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ABSTRACT

In this paper we prove a common fixed point theorem for four self-mappings in a complete complex valued b-metric
space.
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1. INTRODUCTION

In 1989, Bakthtin [3] introduced the concept of b-metric space as a generalization of metric spaces. The concept of
complex valued b-metric spaces was introduced in 2013 by Rao et al. [10], which was more general than the well-
known complex valued metric spaces that were introduced in 2011 by Azam et al. [2]. The main purpose of this paper
is to present common fixed point results of four self-mappings satisfying a rational inequality on complex valued
b-metric spaces. The results presented in this paper are generalization of work done by Sanjib Kumar Dutta and Sultan
Ali in [6].

Definition 1 (see [1]): Let X be a nonempty set and let s > 1 be a given real number. A functiond:X XX — Cis
called a b-metric if for all x,y, z € X, the following conditions are satisfied:

(i) d(x,y)=0ifandonlyifx =y

(i) d(x,y) = d(y,x)

(ii) d(x,y) < s[d(x,z) + d(z,y)]
The pair (X, d) is called a b-metric space. The number s > 1 is called the coefficient of (X, d).

Example 2 (see [11]): Let (X,d) be a metric space and p(x,y) = (d(x, y))p ,where p > 1is a real number. Then
(X, p) is a b-metric space with s = 2P~1,

Let C be the set of all complex numbers and z;, z, € C . Define a partial order relation < on C as follows:
71 S zp ifand only if Re(z;) < Re(z,) and Im(z;) < Im(z;).

Thus z; < z, if one of the followings holds:
(1) Re(z;) = Re(zy) and Im(z;) = Im(z,),
(2) Re(z;) < Re(zy) and Im(z;) = Im(z,),
(3) Re(z;) = Re(zy) and Im(z;) < Im(z,) and
(4) Re(z;) < Re(zy) and Im(z;) < Im(z,).

We write z; 3 z, if z; = z, and z; # z, i.e., one of (2), (3) and (4) is satisfied and we will write z; < z, if only (4)
is satisfied.

Remark 1: We can easily check the followings:
(i) aabeERa<b=>az3bzVzeC
(i) 0321 Bz, = |z1] < |z,
71 S zypand z; < z3 = 71 < 73.
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Definition 3 (see [2]): Let X be a nonempty set. A functiond: X x X — Cis called a complex valued metric on X if
for all x, y, z € X the following conditions are satisfied:

(i) 0 = d(x,y)andd(x,y) = Oifandonlyifx =y

(i) d(x,y) = d(y,x)

(i) d(x,y) = d(x,2) + d(z,y)
The pair (X, d) is called a complex valued metric space.

Example 4 (see [5]): Let X = C. Define the mapping d: X x X — Cby
d(x,y) = i|lx- y|, forall x,y € X.

Then (X, d) is a complex valued metric space.

Definition 5 (see[10]): Let X be a nonempty set and let s > 1 be given real number. A functiond: X X X = C is
called a complex valued b-metric on X if for all x, y, z € X the following conditions are satisfied:

(i) 0 =d(x,y)andd(x,y) = Oifandonlyifx =y

(i) d(x,y) = d(y,x)

(i) d(x,y) = s[d(x,z) + d(z,y)].
The pair (X, d) is called a complex valued b-metric space.

Example 6 (see [10]): Let X = [0,1]. Define the mapping d: X x X — Cby
d(x,y) = |x—y|*+i|x—y|* forallx,y € X.
Then (X, d) is a complex valued b-metric space with s = 2.

Definition 7(see[10]): Let (X, d) be a complex valued b-metric space. Consider the following .
(i) Apoint x € X is called an interior point of a set A € X whenever there exists 0 < r € C such that
B(x,v) = {y€X: d(x,y) < r} C A
(if) A point x € X is called a limit point of a set A whenever, forevery0 <r € C,B(x,r) N (A-{x}) # ¢.
(iii) A subset A of X is called open whenever each point of A is an interior point of A.
(iv) A subset A of X is called closed whenever each limit point of A belongs to A.
(v) A subbasis for a Hausdorff topology t on X is a family
F ={B(x,r): x€Xand 0 < r}.

Definition 8 (see [10]): Let (X, d) be a complex valued b-metric space and {x,,} a sequance in X and x € X. Consider
the following.
(i) If for every ¢, with 0 < ¢, there is N € N such that, for all n > N ,d(x,,x) < c, then {x,,} is said to be
convergent, if {x, } converges to x, and x is the limit point of {x, }. We denote this by lim,_, x, = x or
X, > Xxasn — o,
(i) If for every € C, with 0 < ¢, there is N € N such that, for alln > N,d(x,, X,4+m) < ¢, Where m € N, then
{x, } is said to be Cauchy sequence.
(iii) If every Cauchy sequance in X is convergent, then (X, d) is said to be a complete complex valued b-metric
space.

Definition 9 (see [7]): Let (X, d) be a complex valued metric space. The self-maps S and T are said to be commuting if
STx =TSx forall x € X.

Definition 10 (see [8]): Let (X, d) be a complex valued metric space. The self-maps S and T are said to be compatible
if limd(STx, ,TSx,) = 0 whenever {x,} is asequence in X such that limSx,, = limTx, = t forsomet € X.
n—oo n—-ow n—-oo

Definition 11 (see [9]): Let (X,d) be a complex valued metric space. The self-maps S and T are said to be weakly
compatible if STx = TSx whenever Sx = Tx, i.e., they commute at their coincidence points.

Lemma 12 (see [10]): Let (X, d) be a complex valued b-metric space and let {x,} be a sequence in X. Then {x,}
converges to x if and only if |d(x,,x)] = 0asn — .

Lemma 13 (see [10]): Let (X, d) be a complex valued b-metric space and let {x,,} be a sequence in X. Then {x,} sa
Cauchy sequence if and only if |d(x,, Xp4m)| = 0asn — oo, where m € N.
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Theorem 14 (see [6]): Let (X, d) be a complete complex valued metric space and let S, T, f and g be self-maps of X
such that

(i) The pairs {S, f} and {T, g} are weakly compatible,

(i) TX € fX and SX <€ gX,

(iii) fX or gX is a complete subpace of X and

. < ud (fx,Sx)d(gy.Ty)
(iv) d(Sx,Ty) = Ad(fx,gy) + —rirgy) Vx,yeX,

where A, u are non-negative reals with 4 + u < 1.
Then S, T, f and g have a uniqgue common fixed point.

2. MAIN RESULT
My theorem is a generalization of Theorem 14 in complex valued b-metric spaces.

Theorem: Let (X, d) be a complete complex valued b-metric space with coefficients > 1. Let S, T, f and g be self-
mappings of X such that

(i) Thepairs{S,f }and{T,g }are weakly compatible,

(i) TX € fXandSX € gX,

(iii) fX or gX is a complete subspace of X and

(iv) d(Sx,Ty) 3 Ad(fx,gy) + W, V x,y € X, where A, u are non-negative reals with sA + u < 1.

Then S, T, f and g have a unique common fixed point.

Proof: Let x, € X be arbitrary. Using the condition (ii), we defined a sequence {y,}in X as
Yak+1 = Xok+1 = SXoy
Vok+2 = fx2k+2 = Tx2k+1, k = 0, 1, 2, ...........

Then

AdVak+1 Yok+2) = d(Sxok, TX2k41)

d (fx2k,Sx2k)d (gx2k+1,T X2k +1)
S Ad(fxpp GXaps1)+ -
(f X2k 9Xz1c41) 1+d(fx21,9%2k+1)

#d V2u.Y 2k +1)4 V2K +1.Y 2k +2)
=d +
2k Yzies1) 1+d (Y2k,Y 2k+1)

S AdWaks Yar+1) T HAVok 41, Var+2)

2
Thus d(Vak+1) Yok+2) Ed(y2k+1'y2k+2) (1)

Similarly
dY2k+2) Vak+3) = A(SXak42, TXok41) " S » )
ud (fx ,Sx gx ,Tx
S g )+

ud 2k +2)Y 2k +34 YV 2k +1.Y 2k +2)
=Ad +
(Vak+2 Yok +1) 1+d 0ok s2y2001)

3 A dVaks20Yok+1) T 1A Vakr2) Yok+3)

1

Thus d(Yzi42) Yar+3) 3 Ed(YZk+2'y2k+1) 2
1

1

Now put h = r—

Since0 < sl +u<1ls=>1 1+ pu<landhence0 < h < 1.

Thus using (1) and (2) for n € N, we get that

AW Yn+1) S hAW-1, ) S B2 dWn—2,Yn-1) S o eee v e S K1 d (1, 7).
Soform,n € N,
d(.Vn'.Vm+n) 3 S[d(Yn'Yn+1) + d(yn+1'3/m+n)]
2 5dWn, Yn1) + 52 [dWnrt, Yne2) + AWnszs Yimn)]
3 Sd(Ynﬁyn+1) + SZ d()’n+1'3’n+z) + 53 d()’n+2'3’n+3) +oeen Sm_l d(Yn+m—2ﬁyn+m—1)
+ Sm_l d(Yn+m—1'Yn+m)
3 Sd(yn'Yn+1) + 52 d(Yn+1'Yn+2) + 53 d(Yn+2'Yn+3) + o + Sm_l d(yn+m—2'3/n+m—1)
+s™ d(Yn+m—1'Yn+m)
S sh™ Yy, v,) + s2hd(y1,Y2) + oo e v e £ STTERMT3A(yy, y,) + STRYT2d(yy,y,)
=sh" 1 [1+sh+ %A% + v + ST TR d (34, )

shn—1

=2, y2)
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shn—l
1-sh

Thus |d(Vy, Vimn)| < |d(yy,¥2)] = 0asn — o, where m € N,

Hence {y,} is a Cauchy sequence in X.

Since X is complete, there exists z € X such that y,, - zasn — .

Thus lim, |, Sxy, = lim, | gXon41 = lim, L TXopyq = lim, L fXo 40 =2
Now if fX is a complete subspace of X, there exists u € X such that fu = z

From the condition (iv), we have
d(Su,z) = sd(Su,Txypqq) + SA(TX2p41,2)
< ud (fu,Su)d (gx2n+1.Tx2n+1)
S s 2d(fu, gy ) + EILEE AT 4 5d(Txy,41,2)

pd (fu,Su)d (Yan+1.Y2n+2)
=S [ﬂd(fU,J’ZnH) + 1+d(fu’;2::1)2 2 ] + sd(Van42,2)

Therefore [d(Su, 2)| < s [A1d(f1, yy40)| + UL merbansdl] 514 (y,, 5, 2)]

1+|d (fu,y2n+1)|
Letting n — o and using (3) and Lemma 12, we get that |d(Su, z)| < 0.
Thus |[d(Su,z)| = 0.i.e.d(Su,z) = 0and hence Su = z.
Since SX <€ gX, there exists v € X such that gv = z.

Again from condition (iv), we have
d(z,Tv) = d(Su,Tv)
S Ad(fu,gv) +
=0

ud (fu,Su)d(gv,Tv)
1+d (fu,gv)

Thus d(z,Tv) = 0andhence Tv = z.

Thus fu = Su = z = gv = Tv.

Since f and S are weakly compatible,
fz = fSu = Sfu = Sz.

Now we will show that Sz = z.

From condition (iv),
d(Sz,z) = d(Sz,Tv)

S Ad(fz,gv) +
= Ad(Sz,z)

ud (fz,Sz)d(gv,Tv)
1+d(fz,gv)

Thus (1 — 2)|d(Sz,2)] <0

Thus d(Sz,z) = 0 and hence Sz = z.

Similarly since g and T are weakly compatible,
gz = gTv = Tgv = Tz.
Also d(z,Tz) = d(Sz,Tz)
S Ad(fz,gz) +
=Ad(z,Tz)

ud (fz,Sz)d(gz,Tz)
14+d(fz,9z)

Thus d(z,Tz) = 0andhence Tz = z.

Thus Sz = fz = gz = Tz = z
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i.e. z is a common fixed point of four mappings S, T, f and g.
Now we show that z is the unique common fixed point.
Let z- € Xsuchthat fz* =Sz" =gz* =Tz" = z".

Then we have,

d(z,z*) =d(Sz,Tz")
S Ad(fz,gz*) +
=Ad(z,z")

ud (fz,Sz)d(gz*Tz")
1+d(fz,gz*)

Thus d(z,z*) =0 andso z = z*. Thusz is the unique common fixed point of S, T, f and g.
If gX is complete, we can similarly prove the theorem.

Corollary 1: Let (X, d) be a complete complex valued b-metric space with coefficient s > 1. Let S, T be self-mappings
of X such that

< pud (x,Sx)d (v,Ty)

d(Sx, Ty) 2 Ad(x,y) + —riGy)

where 4, u are non-negative reals with sA + u < 1.

Vx,yeX,

Then S, T have a unique common fixed point.
Proof: Taking f(x) = x and g(x) = x, ¥ x € X in the above theorem we get the result.

Corollary 2: Let (X,d) be a complete complex valued b-metric space with coefficients > 1. Let T, f and g be self-
mappings of X such that

(i) The pairs {T, f}and {T, g} are weakly compatible

(i) TX € fXand TX € gX

(iii) fX or gX is a complete subspace of X and

(iv) d(Tx,Ty) 3 Ad(fx,gy) + W, V x,y € X, where A, u are non-negative reals with sA + u < 1.

Then T, f and g have a unique common fixed point.
Proof: Taking S = T in the above theorem, we get the result.

Corollary 3: Let (X,d) be a complete complex valued b-metric space with coefficients > 1. Let T, f and g be self-
mappings of X and n is a possitive integers, satisfying the following conditions

(i) The pairs {T",f},{T", g}, {T, f }and {T, g } are weakly compatible

(i) T"X € fXand T"X € gX

(iii) fX or gX is a complete subspace of X and

(iv) d(T"x, T"y) < Ad(fx, gy) + 2 U’;'::’(‘;:(g“’yy)’T"y) ,V x,y € X, where A, u are non-negative reals wit sA + u < 1.

Then T, f and g have a uniqgue common fixed point.

Proof: Applying corollary 2, we get a unique common fixed point z of T", f and g.
Therefore T"z = fz = gz = z.
Now we note that T"Tz = TT"z = Tz.

Also since the pairs {T, f} and {T, g} are weakly compatible,
fTz =Tfz = Tzand gTz = Tgz = Tz.

Thus we see that Tz is also a common fixed point of T, f and g.
Thus by uniqueness of z, we have Tz = z.

Hence z is a common fixed point of T, f and g.
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Since any common fixed point of T, f and g is also a common fixed point of T", f and g, the common fixed point z of
T, f and g is unique.

This complete the proof.

Corollary 4: Let (X, d) be a complete complex valued b-metric space with coefficient s > 1. Let T be a self-mappings
of X and n is a possitive integers , such that

d(x, T"x)d(y, T"
d(T"x, T"y) < Ad(x,y) + pd( T"0)d(y, Ty)

1+d(x,y)

,Vx,yeX,

where A, u are non-negative reals with sA + u < 1.

Then T has a unique common fixed point.

Proof: In corollary 3, if we take f(x) = x and g(x) = x, for all x € X, then the required result follows.
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