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In this paper we prove a common fixed point theorem for four self-mappings in a complete complex valued b-metric 
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1. INTRODUCTION 
 
In 1989, Bakthtin [3] introduced the concept of b-metric space as a generalization of metric spaces. The concept of 
complex valued b-metric spaces was introduced in 2013 by Rao et al. [10], which was more general than the well-
known complex valued metric spaces that were introduced in 2011 by Azam et al. [2]. The main purpose of this paper 
is to present common fixed point results of four self-mappings satisfying a rational inequality on complex valued          
b-metric spaces. The results presented in this paper are generalization of work done by Sanjib Kumar Dutta and Sultan 
Ali in [6]. 
 
Definition 1 (see [1]): Let 𝑋𝑋 be a nonempty set and let 𝑠𝑠 ≥ 1 be a given real number. A function 𝑑𝑑:𝑋𝑋 × 𝑋𝑋 → ℂ is 
called a b-metric if for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋, the following conditions are satisfied: 

(i) 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 0 if and only if 𝑥𝑥 = 𝑦𝑦 
(ii) 𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  𝑑𝑑(𝑦𝑦, 𝑥𝑥) 
(iii) 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤  𝑠𝑠[𝑑𝑑(𝑥𝑥, 𝑧𝑧)  +  𝑑𝑑(𝑧𝑧,𝑦𝑦)]. 

The pair (𝑋𝑋,𝑑𝑑) is called a b-metric space. The number 𝑠𝑠 ≥ 1 is called the coefficient of (𝑋𝑋,𝑑𝑑). 
 
Example 2 (see [11]): Let (𝑋𝑋,𝑑𝑑) be a metric space and 𝜌𝜌(𝑥𝑥,𝑦𝑦) = �𝑑𝑑(𝑥𝑥,𝑦𝑦)�𝑝𝑝  , where  𝑝𝑝 > 1 is a real number. Then 
(𝑋𝑋,𝜌𝜌) is a b-metric space with 𝑠𝑠 =  2𝑝𝑝−1 . 
 
Let ℂ be the set of all complex numbers and 𝑧𝑧1, 𝑧𝑧2 ∈ ℂ . Define a partial order relation ≾ on ℂ as follows: 

𝑧𝑧1 ≾ 𝑧𝑧2 if and only if   𝑅𝑅𝑅𝑅(𝑧𝑧1) ≤ 𝑅𝑅𝑅𝑅(𝑧𝑧2) and 𝐼𝐼𝐼𝐼(𝑧𝑧1) ≤ 𝐼𝐼𝐼𝐼(𝑧𝑧2). 
 
Thus  𝑧𝑧1 ≾ 𝑧𝑧2 if one of the followings holds: 

(1)   𝑅𝑅𝑅𝑅(𝑧𝑧1) = 𝑅𝑅𝑅𝑅(𝑧𝑧2) and 𝐼𝐼𝐼𝐼(𝑧𝑧1) = 𝐼𝐼𝐼𝐼(𝑧𝑧2), 
(2)   𝑅𝑅𝑅𝑅(𝑧𝑧1) < 𝑅𝑅𝑅𝑅(𝑧𝑧2) and 𝐼𝐼𝐼𝐼(𝑧𝑧1) = 𝐼𝐼𝐼𝐼(𝑧𝑧2), 
(3)   𝑅𝑅𝑅𝑅(𝑧𝑧1) = 𝑅𝑅𝑅𝑅(𝑧𝑧2) and 𝐼𝐼𝐼𝐼(𝑧𝑧1) < 𝐼𝐼𝐼𝐼(𝑧𝑧2)  and   
(4)   𝑅𝑅𝑅𝑅(𝑧𝑧1) < 𝑅𝑅𝑅𝑅(𝑧𝑧2) and 𝐼𝐼𝐼𝐼(𝑧𝑧1) < 𝐼𝐼𝐼𝐼(𝑧𝑧2). 

 
We write 𝑧𝑧1 ⋨ 𝑧𝑧2 if 𝑧𝑧1 ≾ 𝑧𝑧2 and 𝑧𝑧1 ≠ 𝑧𝑧2  i.e., one of (2), (3) and (4) is satisfied and we will write 𝑧𝑧1 ≺ 𝑧𝑧2 if only (4) 
is satisfied. 

 
Remark 1: We can easily check the followings: 

(i) 𝑎𝑎, 𝑏𝑏 ∈ ℝ, 𝑎𝑎 ≤ 𝑏𝑏 ⇒ 𝑎𝑎𝑎𝑎 ≾ 𝑏𝑏𝑏𝑏  ∀ 𝑧𝑧 ∈ ℂ. 
(ii) 0 ≾ 𝑧𝑧1 ⋨ 𝑧𝑧2 ⇒ |𝑧𝑧1| < |𝑧𝑧2|. 

               𝑧𝑧1 ≾ 𝑧𝑧2 and  𝑧𝑧2 ≺ 𝑧𝑧3 ⇒ 𝑧𝑧1 ≺ 𝑧𝑧3. 
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Definition 3 (see [2]): Let 𝑋𝑋 be a nonempty set. A function 𝑑𝑑: 𝑋𝑋 ×  𝑋𝑋 →  ℂ is called a complex valued metric on 𝑋𝑋 if 
for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 the following conditions are satisfied:  

(i) 0 ≾  𝑑𝑑(𝑥𝑥,𝑦𝑦) and 𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  0 if and only if 𝑥𝑥 =  𝑦𝑦 
(ii) 𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  𝑑𝑑(𝑦𝑦, 𝑥𝑥) 
(iii) 𝑑𝑑(𝑥𝑥,𝑦𝑦)  ≾  𝑑𝑑(𝑥𝑥, 𝑧𝑧)  +  𝑑𝑑(𝑧𝑧,𝑦𝑦) 

The pair (𝑋𝑋,𝑑𝑑) is called a complex valued metric space. 
 
Example 4 (see [5]): Let 𝑋𝑋 = ℂ. Define the mapping 𝑑𝑑: 𝑋𝑋 × 𝑋𝑋 →  ℂ by 
                                  𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  𝑖𝑖|𝑥𝑥 –  𝑦𝑦|, for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. 
 
Then (𝑋𝑋,𝑑𝑑) is a complex valued metric space. 
 
Definition 5 (see[10]): Let 𝑋𝑋 be a nonempty set and let 𝑠𝑠 ≥  1 be given real number. A function 𝑑𝑑:𝑋𝑋 × 𝑋𝑋 → ℂ is 
called a complex valued b-metric on 𝑋𝑋 if for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 the following conditions are satisfied: 

(i) 0 ≾  𝑑𝑑(𝑥𝑥,𝑦𝑦) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  0 if and only if 𝑥𝑥 =  𝑦𝑦 
(ii) 𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  𝑑𝑑(𝑦𝑦, 𝑥𝑥) 
(iii) 𝑑𝑑(𝑥𝑥,𝑦𝑦)  ≾  𝑠𝑠[𝑑𝑑(𝑥𝑥, 𝑧𝑧)  +  𝑑𝑑(𝑧𝑧,𝑦𝑦)]. 

The pair (𝑋𝑋,𝑑𝑑) is called a complex valued b-metric space. 
 
Example 6 (see [10]): Let 𝑋𝑋 =  [0,1]. Define the mapping 𝑑𝑑: 𝑋𝑋 𝑥𝑥 𝑋𝑋 →  ℂ by 

         𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  |𝑥𝑥 − 𝑦𝑦|2 + 𝑖𝑖 |𝑥𝑥 − 𝑦𝑦|2, for all 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋. 
Then (𝑋𝑋,𝑑𝑑) is a complex valued b-metric space with 𝑠𝑠 =  2. 
 
Definition 7(see[10]): Let (𝑋𝑋,𝑑𝑑) be a complex valued b-metric space. Consider the following . 

(i) A point 𝑥𝑥 ∈ 𝑋𝑋 is called an interior point of a set 𝐴𝐴 ⊆ 𝑋𝑋 whenever there exists 0 ≺ 𝑟𝑟 ∈ ℂ such that 
𝐵𝐵(𝑥𝑥, 𝑟𝑟)  =  {𝑦𝑦 ∈ 𝑋𝑋 ∶  𝑑𝑑(𝑥𝑥,𝑦𝑦)  ≺  𝑟𝑟}  ⊆ 𝐴𝐴. 

(ii) A point 𝑥𝑥 ∈ 𝑋𝑋 is called a limit point of a set 𝐴𝐴 whenever, for every 0 ≺ 𝑟𝑟 ∈ ℂ , 𝐵𝐵(𝑥𝑥, 𝑟𝑟) ∩ (𝐴𝐴 – {𝑥𝑥})  ≠  𝜙𝜙. 
(iii) A subset 𝐴𝐴 of 𝑋𝑋 is called open whenever each point of 𝐴𝐴 is an interior point of 𝐴𝐴. 
(iv) A subset 𝐴𝐴 of 𝑋𝑋 is called closed whenever each limit point of 𝐴𝐴 belongs to 𝐴𝐴. 
(v) A subbasis for a Hausdorff topology 𝜏𝜏 on 𝑋𝑋 is a family  

𝐹𝐹 =  {𝐵𝐵(𝑥𝑥, 𝑟𝑟) ∶  𝑥𝑥 ∈ 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎 0 ≺  𝑟𝑟}. 
 
Definition 8 (see [10]): Let (𝑋𝑋,𝑑𝑑) be a complex valued b-metric space and {𝑥𝑥𝑛𝑛} a sequance in X and 𝑥𝑥 ∈ 𝑋𝑋. Consider 
the following. 

(i) If for every 𝑐𝑐 , with 0 ≺ 𝑐𝑐 , there is 𝑁𝑁 ∈ ℕ such that, for all 𝑛𝑛 > 𝑁𝑁 ,𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥) ≺ 𝑐𝑐 , then {𝑥𝑥𝑛𝑛 } is said to be 
convergent, if {𝑥𝑥𝑛𝑛 } converges to  𝑥𝑥 , and 𝑥𝑥  is the limit point of {𝑥𝑥𝑛𝑛}. We denote this by lim𝑛𝑛→∞  𝑥𝑥𝑛𝑛  = 𝑥𝑥  or  
𝑥𝑥𝑛𝑛 → 𝑥𝑥 as 𝑛𝑛 → ∞. 

(ii) If for every ∈ ℂ , with 0 ≺ 𝑐𝑐, there is 𝑁𝑁 ∈ ℕ such that, for all 𝑛𝑛 >  𝑁𝑁 ,𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+𝑚𝑚 ) ≺ 𝑐𝑐, where 𝑚𝑚 𝜖𝜖 ℕ, then 
{𝑥𝑥𝑛𝑛 } is said to be Cauchy sequence. 

(iii) If every Cauchy sequance in 𝑋𝑋 is convergent, then (𝑋𝑋,𝑑𝑑) is said to be a complete complex valued b-metric 
space. 

 
Definition 9 (see [7]): Let (𝑋𝑋,𝑑𝑑) be a complex valued metric space. The self-maps 𝑆𝑆 and 𝑇𝑇 are said to be commuting if 
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇 for all 𝑥𝑥 ∈ 𝑋𝑋. 
 
Definition 10 (see [8]): Let (𝑋𝑋,𝑑𝑑) be a complex valued metric space. The self-maps 𝑆𝑆 and 𝑇𝑇 are said to be compatible 
if lim
𝑛𝑛→∞

𝑑𝑑(𝑆𝑆𝑆𝑆𝑥𝑥𝑛𝑛  ,𝑇𝑇𝑇𝑇𝑥𝑥𝑛𝑛) = 0 whenever  {𝑥𝑥𝑛𝑛} is a sequence in 𝑋𝑋 such that lim
𝑛𝑛→∞

𝑆𝑆𝑥𝑥𝑛𝑛 = lim
𝑛𝑛→∞

𝑇𝑇𝑥𝑥𝑛𝑛 = 𝑡𝑡 for some 𝑡𝑡 ∈ 𝑋𝑋. 
 
Definition 11 (see [9]): Let (𝑋𝑋,𝑑𝑑) be a complex valued metric space. The self-maps 𝑆𝑆 and 𝑇𝑇 are said to be weakly 
compatible if 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇 whenever 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇, i.e., they commute at their coincidence points. 
 
Lemma 12 (see [10]): Let (𝑋𝑋,𝑑𝑑) be a complex valued b-metric space and let {𝑥𝑥𝑛𝑛 } be a sequence in 𝑋𝑋. Then {𝑥𝑥𝑛𝑛 } 
converges to 𝑥𝑥 if and only if |𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥)| →  0 as 𝑛𝑛 → ∞. 
 
Lemma 13 (see [10]): Let (𝑋𝑋,𝑑𝑑) be a complex valued b-metric space and let {𝑥𝑥𝑛𝑛 } be a sequence in 𝑋𝑋. Then {𝑥𝑥𝑛𝑛 }  s a 
Cauchy sequence if and only if |𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+𝑚𝑚 )|  →  0 as 𝑛𝑛 →  ∞ , where 𝑚𝑚 ∈ ℕ. 
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Theorem 14 (see [6]): Let (𝑋𝑋,𝑑𝑑) be a complete complex valued metric space and let 𝑆𝑆,𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 be self-maps of 𝑋𝑋 
such that  

(i) The pairs {𝑆𝑆, 𝑓𝑓} and {𝑇𝑇,𝑔𝑔} are weakly compatible, 
(ii) 𝑇𝑇𝑇𝑇 ⊆ 𝑓𝑓𝑓𝑓 and 𝑆𝑆𝑆𝑆 ⊆ 𝑔𝑔𝑔𝑔, 
(iii) 𝑓𝑓𝑓𝑓 or 𝑔𝑔𝑔𝑔 is a complete subpace of 𝑋𝑋 and 
(iv) 𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇)  ≾  𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑇𝑇 )

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔 )
,∀ 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑋𝑋,  

      where 𝜆𝜆, 𝜇𝜇 are non-negative reals with 𝜆𝜆 + 𝜇𝜇 < 1. 
Then 𝑆𝑆,𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 have a unique common fixed point. 
 
2. MAIN RESULT 
 
My theorem is a generalization of Theorem 14 in complex valued b-metric spaces. 
 
Theorem: Let (𝑋𝑋,𝑑𝑑) be a complete complex valued b-metric space with coefficient 𝑠𝑠 ≥ 1. Let 𝑆𝑆,𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 be self-
mappings of 𝑋𝑋 such that 

(i) The pairs { 𝑆𝑆, 𝑓𝑓 } and { 𝑇𝑇,𝑔𝑔 } are weakly compatible, 
(ii) 𝑇𝑇𝑇𝑇 ⊆  𝑓𝑓𝑓𝑓 and 𝑆𝑆𝑆𝑆 ⊆  𝑔𝑔𝑔𝑔, 
(iii) 𝑓𝑓𝑓𝑓 or 𝑔𝑔𝑔𝑔 is a complete subspace of 𝑋𝑋 and 
(iv) 𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇)  ≾  𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑇𝑇 )

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔 )
,∀ 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑋𝑋,  where 𝜆𝜆,𝜇𝜇 are non-negative reals with 𝑠𝑠𝑠𝑠 + 𝜇𝜇 < 1.  

Then 𝑆𝑆,𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 have a unique common fixed point. 
 
Proof: Let  𝑥𝑥0 ∈ 𝑋𝑋 be arbitrary. Using the condition (ii), we defined a sequence {𝑦𝑦𝑛𝑛 } in 𝑋𝑋 as  
  𝑦𝑦2𝑘𝑘+1 = 𝑔𝑔𝑔𝑔2𝑘𝑘+1 = 𝑆𝑆𝑆𝑆2𝑘𝑘  
  𝑦𝑦2𝑘𝑘+2 = 𝑓𝑓𝑓𝑓2𝑘𝑘+2 = 𝑇𝑇𝑇𝑇2𝑘𝑘+1,  𝑘𝑘 =  0, 1, 2, . . . . . . . . . .. 
 
Then  
𝑑𝑑(𝑦𝑦2𝑘𝑘+1,𝑦𝑦2𝑘𝑘+2) = 𝑑𝑑(𝑆𝑆𝑆𝑆2𝑘𝑘 ,𝑇𝑇𝑇𝑇2𝑘𝑘+1) 
                           ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑥𝑥2𝑘𝑘 ,𝑔𝑔𝑥𝑥2𝑘𝑘+1)+ 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑥𝑥2𝑘𝑘 ,𝑆𝑆𝑥𝑥2𝑘𝑘 )𝑑𝑑(𝑔𝑔𝑥𝑥2𝑘𝑘+1,𝑇𝑇𝑥𝑥2𝑘𝑘+1)

1+𝑑𝑑(𝑓𝑓𝑥𝑥2𝑘𝑘 ,𝑔𝑔𝑥𝑥2𝑘𝑘+1)
 

                           = 𝜆𝜆𝜆𝜆(𝑦𝑦2𝑘𝑘 ,𝑦𝑦2𝑘𝑘+1) +  𝜇𝜇𝜇𝜇 (𝑦𝑦2𝑘𝑘 ,𝑦𝑦2𝑘𝑘+1)𝑑𝑑(𝑦𝑦2𝑘𝑘+1,𝑦𝑦2𝑘𝑘+2)
1+𝑑𝑑(𝑦𝑦2𝑘𝑘 ,𝑦𝑦2𝑘𝑘+1)

 
                           ≾  𝜆𝜆 𝑑𝑑(𝑦𝑦2𝑘𝑘 ,𝑦𝑦2𝑘𝑘+1) +  𝜇𝜇𝜇𝜇(𝑦𝑦2𝑘𝑘+1,𝑦𝑦2𝑘𝑘+2) 
 
Thus 𝑑𝑑(𝑦𝑦2𝑘𝑘+1,𝑦𝑦2𝑘𝑘+2) ≾  𝜆𝜆

1− 𝜇𝜇
𝑑𝑑(𝑦𝑦2𝑘𝑘+1,𝑦𝑦2𝑘𝑘+2)                                                                                                                 (1) 

 
Similarly 
𝑑𝑑(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+3) = 𝑑𝑑(𝑆𝑆𝑆𝑆2𝑘𝑘+2,𝑇𝑇𝑇𝑇2𝑘𝑘+1) 
                           ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓2𝑘𝑘+2,𝑔𝑔𝑔𝑔2𝑘𝑘+1) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑥𝑥2𝑘𝑘+2,𝑆𝑆𝑥𝑥2𝑘𝑘+2)𝑑𝑑(𝑔𝑔𝑥𝑥2𝑘𝑘+1,𝑇𝑇𝑥𝑥2𝑘𝑘+1)

1+𝑑𝑑(𝑓𝑓𝑥𝑥2𝑘𝑘+2,𝑔𝑔𝑥𝑥2𝑘𝑘+1)
 

                           = 𝜆𝜆𝜆𝜆(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+1) + 𝜇𝜇𝜇𝜇 (𝑦𝑦2𝑘𝑘+2,)𝑦𝑦2𝑘𝑘+3𝑑𝑑(𝑦𝑦2𝑘𝑘+1,𝑦𝑦2𝑘𝑘+2)
1+𝑑𝑑(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+1)

 
                           ≾  𝜆𝜆 𝑑𝑑(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+1) +  𝜇𝜇𝜇𝜇(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+3) 
Thus 𝑑𝑑(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+3)  ≾  𝜆𝜆

1− 𝜇𝜇
𝑑𝑑(𝑦𝑦2𝑘𝑘+2,𝑦𝑦2𝑘𝑘+1)                                                                                                                (2) 

Now put  ℎ =  𝜆𝜆
1− 𝜇𝜇

 
 
Since 0 ≤  𝑠𝑠𝑠𝑠 +  𝜇𝜇 <  1, 𝑠𝑠 ≥  1, 𝜆𝜆 +  𝜇𝜇 <  1 and hence 0 ≤  ℎ <  1. 
 
Thus using (1) and (2) for  𝑛𝑛 ∈ ℕ , we get that  

𝑑𝑑(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1) ≾ ℎ𝑑𝑑(𝑦𝑦𝑛𝑛−1,𝑦𝑦𝑛𝑛) ≾ ℎ2 𝑑𝑑(𝑦𝑦𝑛𝑛−2,𝑦𝑦𝑛𝑛−1)  ≾  … … … … … . .≾ ℎ𝑛𝑛−1 𝑑𝑑(𝑦𝑦1,𝑦𝑦2). 
So for 𝑚𝑚,𝑛𝑛 ∈ ℕ, 
𝑑𝑑(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑚𝑚+𝑛𝑛) ≾ 𝑠𝑠[𝑑𝑑(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1) +  𝑑𝑑(𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑚𝑚+𝑛𝑛)] 
                     ≾ 𝑠𝑠𝑠𝑠(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1) +  𝑠𝑠2 [ 𝑑𝑑(𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2) +  𝑑𝑑(𝑦𝑦𝑛𝑛+2,𝑦𝑦𝑚𝑚+𝑛𝑛)] 
                     ≾ 𝑠𝑠𝑠𝑠(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1) +  𝑠𝑠2 𝑑𝑑(𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2) +  𝑠𝑠3 𝑑𝑑(𝑦𝑦𝑛𝑛+2,𝑦𝑦𝑛𝑛+3) + ⋯… +  𝑠𝑠𝑚𝑚−1 𝑑𝑑(𝑦𝑦𝑛𝑛+𝑚𝑚−2,𝑦𝑦𝑛𝑛+𝑚𝑚−1) 
                                              + 𝑠𝑠𝑚𝑚−1 𝑑𝑑(𝑦𝑦𝑛𝑛+𝑚𝑚−1,𝑦𝑦𝑛𝑛+𝑚𝑚 ) 

≾ 𝑠𝑠𝑠𝑠(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1) + 𝑠𝑠2 𝑑𝑑(𝑦𝑦𝑛𝑛+1,𝑦𝑦𝑛𝑛+2) + 𝑠𝑠3 𝑑𝑑(𝑦𝑦𝑛𝑛+2,𝑦𝑦𝑛𝑛+3) + … … + 𝑠𝑠𝑚𝑚−1 𝑑𝑑(𝑦𝑦𝑛𝑛+𝑚𝑚−2,𝑦𝑦𝑛𝑛+𝑚𝑚−1) 
                                              + 𝑠𝑠𝑚𝑚  𝑑𝑑(𝑦𝑦𝑛𝑛+𝑚𝑚−1,𝑦𝑦𝑛𝑛+𝑚𝑚 ) 
                     ≾ 𝑠𝑠ℎ𝑛𝑛−1𝑑𝑑(𝑦𝑦1,𝑦𝑦2) + 𝑠𝑠2ℎ𝑛𝑛𝑑𝑑(𝑦𝑦1,𝑦𝑦2) + … … … … + 𝑠𝑠𝑚𝑚−1ℎ𝑛𝑛+𝑚𝑚−3𝑑𝑑(𝑦𝑦1,𝑦𝑦2) +  𝑠𝑠𝑚𝑚ℎ𝑛𝑛+𝑚𝑚−2𝑑𝑑(𝑦𝑦1,𝑦𝑦2) 
                     = 𝑠𝑠ℎ𝑛𝑛−1[ 1 + 𝑠𝑠ℎ + 𝑠𝑠2ℎ2 + … … … … … + 𝑠𝑠𝑚𝑚−1ℎ𝑚𝑚−1]𝑑𝑑(𝑦𝑦1,𝑦𝑦2) 
                     ≾ 𝑠𝑠ℎ𝑛𝑛−1

1−𝑠𝑠ℎ
𝑑𝑑(𝑦𝑦1,𝑦𝑦2) 



Tanmoy Mitra*/ A Common Fixed Point Theorem in Complex Valued b-Metric Spaces for Four Mappings / 
 IJMA- 6(8), August-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                       125   

 
Thus |𝑑𝑑(𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑚𝑚+𝑛𝑛)| ≤  𝑠𝑠ℎ

𝑛𝑛−1

1−𝑠𝑠ℎ
 |𝑑𝑑(𝑦𝑦1,𝑦𝑦2)|  → 0 as 𝑛𝑛 →  ∞, where 𝑚𝑚 ∈ ℕ. 

 
Hence {𝑦𝑦𝑛𝑛 } is a Cauchy sequence in 𝑋𝑋.  
 
Since 𝑋𝑋 is complete, there exists 𝑧𝑧 𝜖𝜖 𝑋𝑋 such that 𝑦𝑦𝑛𝑛 →  𝑧𝑧 as 𝑛𝑛 →  ∞. 
 
Thus lim𝑛𝑛  →∞ 𝑆𝑆𝑥𝑥2𝑛𝑛 =  lim𝑛𝑛  →∞ 𝑔𝑔𝑥𝑥2𝑛𝑛+1 =  lim𝑛𝑛  →∞ 𝑇𝑇𝑥𝑥2𝑛𝑛+1 =  lim𝑛𝑛  →∞ 𝑓𝑓𝑥𝑥2𝑛𝑛+2 = 𝑧𝑧                                                        (3) 
 
Now if 𝑓𝑓𝑓𝑓 is a complete subspace of 𝑋𝑋, there exists 𝑢𝑢 ∈ 𝑋𝑋 such that 𝑓𝑓𝑓𝑓 =  𝑧𝑧 
 
From the condition (iv), we have 
 𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧) ≾ 𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆,𝑇𝑇𝑥𝑥2𝑛𝑛+1) +  𝑠𝑠𝑠𝑠(𝑇𝑇𝑥𝑥2𝑛𝑛+1, 𝑧𝑧) 
                ≾ 𝑠𝑠 � 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔2𝑛𝑛+1) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔2𝑛𝑛+1,𝑇𝑇𝑇𝑇2𝑛𝑛+1)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔2𝑛𝑛+1)
� + 𝑠𝑠𝑠𝑠(𝑇𝑇𝑥𝑥2𝑛𝑛+1, 𝑧𝑧) 

                = 𝑠𝑠 �𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑦𝑦2𝑛𝑛+1) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2)
1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑦𝑦2𝑛𝑛+1)

� + 𝑠𝑠𝑠𝑠(𝑦𝑦2𝑛𝑛+2, 𝑧𝑧) 
 
Therefore |𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧)| ≤ 𝑠𝑠 �𝜆𝜆|𝑑𝑑(𝑓𝑓𝑓𝑓,𝑦𝑦2𝑛𝑛+1)| + 𝜇𝜇 |𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)||𝑑𝑑(𝑦𝑦2𝑛𝑛+1,𝑦𝑦2𝑛𝑛+2)|

1+|𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑦𝑦2𝑛𝑛+1)|
� + 𝑠𝑠|𝑑𝑑(𝑦𝑦2𝑛𝑛+2, 𝑧𝑧)| 

 
Letting 𝑛𝑛 → ∞  and using (3) and Lemma 12, we get that |𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧)| ≤  0.  
 
Thus |𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧)|  =  0. i.e. 𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧)  =  0 and hence 𝑆𝑆𝑆𝑆 =  𝑧𝑧. 
 
Since 𝑆𝑆𝑆𝑆 ⊆ 𝑔𝑔𝑔𝑔, there exists 𝑣𝑣 ∈ 𝑋𝑋 such that 𝑔𝑔𝑔𝑔 = 𝑧𝑧. 
 
Again from condition (iv), we have 
𝑑𝑑(𝑧𝑧,𝑇𝑇𝑇𝑇)  =  𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇) 
                ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑇𝑇)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔)
 

                = 0 
 
Thus 𝑑𝑑(𝑧𝑧,𝑇𝑇𝑇𝑇)  =  0 and hence 𝑇𝑇𝑇𝑇 =  𝑧𝑧. 
 
Thus 𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆 =  𝑧𝑧 =  𝑔𝑔𝑔𝑔 =  𝑇𝑇𝑇𝑇. 
 
Since 𝑓𝑓 and 𝑆𝑆 are weakly compatible, 
          𝑓𝑓𝑓𝑓 =  𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆. 
 
Now we will show that 𝑆𝑆𝑆𝑆 =  𝑧𝑧. 
 
From condition (iv),  
𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧)  =  𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇) 
               ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑇𝑇)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔)
 

               = 𝜆𝜆𝜆𝜆(𝑆𝑆𝑆𝑆, 𝑧𝑧) 
 
Thus (1 − 𝜆𝜆)|𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧)|  ≤ 0 
 
Thus 𝑑𝑑(𝑆𝑆𝑆𝑆, 𝑧𝑧) = 0 and hence 𝑆𝑆𝑆𝑆 =  𝑧𝑧. 
 
Similarly since 𝑔𝑔 and 𝑇𝑇 are weakly compatible,  
                𝑔𝑔𝑔𝑔 =  𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇. 
 
Also 𝑑𝑑(𝑧𝑧,𝑇𝑇𝑇𝑇) =  𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇) 
                       ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑇𝑇)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔)
 

                       = 𝜆𝜆𝜆𝜆(𝑧𝑧,𝑇𝑇𝑇𝑇) 
 
Thus 𝑑𝑑(𝑧𝑧,𝑇𝑇𝑇𝑇)  =  0 and hence 𝑇𝑇𝑇𝑇 =  𝑧𝑧. 
 
Thus   𝑆𝑆𝑆𝑆 =  𝑓𝑓𝑓𝑓 =  𝑔𝑔𝑔𝑔 =  𝑇𝑇𝑇𝑇 =  𝑧𝑧. 
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i.e. 𝑧𝑧 is a common fixed point of four mappings   𝑆𝑆,𝑇𝑇, 𝑓𝑓 and 𝑔𝑔. 
 
Now we show that 𝑧𝑧 is the unique common fixed point. 
 
Let  𝑧𝑧∗ ∈ 𝑋𝑋 such that 𝑓𝑓𝑧𝑧∗ = 𝑆𝑆𝑧𝑧∗ = 𝑔𝑔𝑧𝑧∗ = 𝑇𝑇𝑧𝑧∗ = 𝑧𝑧∗. 
 
Then we have,  
𝑑𝑑(𝑧𝑧, 𝑧𝑧∗) = 𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑧𝑧∗) 
              ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑧𝑧∗) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑔𝑔𝑔𝑔 ∗,𝑇𝑇𝑧𝑧∗)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑧𝑧∗)
 

              = 𝜆𝜆𝜆𝜆(𝑧𝑧, 𝑧𝑧∗) 
 
Thus  𝑑𝑑(𝑧𝑧, 𝑧𝑧∗) = 0   and so   𝑧𝑧 = 𝑧𝑧∗. Thus z is the unique common fixed point of 𝑆𝑆,𝑇𝑇,𝑓𝑓 and 𝑔𝑔. 
 
If 𝑔𝑔𝑔𝑔 is complete, we can similarly prove the theorem. 
 
Corollary 1: Let (𝑋𝑋,𝑑𝑑) be a complete complex valued b-metric space with coefficient 𝑠𝑠 ≥ 1. Let 𝑆𝑆,𝑇𝑇 be self-mappings 
of 𝑋𝑋 such that   

𝑑𝑑(𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇) ≾ 𝜆𝜆𝜆𝜆(𝑥𝑥,𝑦𝑦) + 𝜇𝜇𝜇𝜇 (𝑥𝑥 ,𝑆𝑆𝑆𝑆)𝑑𝑑(𝑦𝑦 ,𝑇𝑇𝑇𝑇)
1+𝑑𝑑(𝑥𝑥 ,𝑦𝑦)

, ∀ 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑋𝑋, 
where 𝜆𝜆, 𝜇𝜇 are non-negative reals with 𝑠𝑠𝑠𝑠 +  𝜇𝜇 <  1. 
 
Then 𝑆𝑆,𝑇𝑇 have a unique common fixed point. 
 
Proof: Taking 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 and 𝑔𝑔(𝑥𝑥) = 𝑥𝑥, ∀ 𝑥𝑥 𝜖𝜖 𝑋𝑋 in the above theorem we get the result. 
 
Corollary 2: Let (𝑋𝑋,𝑑𝑑) be a complete complex valued b-metric space with coefficient 𝑠𝑠 ≥ 1. Let 𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 be self-
mappings of 𝑋𝑋 such that 

(i) The pairs {𝑇𝑇, 𝑓𝑓} and {𝑇𝑇,𝑔𝑔} are weakly compatible 
(ii) 𝑇𝑇𝑇𝑇 ⊆ 𝑓𝑓𝑓𝑓 and 𝑇𝑇𝑇𝑇 ⊆ 𝑔𝑔𝑔𝑔 
(iii) 𝑓𝑓𝑓𝑓 or 𝑔𝑔𝑔𝑔 is a complete subspace of 𝑋𝑋 and 
(iv) 𝑑𝑑(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇)  ≾  𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) +  𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑇𝑇)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑇𝑇)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔 )
,∀ 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑋𝑋,  where 𝜆𝜆, 𝜇𝜇 are non-negative reals with 𝑠𝑠𝑠𝑠 + 𝜇𝜇 < 1.  

Then  𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 have a unique common fixed point. 
 
Proof: Taking 𝑆𝑆 =  𝑇𝑇 in the above theorem, we get the result. 
 
Corollary 3: Let (𝑋𝑋,𝑑𝑑) be a complete complex valued b-metric space with coefficient 𝑠𝑠 ≥ 1. Let 𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 be self-
mappings of 𝑋𝑋 and 𝑛𝑛 is a possitive integers, satisfying the following conditions  

(i) The pairs {𝑇𝑇𝑛𝑛 , 𝑓𝑓}, {𝑇𝑇𝑛𝑛 ,𝑔𝑔}, { 𝑇𝑇, 𝑓𝑓 } and { 𝑇𝑇,𝑔𝑔 } are weakly compatible 
(ii) 𝑇𝑇𝑛𝑛𝑋𝑋 ⊆ 𝑓𝑓𝑓𝑓 and 𝑇𝑇𝑛𝑛𝑋𝑋 ⊆ 𝑔𝑔𝑔𝑔 
(iii) 𝑓𝑓𝑓𝑓 or 𝑔𝑔𝑔𝑔 is a complete subspace of 𝑋𝑋 and 
(iv) 𝑑𝑑(𝑇𝑇𝑛𝑛𝑥𝑥,𝑇𝑇𝑛𝑛𝑦𝑦) ≾ 𝜆𝜆𝜆𝜆(𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔) + 𝜇𝜇𝜇𝜇 (𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑛𝑛𝑥𝑥)𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑛𝑛𝑦𝑦)

1+𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑔𝑔𝑔𝑔 )
,∀ 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑋𝑋,  where 𝜆𝜆, 𝜇𝜇 are non-negative reals wit 𝑠𝑠𝑠𝑠 + 𝜇𝜇 < 1.  

Then  𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 have a unique common fixed point. 
 
Proof: Applying corollary 2, we get a unique common fixed point 𝑧𝑧 of  𝑇𝑇𝑛𝑛 , 𝑓𝑓 and 𝑔𝑔. 
 
Therefore    𝑇𝑇𝑛𝑛𝑧𝑧 =  𝑓𝑓𝑓𝑓 =  𝑔𝑔𝑔𝑔 =  𝑧𝑧. 
 
Now we note that 𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇𝑛𝑛𝑧𝑧 =  𝑇𝑇𝑇𝑇. 
 
Also since the pairs {𝑇𝑇, 𝑓𝑓} and {𝑇𝑇,𝑔𝑔} are weakly compatible, 

𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇 and 𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇. 
 
Thus we see that 𝑇𝑇𝑇𝑇 is also a common fixed point of 𝑇𝑇𝑛𝑛 , 𝑓𝑓 and  𝑔𝑔. 
 
Thus by uniqueness of 𝑧𝑧, we have    𝑇𝑇𝑇𝑇 =  𝑧𝑧. 
 
Hence 𝑧𝑧 is a common fixed point of 𝑇𝑇, 𝑓𝑓 and 𝑔𝑔. 
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Since any common fixed point of 𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 is also a common fixed point of 𝑇𝑇𝑛𝑛 , 𝑓𝑓 and 𝑔𝑔, the common fixed point 𝑧𝑧 of 
𝑇𝑇, 𝑓𝑓 and 𝑔𝑔 is unique. 
 
This complete the proof. 
 
Corollary 4: Let (𝑋𝑋,𝑑𝑑) be a complete complex valued b-metric space with coefficient 𝑠𝑠 ≥ 1. Let 𝑇𝑇 be a self-mappings 
of 𝑋𝑋 and 𝑛𝑛 is a possitive integers , such that  

𝑑𝑑(𝑇𝑇𝑛𝑛𝑥𝑥,𝑇𝑇𝑛𝑛𝑦𝑦)  ≾  𝜆𝜆𝜆𝜆(𝑥𝑥,𝑦𝑦) +  
𝜇𝜇𝜇𝜇(𝑥𝑥,𝑇𝑇𝑛𝑛𝑥𝑥)𝑑𝑑(𝑦𝑦,𝑇𝑇𝑛𝑛𝑦𝑦)

1 + 𝑑𝑑(𝑥𝑥,𝑦𝑦)
,∀ 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑋𝑋,  

where 𝜆𝜆, 𝜇𝜇 are non-negative reals with 𝑠𝑠𝑠𝑠 +  𝜇𝜇 <  1.  
 
Then 𝑇𝑇 has a unique common fixed point. 
 
Proof:  In corollary 3, if we take 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 and  𝑔𝑔(𝑥𝑥) = 𝑥𝑥, for all 𝑥𝑥 ∈ 𝑋𝑋, then the required result follows. 
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