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ABSTRACT

The focus of this paper is to explore the concepts of different connectedness in intuitionistic fuzzy topological spaces.
Also we obtain their characterization and analyse their inter- relations.
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1. INTRODUCTION

The concept of an intuitionistic fuzzy set (IFS), which is a generalization of the concept of a fuzzy set (FS), has been
introduced by K. Atanassov [1]. Using the notion of intuitionistic fuzzy sets, Coker [2] introduced intuitionistic fuzzy
topological space. Connectedness in intuitionistic fuzzy special topological spaces was introduced by Oscag and Coker
[9]. Many researchers have extended their notions to study various forms of connectedness Sharmila.S and

. Arockiarani [6] discussed intuitionistic fuzzy { — open sets and intuitionistic fuzzy ¢ — continuity.

In this paper we have introduced intuitionistic fuzzy { —connected space and various forms of connectedness. Several
properties concerning connectedness in these spaces are also explored.

2. PRELIMINARIES

Definition 2.1: [1] An intuitionistic fuzzy set (IFS, in short) A in X is an object having the form
A:{X,,uA(X),UA(X)/XEX} where the functions g, : X — 1 and v, :X — | denote the degree of

membership (namely £, (X)) and the degree of non-membership (namely v, (X)) of each element X € X to the set
A on anonempty set X and 0 < gz, (X) + v, (X) <1foreach X € X . Obviously every fuzzy set A on a nonempty set
Xisan IFS’s A and B be in the form A= {X,,uA(X),l—,uA(X)/X € X}

Definition 2.2: [1] Let X be a nonempty set and the IFS’s A and B be in the form A= {X,,uA(X),UA(X)/X e X }
B ={X, 115 (X), 05 (X)/ x € X } and let A ={A, : ] € J}be an arbitrary family of IFS’s in X. Then we define

(i) AcBifandonlyif z,(X) < g (x) and v, (X) > vg(X) forall Xe X .

(ii) A=Bifandonlyif Ac BandB c A.

(i) A={x,0,(x), ,(X)/ x € X }.

(iv) AN B = {X, 11, (X) N s (X), 0, (X) UG (X)X € X }.

(V) AUB ={X, 1£,(X) U 125 (X),0,(X) " g (X) / x € X }

(vi) 1 ={(x1,0)x e X}and0_ ={(x,01)x e X}.
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Definition 2.3: [2] An intuitionistic fuzzy topology (IFT, in short) on a nonempty set X is a family 7 of an
intuitionistic fuzzy set (IFS, in short) in X satisfying the following axioms:
(i) 0-,1l.er.

(i) ANA erforanyA, A er.
(i) UA; ecforany A, s jelcr.
In this paper we denote intuitionistic fuzzy topological space (IFTS, in short) by(X,r),(Y,K) or X,Y. Each IFS

which belongs to 7 is called an intuitionistic fuzzy open set (IFOS, in short) in X. The complement A of an IFOS A in
X is called an intuitionistic fuzzy closed set (IFCS, in short). An IFS X is called intuitionistic fuzzy clopen (IF clopen) if
and only if it is both intutionistic fuzzy open and intuitionistic fuzzy closed.

Definition 2.4: [2] Let (X , z') be an IFTS and A= {X,,uA(X),UA(X)} be an IFS in X. Then the fuzzy interior and
closure of A are denoted by
(i) cl(A)=N{K:KisanIFCSinXand Ac K}.

(i) int(A)=U{G:GisanIFOSinXand G < A}.
Note that, for any IFS Ain (X,7), we have cl(A) =int(A) and int(A) =cl(A).

Definition 2.5: [5] Let X and Y be two non-empty setsand f : X — Y be a function.
If B={<y,us(y),05(y)>/yeY} isanIFS in Y, then the pre-image of B under f is denoted and defined by
fH(B)={<x, f "(uz(X)), f "(0a(X))>/xe X}, Since g (X),05(X)are fuzzy sets, we explain that

f 7 (1 (%)) = 115 (T (X)), T 7 (05 (%)) = 05 ()(F (X)) .

Definition 2.6[5]: An IFS p(«a,f)= <X,Ca,CH),> where @ €(01], f€[0)) and a+ f<lis called an
intuitionistic fuzzy point (IFP) in X.

Note that an IFP p(e, f)is said to belong to an IFS A:<X,,uA,UA> of X denoted by p(a,f)eA if

a<u,and f>0,.

Definition 2.7[5]: Let p(e, ) be an IFP of an IFTS (X,7). An IFS A of X is called an intuitionistic fuzzy
neighbourhood (IFN) of p(e, ) if there exists an IFOS B in X such that p(«, f) € B < A.

Definition 2.8: [3] Two intuitionistic fuzzy sets A and B are said to be g-coincident (AgB) if and only if there exists an
element X € X such that s, (X) D vy (X) or v, (X) < pg(X).

Definition 2.9: [3] Two intuitionistic fuzzy sets A and B are said to be not g-coincident AaB if and only if A B.

Definition 2.10: [8] An IFTS (X, 7) is called intuitionistic fuzzy Csconnected between two intuitionistic fuzzy sets A

and B if there isno IFOS E in (X, 7) suchthat A< E and EaB.

Definition 2.11: [6] Let A be an IFTS (X, 7). Then A is called an intuitionistic fuzzy £ open set( IFSOS , in short) in
X if Acbcl(int(A)).

Definition 2.12: [6] Let A be an IFTS (X,7). Then A is called an intuitionistic fuzzy ¢ closed set (IF ¢ CS, in short)
in X if bint(cl(A)) cA.

Definition 2.13:[6] Let (X,7) be an IFTS and A={< X, £, (X),0,(X) > /X € X} be an IFS in X. Then the
intuitionistic fuzzy ¢ —closure and ¢ -interior of A are defined by

(@) <el(A)=N{U:Uisan IFSCS inXand U 2 A}

i)y int(A)=U{v:visan IFSOS inXand V c A};

© 2015, IIMA. All Rights Reserved 136



Sharmila. S*', I. Arockiarani® / é/ ~ Connectedness in Intuitionistic Fuzzy Topological Spaces / IJMA- 6(8), August-2015.

Definition 2.14: Let f : X —Y froman IFTS X into an IFTS Y. Then f is said to be an
(i) Intuitionistic fuzzy ¢ -continuous ( IF¢ — cont, in short) [6] if f *(B) e IFCOS(X) forevery B e « .
(ii) Intuitionistic fuzzy continuous [4] if f (B) e IFO(X) forevery Bex .

Definition 2.15: [7] Let f be a mapping from IFTS (X,7) into an IFTS(Y,x). Then f is said to be intuitionistic
fuzzy ¢ —irresolute (IF¢ — irresolute, in short) if f *(B) e IFCO(X) for every IFCOS Bin Y.

3. INTUITIONISTIC FUZZY { — CONNECTED SPACES

Definition 3.1: An IFTS (X, 7) is IF{ — disconnected if there exists IFOSs U, Vin X, U #0_,V #0_ such
that U UV =1_and U NV =0_.If X iis not IF {' — disconnected then it is said to be IF ¢ — connected.

Example 3.2: Let X ={a,b}, 7 ={0_,1_,G,} where
G, ={< x,(0.2.0.2),(0.7,0.5) >, x € X}, G, ={< x,(0.3.0.2),(0.6,0.4) >, x € X}

Giand G, are IFSOSin X, G, #0_,G, #0_ and G, UG, =G, #1, GG, =G, #0. Hence X is
IF { — connected .

Example 3.3: Let X ={a,b}, 7={0_,1_,G,} where

G, ={<x,(0.2.0.1),(0.7,0.5) >, x € X},

G, ={<x,(1,0),(0,1) >, x e X},

G; ={<x,(0,2),(1,0) >, x e X}.

Gzand Gzare IFSOSinX, G, #0_,G, #0_and G, UG, =1_, G, NG, =0_.
Hence X is IF ¢ — disconnected .

Definition 3.4: Let N be an IFS in IFTS (X, 7)

(@) If there exists IF{OSs U and V in X satisfying the following properties, then N is called
IF &, —disconnected (i=1,2,3,4) :
C: NcUUV,UNV SN, NAU=0_, NNV #0_.
C;G:NcUuUV, NNUNV =0_, NnU=0_, NNV #0_.
C: NcUuV,UAVcN,UgN, VN,
Cc: NcUuUV, NnUnNnV =0_,U zN,V&N.

(b) N issaid to be IFg; — connected (i=1,2,3,4) if N isnot IF ; — disconnected (i=1,2,3,4).

Obviously, we can obtain the following implications between several types of IF §; — connected ( i=1,2,3,4..).

(=]

1. IF¢; —connectedness
2. IF{, —connectedness
3. IF{, —connectedness

4. IF ¢, —connectedness\
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Example 3.5: Let X ={a,b}, 7={0_1.,G,,G,} where G, ={<x,(0.4.0.1),(0.6,0.9) >, x € X},
G, ={< x,(0.5,0.3),(0.5,0.7) >, x € X} . Consider the IFS G, ={< x,(0.3,0.1),(0.7,0.9) >, x € X}; Gz is
IF ¢, —connected, IF &, — connected, IF &, —connected, but IF ; — disconnected.

Example 3.6: Let X ={a,b}, 7={0_1_,G,,G,,G, UG,,G, "G,} where
G, ={< x,(0.2.0.8),(0.6,0.2) >,x € X}, G, ={< x,(0.8,0.6),(0.2,0.2) >, x € X} . Consider the IFS
G; ={<x,(0.1,0.2),(0.7,0.7) >, x € X}; G3 is IF¢, —connected, but IF £, — disconnected.

Example 3.7: Let X ={a,b}, 7={0_,1.,G,,G,,G, UG,} where G, ={<x,(0.,0.2),(1,0.8) >, x € X},
G, ={<x,(0.2,0),(0.81) >, x € X} . Consider the IFS G, ={< X,(0.1,0.1),(0.9,0.9) >, x € X}; Gyand G,
are IFSOS . G, is IF ¢, —connected, but IF £, —disconnected.

Definition 3.8: An IFTS (X, 7) is IF{ Cs —disconnected, if there exists IFS U and V in X, which is both 1FZOS
and IFSCS U #0_,U #1_.1fXisnot IF{ Cs—disconnected, then it is said to be 1F¢ Cs —connected.

Example 3.9: Let X ={a,b}, 7 ={0_,1_,G,} where G, ={< (x,0.2,0.1),(0.7,0.5) >;x € X}
Giisan IFZOS in X, but notan IFSCS and G, #0_,G, #1_. Thus X is IF{ Cs —connected.

Example 3.10: Let X ={a,b}, 7 ={0_1_,G,} where G, ={<(x,0.2,0.1),(0.7,0.5) >; x € X}

G, ={<(x10),(0,1) >;x e X}.

Gyisan IFSOS in X. Also G, isan IFSCS since bint(cl(G,)) < G, . Hence there exists an IFS G, in X such that
G, #0_,G, #1_whichisboth IFSOS and IFZCS in X. Thus X is 1F¢ Cs —disconnected.

Theorem 3.11: IF¢ Cs —disconnectedness implies IF ¢ — connectedness.

Proof: Suppose that there exists nonempty IFZOSs U and V such that U UV =1 and U NV =0_
(IF& —disconnected ) then w, U g =1, v, Ny =0, and p, Uy =0, 0, "Ly =1. In other words

V =U . Hence U is IF ¢ -clopen which implies X is IF¢ Cs —disconnected.
But the converse may not be true as shown by the following example.

Example 3.12: Let X ={a,b}, 7 ={0_1_,G,} where G, ={< (x,0.6,0.6),(0.6,0.6) >; x € X}

G, ={<(x,0.3,0.1),(0.2,0.6) >;x € X}

.Then G, and G, are IFZOS in X.

G, UG, ={<x,(0.6,0.6),(0.2,0.6) >;x e X} #1_.

G, NG, ={<x,(0.2,0.6),(0.6,0.6) >;x € X}#0_. Hence X is IF{ —connected. Since IFS G, is both
IFSOS and IFSCS inX, Xis IF{ Cs —disconnected.

Theorem 3.13: Let f :(X,7) > (Y,x) be an IF{ -irresolute surjection, (X,7) is an IF{ — connected, then
(Y,x) is IF ¢ — connected.

Proof: Assume that (Y, x) is not IF £ — connected, then there exists nonempty IFSOSs U and Vin (Y, x) such
that UV =1_ and UNV =0_. since fis IF -irresolute mapping, A= f'(U)=0_,
B=f"(V)=0_, whichare IFSOSinXand f *(U)u f (V)= f '(1) =1_, which implies AUB =1_.
frU)N f (V)= f"(0)=0_, which implies ANB=0_ . Thus X is IF¢ —disconnected, which is a
contradiction to our hypothesis. Hence Y is IF ¢ — connected.
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Theorem 3.14: (X,7) is IF{ Cs —connected if and only if there exists no nonempty IFSOS U and V in X such
that U =V .

Proof: Suppose that U and V are IFZOS s in X such that U #0_,V #0_and U =V .Since U=V, V isan

IFSOS and V is IFSCS and U # 0_implies V #1_. But this is a contradiction to the fact that X is 1F¢ Cs —
connected .

Conversely , let U be both IF{OSand IFSCS in X such that U #0_,U #1_. Now take U=V.Visan
IFSOS and U #1_ which implies U =V # 0 which is a contradiction,

Theorem 3.15: An IFTS (X, 7) is IF{ —connected space if and only if there exists no non-zero IFSOS U and V in
(X,7), such that U =V.

Proof: Necessity: Let U and V be two IFZOSin (X,7) suchthat U #0_,V #0_ and U =V . Therefore V is
an IFZCS . Since U # 0_,V #1_. This implies V is a proper IFS which is both IFZOS and IFSCS in (X, 7).

Hence (X,7) isnotan IF{ —connected space. But this is a contradiction to our hypothesis. Thus there exist no non-
zero IFSOS Uand Vin (X,7), such that U =V.

Sufficiency: Let U be both IFOS and IFSCS in (X, 7) suchthat U #0_,U #1_. Now let V =U . ThenV

isan IFCOS and V #1_. This implies V = U= 0_, which is a contradiction to our hypothesis. Therefore is an
(X,7) is IFS —connected space.
Theorem 3.16: An IFTS (X,7) is IF{ —connected space if and only if there exists no non-zero IFSOS U and V in

(X,7),suchthat U =V , V = el(U) and U = Cel(V).

Proof: Necessity : Assume that there exists IFSs U and V such that U =0_,V #0_,V =U, V = ¢el(U) and
U :m. Since ¢cl(U) and £el(V) are IFZOSin (X,7), Uand V are IFSOSin (X,7). This implies
(X,7) isnotan IFS —connected space, which is a contradiction. Therefore there exists no non-zero IFZOS U and
Vin (X,7),suchthat U =V, V = ¢cl(U) and U = Cel(V).

Sufficiency: Let U be both IFSOS and IFSCS in (X,7) suchthat U = 0_,U #1_. Now by taking V = U we
obtain a contradiction to our hypothesis. Hence (X, 7) is IF{ —connected space.

Definition 3.17: An IFTS (X, 7) is IF{ —strongly connected, if there exists no nonempty IFSCS U and V in X
suchthat s, + g 210, +vg 1.

In other words, an IFTS (X, 7) is IF{ —strongly connected, if there exists no nonempty IFSCS U and V in X such
that U NV =0_.

Theorem 3.18: An IFTS (X, 7) is IF{ —strongly connected, if there exists no nonempty IFSCS U and V in X,
U =V # Lsuch that Uy +ug 2Lo, +u; 1.

Example 3.19: Let X ={a,b}, 7 ={0_1_,G,} where G, ={< (X,0.6,0.6),(0.6,0.6) >; x € X}
G, ={<(x,0.3,0.1),(0.2,0.6) >, x € X}
Then G, and G, are IFSOS in X, also 1, + ptg 21,0, + 0y < 1. Hence Xis IF{ —strongly connected.

© 2015, IIMA. All Rights Reserved 139



Sharmila. S*', I. Arockiarani® / é/ ~ Connectedness in Intuitionistic Fuzzy Topological Spaces / IJMA- 6(8), August-2015.

Theorem 3.20: Let f :(X,7) > (Y,x) be an IF{ -irresolute surjection. If X is an IF¢ —strongly connected,
thensoisY.

Proof: Suppose that Y is not IF{ —strongly connected, then there exists IFSCS U and V in Y such that
U=0_,V=#0_, UnV =0_. Since f is IF( -irresolute, f* (U), % (v) are IF{CS in X and
frU)NfV)=0_, fTU)=0_,f*(V)=0_. 0if f*U)=0_ then f(f'(U))=U which implies
f(0-)=U. So U=0. a contradiction]. Hence X is IF{ -strongly connected, a contradiction. Thus (Y, «) isIFS -
strongly connected.

Remark 3.21: IF¢ —strongly connected and |F¢ Cs —connected are independent.

IF& —strongly connectad

IFE Cs —connected

Example 3.22: Let X ={a,b}, 7 ={0_,1_,G,} where G, ={< (x,0.6,0.6),(0.6,0.6) >; x € X}

G, ={<(x,0.3,0.1),(0.2,0.6) >;x € X}.

Then G; and G, are IF{OSin X. Also p, + g 21,0, + 0y < 1. Hence X is IFS —strongly connected. But X
isnot IFZ Cs—connected, since G, is both IFSOS and IFZCS in X

Example 3.23: Let X ={a,b}, 7={0_1_,G,,G,,G, uG,,G, N G,} where

G, ={<(x,0.6,0.5),(0.3,0.4) >; x € X}

G, ={<(x,0.5,0.4),(0.2,0.4) >;x € X}.

X is IF{ Cs —connected, but X is not IFJ —strongly connected since G; and G, are IFZOSin X such that
Uy +ug 2Lv, +u; 1.

Lemma3.24:[8] () ANB=0_=AcB.(i) AcB=ANB=0._

Definition 3.25: A and B are non-zero intuitionistic fuzzy setsin (X, 7). Then A and B are said to be
(i) IF¢ —weakly separated if ¢tl(A) < Band ¢tl(B) < A.
(i) 1F& —g- separated if CI(A)NB=0_,An(cl(B)=0_.

Definition 3.26: An IFTS (X,7) is IF{ Cs —disconnected if there exists IFS —weakly separated non-zero
intuitionistic sets U and V in (X, 7) such that U UV =1_.

Example 3.27: Let X ={a,b}, 7 ={0_,1_,G,} where G, ={< (x,0.2,0.1),(0.7,0.5) >;x € X}

G, ={<(x1,0),(0,1) > x e X}, G, ={< (x,0),(L,0) >; x € X}

G, and Gz are IFZOS in X. Hence G, and G are |F¢ —weakly separated and G, W G, =1_. Hence X is IF{ Cs
—disconnected.

Definition 3.28: An IFTS (X, 7) is IF{ Cy —disconnected if there exists 1F¢ —g- separated non-zero IFS’s U and
Vin (X,7)suchthat U UV =1_.
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Example 3.29: Let X ={a,b}, 7 ={0_1_,G,} where G, ={<(X,0.2,0.1),(0.7,0.5) >; x € X}

G, ={<(x10),(0,1) >;x e X}, G, ={<(x,0,1),(L,0) >; x € X}

G, and Gy are IFSOSin X. £el(G,) NG, =0_,G, n(Sel(G;) = 0_which implies G, and G; are IFS —g-
separated and G, U G, =1_. Hence X is IF¢ Cy —disconnected.

Remark 3.30: An IFTS (X, 7) is IF{ Cs—disconnected if and only if (X,7)is IF¢ Cy—connected.

Definition 3.31: An IFTS (X,7) is IF¢ -regular open set if £ int(¢cl(A)) = A and IF¢ -regular closed if
sel(gint(A)) = A.

Definition 3.32: An IFTS (X, 7) is 1F¢ —super disconnected if there exists an 1F¢ —regular open set A in X such
that A=0_, A=1_,. Xiscalled IF¢ —super connected if X is not 1F¢ —super disconnected.

Example 3.33: Let X ={a,b}, 7={0_1_,G,} where G, ={<(x,0.2,0.1),(0.7,0.5) >; x € X}

G, ={<(x.10),(0,1) >;x € X}, G; ={< (x,0,1),(1,0) >;x € X}

Gy and Ggare IFSOS in X and & int(Scl(G,)) =G, . This implies G, is an IF —regular open in X. Hence X is
an IF¢& —super disconnected.

Theorem 3.34: Let (X, 7) be an IFTS. Then the following are equivalent:
(@) Xis IFZ£ —super connected.

(b) Foreach IFZOS U #0_in X, we have cl(U) =1_.

(c) Foreach IFSCS U %1 inX, wehave £int(U)=0_.

(d) Thereexistsno IFSOSsUandVinXsuchthat U #0_,V #0_ and U cV.

(e) Thereexistsno IFOSsUandVinXsuchthat U #0_,V #0_,V :m and U =¢cl(V).
(f) Thereexistsno IFCCSsUandVinXsuchthatU #1_,V #1_,V :m and U :m.

Proof:
() = (b) Assume that there exists an U # 0_ such that {CI(U) #1_. Take U = £ int({cl(A)). Then A is

proper ¢ —regular open set in X which contradicts that X is IF¢ —super connectedness.
(¢)=(d) LetUand V be IFZOS inXsuchthat U #0_,V #0_and U <V . Since V is an IFSCS in X,

V£1lby © £inttV)=0_. But UcVimplies 0_=U =¢int(U)c Cint(V)=0_ which is a
contradiction.
(d)=(@)Let U=0_, U=#1bean IFCROS in X. If we take V =¢cl(U), we get V #0_. ( If not

V #0_implies ¢cl(U)=0= ¢cl(U)=1. = U =int(Ccl(A) =Cint(l.)=1. =U =1). We also
have U <V which is a contradiction. Therefore X is IF ¢ —super connected.

(2) > (e)Let U and V be IFSOS in X suchthat U #0_,V #0_,V :m and U =Zcl(V). Now we
have Cint(cel(U)) = CintU) =cel(U)=U, U =0_ , U=1, since if U=1, then

1 =¢elV)=<el(V)=0=V =0.But V #0_. Therefore U #1_, implies U is proper IFSROS in X
which is a contradiction to (a). Hence (e) is true.

(e) = (a)Let U be IFZOS in X such that U = int(Scl(A)), U #0_, U #1_. Now take V =¢cl(U). In
this case, V0. and VvV is an IFSOS in X and V =¢cl(U)  and

sel(U) =cel(cel(U) = ¢int(¢el(U) = Cint(Sel(U)) =U . But this is a contradiction to (e). Therefore X is
IF ¢ —super connected space.
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()= (f)LetUand Vbe IFSCS inXsuchthat U =1,V %1,V =Zint(U) and U = int(V) . Taking
C=U and D=\7, C and D become IFJOS in X and C=0_,D=0_,

Cel(C) = CelU) = (Cint(U)) = Cint(U) =V = D and similarly ¢cl(D) = C . But this is a contradiction to
(e). Hence (f) is true.
in €= ()

(f)= () We can prove this by the similar way as

Theorem 3.34: Let f :(X,7) > (Y,x) bean IF{ -irresolute surjection. If X is an IF{" —super connected, then
soisY.

Proof: Suppose that Y is not IF{ —super connected, then there exists IFSOS U and V in Y such that
Uz0_V=0_, UcV. Since f s IF{ -irresolute, ' (U), f* (v) are IFZOS in X and

UcV= fU)c f’l(\7) = f (V). Hence f 1(U)=0_, f (V)= 0_ which means that X is IFS -
super connected, which is a contradiction.

IF¢ —connected between two intuitionistic fuzzy

Definition 3.35: An IFTS (X ’T) is called

sets A and B if there isno IF£OS Ein (X,7) suchthat Ac E and EaB.

Example 3.36: Let X ={a,b}, 7={0_1_,G,} where G, ={<(X,0.6,0.6),(0.3,0.3) >;x € X} be IFTS.
Consider the IFSs

G, ={<(x,0.2,0.4),(0.7,0.6) >; x € X}, G, ={< (x,0.6,0.6),(0.6,0.3) >, x € X}

G, is IFSOS in X. Then Xis IF¢ —connected between G, and G,

Theorem 3.37: If an IFTS (X,7) isan IF{ —connected between two intuitionistic fuzzy sets A and B, then it is

IFC, —connected between two intuitionistic fuzzy sets U and V.

Proof: Suppose (X, 7) is not IFC, —connected between two intuitionistic fuzzy sets U and V then there exists an

IFOSE in (X,7) suchthat U < E and EaV which implies (X, 7) isnot 1F{ —connected between U and V, a

contradiction to our hypothesis. Therefore (X,7) is IFC, —connected between U and V.
However, the converse of the above theorem may not be true, as shown by the following example,

Example 3.38: Let X ={a,b}, 7={0_1_,G,;} where G, ={<(x,0.6,0.6),(0.3,0.3) >;x € X} be IFTS.
Consider the IFSs

G, ={<(x,0.2,0.4),(0.7,0.6) >;x € X}, G, ={< (x,0.6,0.6),(0.6,0.3) >; x € X}

G, is IFSOSin X. Then X is [IF{, —connected between G, and G; Consider IFS
G, ={< (x,0.5,0.4),(0.5,0.6) >; x € X}. G4 isan IFZOS suchthat G, < G, and which implies X is IF{ -
disconnected between G, and G,

Theorem 3.39: Let (X,7) be an IFTS and U and V be IFS in (X,7). If UqV then (X,7) is IF{ —connected
between U and V.
Proof: Suppose (X,7) isnot IF{ —connected between U and V. Then there exists an IF£OS E in (X, 7) such

that U c E and Ea\/ . This implies that U g\7. That is UaB which is a contradiction to our hypothesis.

Therefore (X,7) is IF{ —connected between U and V.
However, the converse of the above theorem need not be true, as shown by the following example.

Example 3.40: In the above example 3.38, X is |F{" —connected between G, and G;. But G, is not g-coincident with
G, since s, (X) < vg, (X) .
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