithms and Applications, Narosa Ps. House, NewDelhi (2005).
5. B. Basavanagoud, Veena N. Mathad, On pathos qlick graph of a tree, Proceedings of the National Academy of Sciences, India sect. A, Vol.78, Pt. III, (2008), 219-223.
6. B. Basavanagoud, V. R. Kulli, Plick graphs with crossing number 1. International Journal of Mathematical Combinatorics 1(2011), 21-28.
7. B. Basavanagoud, Shreekant Patil, On the block-edge transformation graphs $G^{a b}$, International Research Journal of Pure Algebra 5(5) (2015), 75-80.
8. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass (1969).
9. V. R. Kulli, The semitotal-block graph and the total-block graph of a graph, J. Pure and Appl. Math. 7(1976), 625-630.
10. V. R. Kulli, The plick graph and the qlick graph of a graph, Graph Theory Newsletter 15(1986).
11. V. R. Kulli, B. Basavanagoud, Characterization of planar plick graphs, Discussiones Mathematicae, Graph theory 24(2004), 41-45.
12. V. R. Kulli, B. Basavanagoud, A criterion for (outer-) planarity of the qlick graph of a graph, Pure and Applied Mathematika Sciences 48(1-2) (1998), 33-38.
13. V. R. Kulli, M. S. Biradar, Point block graphs and crossing numbers, Acta Ciencia Indica, 33(2)(2007), 637-640.
14. V. R. Kulli, M. S. Biradar, The point-block graph of a graph, J. of Computer and Mathematical Sci. 5(5)(2014), 476-481.
15. Van Rooji A C M, Wilf H S, The interchange graph of a finite graph, Acta Mate. Acad. Sci. Hungar 16(1965), 163-169.
16. B. Wu, J. Meng, Basic properties of total transformation graphs, J. Math. Study, 34(2001), 109-116.
17. B. Wu, X. Guo, Diameters of jump graphs and self complementary jump graphs, Graph Theory Notes of New York, 40(2001), 31-34.

Source of support: UGC-MRP, New Delhi, India, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

