EXTERNAL EQUITABLE DOMINATION IN FUZZY GRAPHS

M. RANI*1, K. M. DHARMALINGAM2

1Department of Mathematics,
Madurai Kamaraj University College, Aundipatti,Tamilnadu State, India.

2Department of Mathematics,
The Madura College Madurai, Tamilnadu State, India.

(Received On: 18-07-15; Revised & Accepted On: 12-08-15)

ABSTRACT

Let $G$ be a fuzzy graph. A subset $D$ of $V$ is called externally fuzzy equitable dominating set of $G$ if $D$ is a dominating set of $G$ and for every $v_1, v_2 \in V - D$ such that $\mu(uv_i) \leq \sigma(u) \wedge \sigma(v_i)$, for some $u \in D$, $|N(v_1) \cap D| - |N(v_2) \cap D| \leq 1$. An externally fuzzy equitable dominating set is also called complementary fuzzy dominating set. The minimum cardinality of a minimal externally fuzzy equitable dominating set of $G$ is called externally fuzzy equitable domination number of $G$ and is denoted by $\gamma_{ee}(G)$. In this paper we introduce the concept of externally fuzzy equitable dominating set. Also we obtain some interesting result for this new parameter in external equitable domination in fuzzy graphs.

Key words: External fuzzy equitable dominating set, minimal externally fuzzy equitable dominating set

AMS Subject Classification: 05C72.

1. INTRODUCTION

L.A.Zadeh (1965) introduced the concepts of a fuzzy subset of a set as a way for representing uncertainty. His idea have been applied to a wide range of scientific areas.

Fuzzy concepts is also introduced in Graph theory. Formally, a fuzzy graph $G = (V, \sigma, \mu)$ is a non empty set $V$ together with a pair of functions $\sigma : V \rightarrow [0,1]$ and $\mu : V \times V \rightarrow [0,1]$ such that $\mu(uv) \leq \sigma(u) \wedge \sigma(v)$ for all $u, v$ in $V$. $\sigma$ is called the fuzzy vertex set of $G$ and $\mu$ is called the fuzzy edge set of $G$. The concept of equitable domination [11] in graphs was introduced by Venkatrasubramanian Swaminathan and Kuppusamy Markandan Dharmalingam. The notation of domination in fuzzy graphs [10] was developed by A. Somasundaram and S.Somasundaram. In this paper we introduce the concept of externally fuzzy equitable dominating set and obtain some interesting result for these new parameter in externally equitable domination in fuzzy graphs.

PRELIMINARIES

Definition 1.1: A fuzzy graph $G = (\sigma, \mu)$ is a set with two functions $\sigma : V \rightarrow [0,1]$ and $\mu : V \times V \rightarrow [0,1]$ such that $\mu(uv) \leq \sigma(u) \wedge \sigma(v)$ for all $u, v \in V$.

Definition 1.2: Let $G = (\sigma, \mu)$ be a fuzzy graph on $V$ and $V_1 \subseteq V$. Define $\sigma_1$ on $V_1$ by $\sigma_1(u) = \sigma(u)$ for all $u \in V_1$ and $\mu_1$ on the collection $E_1$ of two element subset of $V_1$ by $\mu_1(u,v) = \mu(u,v)$ for all $u, v \in V_1$. Then $(\sigma_1, \mu_1)$ is called the fuzzy subgraph of $G$ induced by $V_1$ and is denoted by $<V_1>$.

Definition 1.3: The degree of vertex $u$ is defined as the sum of the weights of the edges incident at $u$ and is denoted by $deg(u)$.

Corresponding Author: M. Rani*, 1Department of Mathematics, Madurai Kamaraj University College, Aundipatti,Tamilnadu State, India.
Definition 1.4: Let \( G \) be a fuzzy graph. Let \( u \) and \( v \) be two vertices of \( G \). A subset \( D \) of \( V \) is called a fuzzy equitable dominating set if for every \( v \in V - D \) there exist a vertex \( u \in D \) such that \( uv \in E(G) \) and \( |\text{deg}(u) - \text{deg}(v)| \leq 1 \) and \( \mu(uv) \leq \sigma(u) \land \sigma(v) \). The minimum cardinality of a fuzzy equitable dominating set is denoted by \( \gamma^{ef} \).

Definition 1.5: A vertex \( u \in V \) is said to be degree equitable fuzzy graph with a vertex \( v \in V \) if \( |\text{deg}(u) - \text{deg}(v)| \leq 1 \) and \( \mu(uv) \leq \sigma(u) \land \sigma(v) \).

Definition 1.6: If \( D \) is an fuzzy equitable dominating set then any super set of \( D \) is a fuzzy equitable dominating set.

Definition 1.7: Let \( G \) be a fuzzy graph. Let \( u \) and \( v \) be two vertices of a fuzzy connected dominating set \( D \) to be a fuzzy equitable connected dominating set if for every \( v \in V - D \) there exists a vertex \( u \in D \) such that \( uv \in E(G) \) and \( |\text{deg}(u) - \text{deg}(v)| \leq 1 \) where \( \text{deg}(u) \) denotes degree of vertex \( u \) and \( \text{deg}(v) \) denotes the degree of vertex \( v \) and \( \mu(uv) \leq \sigma(u) \land \sigma(v) \). The minimum cardinality of fuzzy equitable connected domination set is denoted by \( \gamma^{ef} \).

Definition 1.8: For every \( u \in V - D \) there exist a vertex \( v \in D \) such that \( uv \in E(G) \) also \( \text{deg}(u) = \text{deg}(v) = r \) and in this case \( G \) is called regular fuzzy graph of degree \( r \) or a \( r \)-regular fuzzy graph.

Definition 1.9: A bipartite graph is a graph \( G \) whose vertex set \( V \) can be partitioned into two subsets \( V_1 \) and \( V_2 \) such that every edge in \( G \) has one end vertex in \( V_1 \) and the other end vertex in \( V_2 \). \((V_1, V_2)\) is called a bipartition of \( G \).

Further if every vertex of \( V_1 \) is adjacent to every vertex of \( V_2 \), then \( G \) is called a complete bipartite graph. The complete bipartite graph with bipartition \((V_1, V_2)\) such that \(|V_1| = r\) and \(|V_2| = s\) is denoted by \( K_{r,s} \). \( K_{1,r} \) is called a star.

2. EXTERNAL FUZZY EQUITABLE DOMINATION:

Definition 2.1: Let \( G \) be a fuzzy graph. A subset \( D \) of \( V \) is called externally fuzzy equitable dominating set of \( G \) if \( D \) is a dominating set of \( G \) and for every \( v_1, v_2 \in V - D \) such that \( \mu(uv_i) \leq \sigma(u) \land \sigma(v_i) \) for some \( u \in D \), \(||N(v_1) \cap D| - |N(v_2) \cap D|| | \leq 1 \) An externally fuzzy equitable dominating set is also called complementary fuzzy dominating set. The minimum cardinality of a minimal externally fuzzy equitable dominating set of \( G \) is called externally fuzzy equitable domination number of \( G \) and is denoted by \( \gamma^{(ee)G} \).

\[
D = \{v_5, v_4\} \text{ is an externally fuzzy equitable dominating set and } \gamma^{(ee)G} = 2.
\]

Theorem 2.1: An externally fuzzy equitable domination number of Petersen Graph \( P \) is four. i.e \( \gamma^{(ee)G} (P) = 4 \).

Proof:

The minimum dominating set of the Petersen graphs are \( S_1 = \{u_1, u_3, u_7\} \), \( S_2 = \{u_1, u_4, u_{10}\} \), \( S_3 = \{u_2, u_4, u_5\} \), \( S_4 = \{u_2, u_5, u_6\} \), \( S_5 = \{u_3, u_5, u_7\} \), \( S_6 = \{u_7, u_4, u_1\} \), \( S_7 = \{u_6, u_10, u_3\} \), \( S_8 = \{u_7, u_9, u_5\} \), \( S_9 = \{u_9, u_8, u_1\} \), \( S_{10} = \{u_6, u_{10}, u_2\} \). None of these sets are externally fuzzy equitable. Therefore \( \gamma^{(ee)G} (P) \geq 4 \). But \( \{u_1, u_6, u_9, u_3\} \) is an externally fuzzy equitable dominating set of \( P \), \( \gamma^{(ee)G} (P) \leq 4 \) Therefore \( \gamma^{(ee)G} (P) = 4 \).
Theorem 2.2: Let $G$ be a regular fuzzy graph. Then $\gamma^{(ee)}(G) < \gamma^{(ee)}(G)$.

Proof: Let $G$ be a regular fuzzy graph. Then every vertex has the same degree say 3. $\gamma^{(e)}(G) = 3$ and $\gamma^{(ee)}(G) = 4$. Therefore $\gamma^{(e)}(G) < \gamma^{(ee)}(G)$.

Theorem 2.3: Let $G$ be a fuzzy graph. Then the complement of a minimal externally fuzzy equitable dominating set need not be an externally fuzzy equitable dominating set.

Proof:

Let $D = \{u_2, u_4\}$ be a complement of a minimal externally fuzzy equitable dominating set $V - D = \{u_1, u_3, u_5, u_6, u_7\}$. This a dominating set but not externally fuzzy equitable dominating set.

Theorem 2.4: Let $G$ be a connected fuzzy graph with at least three vertices. Then $\gamma^{(ee)}(G) \leq n - 2$.

Proof: There exist two vertices in $G$ say $u_1, u_2$ with equal degree. Let $S = V - \{u_1, u_2\}$. Since $G$ has at least three vertices and $G$ is connected. $u_1$ and $u_2$ are dominated by $S$. Therefore $S$ is externally fuzzy equitable dominating set of $G$. Therefore $\gamma^{(ee)}(G) \leq n - 2$.

Theorem 2.5: Let $G$ be a connected regular fuzzy graph with at least four vertices, then $\gamma^{(ee)}(G) \leq n - 3$ if $G \neq C_4$ and $\gamma^{(ee)}(G) = n/2 = n - 2$ if $G = C_4$.

Proof: Suppose $G$ is a connected regular fuzzy graph with at least four vertices.

Case (i): $G$ contains a $K_3$ as a subgraph. Since $|V(G)| \geq 4$ and since $G$ is regular, $D = V - \{u_1, u_2, u_3\}$ is an externally fuzzy equitable dominating set of $G$. Therefore $\gamma^{(ee)}(G) \leq |D| = n - 3$.

Case (ii): $G$ contains no $K_3$. $G$ always contains a $P_3$. Let $\{u_1, u_2, u_3\}$ be the vertices of a $P_3$ with $u_2$ being adjacent with $u_1$ and $u_3$. If $G$ is $r$-regular with $r \geq 3$. Then $V - \{u_1, u_2, u_3\}$ is an externally fuzzy equitable dominating set of $G$. Therefore $\gamma^{(ee)}(G) \leq |D| = n - 3$.

Suppose $G$ is 2-regular. Then $G$ is a cycle say $C_n$. If $n \geq 5$ then $\gamma^{(ee)}(G) \leq |D| = n - 3$. If $n = 4$, then $G = C_4$, $\gamma^{(ee)}(G) = n/2 = n - 2$.

Theorem 2.6: Let $G$ be a fuzzy graph. Then $\gamma^{(ee)}(G) = n - 1$ if and only if $G = K_2 \cup K_{n-2}$.

Proof: Let $G = K_2 \cup K_{n-2}$ ($n \geq 2$). Obviously $\gamma^{(ee)}(G) = n - 1$. Conversely, suppose $\gamma^{(ee)}(G) = n - 1$. If $G$ is connected and has at least three vertices then $\gamma^{(ee)}(G) \leq n - 2$. Therefore $G$ is either $K_2$ or a disconnected graph. Suppose $G \neq K_2$. Then $G$ is disconnected with at least three vertices. Let $G_1, G_2, \ldots, G_k$ be the components of $G$.

Since $\gamma^{(ee)}(G) = n - 1$ and since $\gamma^{(ee)}(G) = \sum_{i=1}^{k} \gamma^{(ee)}(G_i)$. None of the components can have three or more vertices. Therefore $|V(G_i)| \leq 2$ for every $i$, $1 \leq i \leq k$. If $G_i$ and $G_j$ ($i \neq j$) have two vertices, then $\gamma^{(ee)}(G) \leq n - 2$. If every $G_i$ has exactly one vertex, then $\gamma^{(ee)}(G) = n$. Therefore there exist exactly one $G_i$ which has two vertices and all others have exactly one vertex. Therefore $G = K_2 \cup K_{n-2}$ ($n \geq 2$).

Theorem 2.7: Let $G$ be a fuzzy graph with at least three vertices. Then $\gamma^{(ee)}(G) = n - 2$, if and only if $G$ is $H$ or $H \cup K_{n-|H|}$ where $H = C_4$ or $P_4, P_3, K_4$ or $2K_2$.

Proof: If $G$ is any one of the fuzzy graph mentioned in the theorem, then $\gamma^{(ee)}(G) = n - 2$. 

© 2015, IJMA. All Rights Reserved
Conversely suppose \(\gamma^{(ee)f}(G) = n - 2\). If \(G\) is connected and if \(G\) has at least 5 vertices, then \(\gamma^{(ee)f}(G) \leq n - 3\), a contradiction that either \(G\) is disconnected or \(G\) is connected and has at most 4 vertices.

If \(|V(G)| = 4\), then \(\gamma^{(ee)f}(G) = 2\) if and only if \(G = P_4\) or \(C_4\). If \(G\) is connected and \(|V(G)| = 3\), \(\gamma^{(ee)f}(G) = 2\) if and only if \(G = P_3\) or \(K_3\).

Let \(G\) be disconnected. Let \(G_1, G_2, \ldots, G_k\) be the components of \(G\) \((k \geq 2)\). Suppose \(|V(G_i)| = 4\) for some \(i\).

Since \(G_i\) is connected, \(\gamma^{(ee)f}(G_i)\) cannot be 3. Also if \(\gamma^{(ee)f}(G_i) = 1\) then \(\gamma^{(ee)f}(G) = \sum_{i=1}^{k} \gamma^{(ee)f}(G_i) \leq n - 3\), a contradiction. Therefore, \(\gamma^{(ee)f}(G_i) = 2\). Therefore, \(G = C_4 \cup K_{n-4}\) or \(G = P_4 \cup K_{n-4}\).

If \(|V(G_i)| = 3\), then \(\gamma^{(ee)f}(G_i) = 1\). Therefore \(\gamma^{(ee)f}(G) = \sum_{i=1}^{k} \gamma^{(ee)f}(G_i) \leq n - 2\). Since \(\gamma^{(ee)f}(G) = n - 2\), we get \(|V(G)| = 1\) for every \(j \neq i\). Therefore, \(G = C_3 \cup K_{n-3}\) or \(G = P_3 \cup K_{n-3}\).

Suppose \(|V(G_i)| = 2\), then \(\gamma^{(ee)f}(G_i) \leq n - 1\). Since \(\gamma^{(ee)f}(G) = n - 2\) there exists a graph \(G_j\) such that \(G_j\) is connected and \(\gamma^{(ee)f}(G_j) = |V(G_j)| - 1\). If \(H\) is connected and \(|V(H)| \geq 3\) then \(\gamma^{(ee)f}(H) \leq |V(H)| - 2\). There \(G_j\) has less than three vertices. If \(G_j\) is \(K_1\), then \(\gamma^{(ee)f}(G_j) \neq |V(G_j)| - 1\). Therefore \(G_j\) is \(K_2\).

\(\gamma^{(ee)f}(G) = \sum_{i=1}^{k} \gamma^{(ee)f}(G_i) \leq n - 2\). But \(\gamma^{(ee)f}(G) = n - 2\). Therefore \(G = K_1\), for every \(r, r \neq i, j\). Therefore \(G = 2K_2 \cup K_{n-4}\).

**Theorem 2.8:** \(\gamma^{(ee)f}(G) = n - m\) if and only if \(G\) contains exactly \(\gamma^{(ee)f}\) components, each of which is a star, \(K_{1,n}, n \geq 0\)

**Proof:** Suppose \(G = K_{1,n_1} \cup K_{1,n_2} \cup \ldots \cup K_{1,n_r}\), then

\[
\gamma^{(ee)f}(G) = \sum_{i=1}^{r} \gamma^{(ee)f}(K_{1,n_i}) = n.
\]

\[
= (n_1 + 1) + (n_2 + 1) + \ldots + (n_r + 1) - (n_1 + n_2 + \ldots + n_r) = |V(G)| - |E(G)|.
\]

Conversely, suppose \(\gamma^{(ee)f}(G) = n - m\). Suppose \(G\) has \(t\) components, \(t \neq \gamma^{(ee)f}\). Since any externally fuzzy equitable dominating set should have at least one vertex from each of the components \(t \leq \gamma^{(ee)f}\). If \(t < \gamma^{(ee)f}\), then the number of edges in \(G\) is \(m(G) \geq n(G) - t \geq n(G) - \gamma^{(ee)f}\), a contradiction. Therefore \(t \geq \gamma^{(ee)f}\). Hence \(t = \gamma^{(ee)f}\). Suppose \(G_1, G_2, \ldots, G_r\) are the externally fuzzy equitable components of \(G\). Suppose \(G_i\) is not a star. Since \(G_i\) is connected and not a star it follows that \(diam(G_i) = 1\) or \(diam(G_i) \geq 3\) or \(G_i\) has a cycle with \(\gamma(G_i) = 1\). If \(diam(G_i) = 1\) then \(G_i\) is complete and \(n(G_i) < m(G_i)\). Therefore \(n - m = \sum_{i=1}^{t} [n(G_i) - m(G_i)]\), since \(n(G_i) - m(G_i)\) is negative there exists some \(j\) such that \(n(G_i) - m(G_i) \geq 2\), contradiction. Therefore \(G_i\) is not complete for any \(i\). Suppose \(G_i\) has diameter \(\geq 3\) since \(t = \gamma^{(ee)f}(G_i) = 1\) for every \(i, 1 \leq i \leq t\). Since \(G_i\) has diameter \(\geq 3\), \(\gamma^{(ee)f}(G_i) > 1\), a contradiction. Suppose \(G_i\) has a cycle with \(\gamma(G_i) = 1\). Then \(m(G_i) \geq n(G_i)\). Therefore \(n(G_i) - m(G_i) \leq 0\).

\[
m(G) = \sum_{i=1}^{t} [m(G_i)] \geq n(G) + \sum_{i=1}^{t} [n(G_i) - 1] = n(G) - (t - 1).
\]

Therefore \(\gamma^{(ee)f} > t - 1 \geq n(G) - m(G), \) a contradiction. Therefore each \(G_i\) is a star.

3. **CONCLUSION**

In this paper we define new parameter called external equitable domination in fuzzy graphs. We can extend this concept to outdegree fuzzy equitable domination and study the characteristics of this new parameter.
REFERENCES


Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]