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1. INTRODUCTION 
 
The concept of an intuitionistic fuzzy set (IFS), which is a generalization of the concept of a fuzzy set (FS), has been 
introduced by K. Atanassov [1]. Using the notion of intuitionistic fuzzy sets, Coker [2] introduced intuitionistic fuzzy 
topological space. Connectedness in intuitionistic fuzzy special topological spaces was introduced by Oscag and Coker 
[9]. Many researchers have extended their notions to study various forms of connectedness Sharmila.S and 
I.Arockiarani [6] discussed intuitionistic fuzzy −ζ open sets and intuitionistic fuzzy −ζ continuity. 
 
In this paper we have introduced intuitionistic fuzzy −ζ connected space and various forms of connectedness. Several 
properties concerning connectedness in these spaces are also explored. 
 
2. PRELIMINARIES 
 
Definition 2.1: [1] An intuitionistic fuzzy set (IFS, in short) A in X is an object having the form 

{ }XxxxxA AA ∈= /)(),(, υµ  where the functions IXA →:µ  and IXA →:υ denote the degree of 

membership (namely ))(xAµ and the degree of non-membership (namely ))(xAυ  of each element Xx∈ to the set 

A on a nonempty set X and 1)()(0 ≤+≤ xx AA υµ for each Xx∈ . Obviously every fuzzy set A on a nonempty set 

X is an IFS’s A and B be in the form { }XxxxxA AA ∈−= /)(1),(, µµ  
 
Definition 2.2: [1] Let X be a nonempty set and the IFS’s A and B be in the form { }XxxxxA AA ∈= /)(),(, υµ , 

{ }XxxxxB BB ∈= /)(),(, υµ  and let { : }jA A j J= ∈ be an arbitrary family of IFS’s in X. Then we define 

(i) BA ⊆ if and only if )()( xx BA µµ ≤  and )()( xx BA υυ ≥  for all Xx∈ . 
(ii) A=B if and only if BA⊆ and AB ⊆ . 

(iii) { }XxxxxA AA ∈= /)(),(, µυ . 

(iv) { }XxxxxxxBA BABA ∈∪∩=∩ /)()(),()(, υυµµ . 

(v) { }XxxxxxxBA BABA ∈∩∪=∪ /)()(),()(, υυµµ  

(vi) }0,1,{1~ Xxx ∈= and }1,0,{0~ Xxx ∈= . 
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Definition 2.3: [2] An intuitionistic fuzzy topology (IFT, in short) on a nonempty set X is a family τ of an 
intuitionistic fuzzy set (IFS, in short) in X satisfying the following axioms: 

(i) 0~ , 1~ τ∈ . 
(ii) τ∈∩ 21 AA for any A1 , A2 τ∈ . 

(iii) τ∈jA for any τ⊆∈ JjAj : . 

In this paper we denote intuitionistic fuzzy topological space (IFTS, in short) by ( )τ,X , ( )κ,Y  or X,Y. Each IFS 

which belongs to τ  is called an intuitionistic fuzzy open set (IFOS, in short) in X. The complement A of an IFOS A in 
X is called an intuitionistic fuzzy closed set (IFCS, in short). An IFS X is called intuitionistic fuzzy clopen (IF clopen) if 
and only if it is both intutionistic fuzzy open and intuitionistic fuzzy closed. 
 
Definition 2.4: [2] Let ( )τ,X  be an IFTS and { })(),(, xxxA AA υµ=  be an IFS in X. Then the fuzzy interior and 
closure of A are denoted by 

(i) =)(Acl {K: K is an IFCS in X and KA⊆ }. 
(ii) =)int(A {G: G is an IFOS in X and AG ⊆ }. 

Note that, for any IFS A in ),( τX , we have )int()( AAcl =  and )()int( AclA = . 
 
Definition 2.5: [5] Let X and Y be two non-empty sets and YXf →:  be a function. 

If }/)(),(,{ YyyyyB BB ∈><= υµ  is an IFS in Y, then the pre-image of B under f is denoted and defined by 

}/))(()),((,{)( 111 XxxfxfxBf BB ∈><= −−− υµ . Since )(),( xx BB υµ are fuzzy sets, we explain that 

))()(())(()),()(())(( 11 xfxxfxfxxf BBBB υυµµ == −− . 
 
Definition 2.6[5]: An IFS βαβα −= 1,,),( CCxp  where ]1,0(∈α , )1,0[∈β and 1≤+ βα is called an 

intuitionistic fuzzy point (IFP) in X. 
 
Note that an IFP ),( βαp is said to belong to an IFS AAXA υµ ,,=  of X denoted by Ap ∈),( βα  if 

Aµα ≤ and Aυβ ≥ . 
 
Definition 2.7[5]: Let ),( βαp  be an IFP of an IFTS ),( τX .  An IFS A of X is called an intuitionistic fuzzy 
neighbourhood (IFN) of ),( βαp  if there exists an IFOS B in X such that ABp ⊆∈),( βα . 
 
Definition 2.8: [3] Two intuitionistic fuzzy sets A and B are said to be q-coincident (AqB) if and only if there exists an 
element Xx∈ such that )()( xx BA νµ ⊃  or )()( xx BA µν ⊂ . 
 
Definition 2.9: [3] Two intuitionistic fuzzy sets A and B are said to be not q-coincident BqA  if and only if BA ⊆ . 
 
Definition 2.10: [8] An IFTS ),( τX  is called intuitionistic fuzzy C5 connected between two intuitionistic fuzzy sets A 

and B if there is no IFOS E in ),( τX  such that EA ⊆  and BqE . 
 
Definition 2.11: [6] Let A be an IFTS ),( τX . Then A is called an intuitionistic fuzzyζ open set( OSIFζ , in short) in 
X if ))(int(AbclA⊆ . 
 
Definition 2.12: [6] Let A be an IFTS ),( τX . Then A is called an intuitionistic fuzzy ζ closed set (IFζ CS, in short) 
in X if int( ( )) Ab cl A ⊆ . 
 
Definition 2.13:[6] Let ),( τX  be an IFTS and }/)(),(,{ XxxxxA AA ∈><= υµ  be an IFS in X. Then the 
intuitionistic fuzzy ζ –closure and ζ  -interior of A are defined by 

(i) =)(Aclζ {U:U is an CSIFζ  in X and AU ⊇ }; 
(ii) =)int(Aζ {V:V is an OSIFζ  in X and AV ⊆ }; 
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Definition 2.14: Let YXf →:  from an IFTS X into an IFTS Y. Then f  is said to be an 

(i) Intuitionistic fuzzy ζ -continuous ( −ζIF cont, in short) [6] if 1( ) (X)f B IF OSζ− ∈  for every κ∈B . 

(ii) Intuitionistic fuzzy continuous [4] if )()(1 XIFOBf ∈−  for every κ∈B . 
 
Definition 2.15: [7] Let f be a mapping from IFTS ),( τX  into an IFTS ),( κY . Then f is said to be intuitionistic 

fuzzy −ζ irresolute ( −ζIF irresolute, in short) if )()(1 XOIFBf ζ∈−  for every OSIFζ  B in Y. 
 
3. INTUITIONISTIC FUZZY −ζ CONNECTED SPACES 
 
Definition 3.1: An IFTS ),( τX  is IF −ζ disconnected if there exists OSIFζ s U, V in X, ~~ 0,0 ≠≠ VU  such 

that ~1=∪VU  and  ~0=∩VU . If X is not IF −ζ disconnected then it is said to be IF −ζ connected. 
 
Example 3.2: Let },{ baX = , },1,0{ 1~~ G=τ  where  

},)5.0,7.0(),1.0.2.0(,{1 XxxG ∈><= , },)4.0,6.0(),2.0.3.0(,{2 XxxG ∈><=  

G1 and G2 are OSIFζ in X, ~2~1 0,0 ≠≠ GG  and 1221 ≠=∪ GGG , 0121 ≠=∩ GGG . Hence X is 
IF −ζ connected .  
 
Example 3.3:  Let },{ baX = , },1,0{ 1~~ G=τ  where  

},)5.0,7.0(),1.0.2.0(,{1 XxxG ∈><= ,  

},)1,0(),0,1(,{2 XxxG ∈><= ,   

},)0,1(),1,0(,{3 XxxG ∈><= . 

 G2 and G3 are OSIFζ in X, ~3~2 0,0 ≠≠ GG  and ~32 1=∪GG , ~21 0=∩GG .  

 Hence X is IF −ζ disconnected . 
 
Definition 3.4: Let N be an IFS in IFTS ),( τX  

(a) If there exists OSIFζ s U and V in X satisfying  the following properties, then N is called 

IF −iζ disconnected ( i=1,2,3,4) : 

C1 : VUN ∪⊆ , NVU ⊆∩ , ~0≠∩UN , ~0≠∩VN . 

C2 : VUN ∪⊆ , ~0=∩∩ VUN , ~0≠∩UN , ~0≠∩VN . 

C3 : VUN ∪⊆ , NVU ⊆∩ , NU ⊄ , NV ⊄ . 

C4 : VUN ∪⊆ , ~0=∩∩ VUN , NU ⊄ , NV ⊄ . 

(b) N is said to be IF −iζ connected ( i=1,2,3,4) if  N is not IF −iζ disconnected (i=1,2,3,4). 

Obviously, we can obtain the following implications between several types of IF −iζ connected ( i=1,2,3,4..). 

 
1. IF −1ζ connectedness     

2. IF −2ζ connectedness                 

3. IF −3ζ connectedness 

4. IF −4ζ connectedness\ 



Sharmila. S*1, I. Arockiarani1 / −ζ Connectedness in Intuitionistic Fuzzy Topological Spaces / IJMA- 6(8), August-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                     138   

 
Example 3.5: Let },{ baX = , },,1,0{ 21~~ GG=τ  where },)9.0,6.0(),1.0.4.0(,{1 XxxG ∈><= , 

},)7.0,5.0(),3.0,5.0(,{2 XxxG ∈><=  . Consider the IFS  },)9.0,7.0(),1.0,3.0(,{3 XxxG ∈><= ; G3  is 

IF −2ζ connected, IF −3ζ connected, IF −4ζ connected, but IF −1ζ disconnected. 
 
Example 3.6: Let },{ baX = , },,,,1,0{ 212121~~ GGGGGG ∩∪=τ  where 

},)2.0,6.0(),8.0.2.0(,{1 XxxG ∈><= , },)2.0,2.0(),6.0,8.0(,{2 XxxG ∈><=  . Consider the IFS 

},)7.0,7.0(),1.0,1.0(,{3 XxxG ∈><= ; G3  is IF −4ζ connected, but IF −3ζ disconnected. 
 
Example 3.7: Let },{ baX = , },,,1,0{ 2121~~ GGGG ∪=τ  where },)8.0,1(),2.0.,0(,{1 XxxG ∈><= , 

},)1,8.0(),0,2.0(,{2 XxxG ∈><=  . Consider the IFS  },)9.0,9.0(),1.0,1.0(,{3 XxxG ∈><= ; G1 and G2 

are OSIFζ . G3  is IF −4ζ connected, but IF −2ζ disconnected.  
 
Definition 3.8: An IFTS ),( τX  is ζIF C5 –disconnected, if there exists IFS U and V in X, which is both OSIFζ  
and CSIFζ ~~ 1,0 ≠≠ UU . If X is not ζIF C5 –disconnected, then it is said to be ζIF C5 –connected. 
 
Example 3.9: Let },{ baX = , },1,0{ 1~~ G=τ  where };)5.0,7.0(),1.0,2.0,({1 XxxG ∈><=  

G1 is an OSIFζ in X, but not an CSIFζ  and ~1~1 1,0 ≠≠ GG . Thus X is ζIF C5 –connected. 
 
Example 3.10: Let },{ baX = , },1,0{ 1~~ G=τ  where };)5.0,7.0(),1.0,2.0,({1 XxxG ∈><=  

};)1,0(),0,1,({2 XxxG ∈><= .  

G2 is an OSIFζ in X. Also G2  is an CSIFζ  since 22 ))(int( GGclb ⊆ . Hence there exists an IFS G2 in X such that 

~2~2 1,0 ≠≠ GG which is both OSIFζ  and CSIFζ  in X. Thus X is ζIF C5 –disconnected. 
 
Theorem 3.11: ζIF C5 –disconnectedness implies IF −ζ connectedness. 
 
Proof: Suppose that there exists nonempty OSIFζ s U and V such that  ~1=∪VU  and ~0=∩VU  

(IF −ζ disconnected ) then ,1=∪ BA µµ  ,0=∩ BA υυ  and ,0=∪ BA µµ 1=∩ BA υυ . In other words 

UV = . Hence U is ζIF -clopen which implies X is ζIF C5 –disconnected. 
But the converse may not be true as shown by the following example. 
 
Example 3.12: Let },{ baX = , },1,0{ 1~~ G=τ  where };)6.0,6.0(),6.0,6.0,({1 XxxG ∈><=  

};)6.0,2.0(),1.0,3.0,({2 XxxG ∈><=  
.Then G1 and G2  are OSIFζ in X.  

 ~21 1};)6.0,2.0(),6.0,6.0(,{ ≠∈><=∪ XxxGG .     

~21 0};)6.0,6.0(),6.0,2.0(,{ ≠∈><=∩ XxxGG . Hence X is IF −ζ connected. Since IFS G1 is both 
OSIFζ  and CSIFζ  in X, X is ζIF C5 –disconnected. 

 
Theorem 3.13:  Let ),(),(: κτ YXf →  be an ζIF -irresolute surjection, ),( τX  is an IF −ζ connected, then 

),( κY  is IF −ζ connected. 
 
Proof: Assume that ),( κY  is not IF −ζ connected, then there exists nonempty OSIFζ s U and V in ),( κY  such 

that ~1=∪VU  and  ~0=∩VU . Since f is ζIF -irresolute mapping, ~
1 0)( ≠= − UfA , 

~
1 0)( ≠= − VfB , which are OSIFζ in X and ~

111 1)1()()( ==∪ −−− fVfUf , which implies ~1=∪ BA  . 

~
111 0)0()()( ==∩ −−− fVfUf , which implies ~0=∩ BA  . Thus X is IF −ζ disconnected, which is a 

contradiction to our hypothesis. Hence Y is IF −ζ connected. 
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Theorem 3.14: ),( τX  is ζIF C5 –connected  if and only if there exists no nonempty OSIFζ  U and V in X such 

that VU = . 
 
Proof: Suppose that  U and V are OSIFζ s in X such that  ~~ 0,0 ≠≠ VU and VU = . Since VU = , V  is an 

OSIFζ and V is CSIFζ  and  ~0≠U implies ~1≠V . But this is a contradiction to the fact that X is ζIF C5 –
connected .  
 

Conversely , let U be both OSIFζ and CSIFζ in X such that ~~ 1,0 ≠≠ UU . Now take VU = . V is an 

OSIFζ  and ~1≠U which implies 0≠=VU  which is a contradiction. 
 
Theorem 3.15: An IFTS ),( τX  is ζIF  –connected space if and only if there exists no non-zero OSIFζ U and V in 

),( τX , such that VU = . 
 
Proof: Necessity: Let U and V be two OSIFζ in ),( τX  such that ~~ 0,0 ≠≠ VU  and VU = . Therefore V is 

an CSIFζ . Since ~~ 1,0 ≠≠ VU . This implies V is a proper IFS which is both OSIFζ  and CSIFζ  in ),( τX . 
Hence ),( τX  is not an ζIF  –connected space. But this is a contradiction to our hypothesis. Thus there exist no non-

zero OSIFζ  U and V in ),( τX , such that VU = . 
 
Sufficiency: Let U be both OSIFζ  and CSIFζ  in ),( τX  such that ~~ 1,0 ≠≠ UU . Now let UV = . Then V 

is an OSIFζ  and  ~1≠V . This implies ~0≠=UV , which is a contradiction to our hypothesis. Therefore is an 
),( τX  is ζIF  –connected space. 

Theorem 3.16: An IFTS ),( τX  is ζIF  –connected space if and only if there exists no non-zero OSIFζ U and V in 

),( τX , such that VU = , )(UclV ζ=  and )(VclU ζ= . 
 
Proof: Necessity :  Assume that there exists IFSs U and V such that ~~ 0,0 ≠≠ VU , UV = , )(UclV ζ=  and 

)(VclU ζ= . Since )(Uclζ  and )(Vclζ  are OSIFζ in ),( τX , U and V are OSIFζ in ),( τX . This implies 
),( τX  is not an ζIF  –connected space, which is a contradiction. Therefore  there exists no non-zero OSIFζ U and 

V in ),( τX , such that VU = , )(UclV ζ=  and )(VclU ζ= . 
 
Sufficiency: Let U be both OSIFζ  and CSIFζ  in ),( τX  such that ~~ 1,0 ≠≠ UU . Now by taking UV =  we 
obtain a contradiction to our hypothesis. Hence ),( τX  is ζIF  –connected space. 
 
Definition 3.17: An IFTS ),( τX  is ζIF  –strongly connected, if there exists no nonempty CSIFζ  U and V in X 

such that 1,1 ⊆+⊇+ BABA υυµµ . 
 
In other words, an IFTS ),( τX  is ζIF  –strongly connected, if there exists no nonempty CSIFζ  U and V in X such 

that ~0=∩VU . 
 
Theorem 3.18: An IFTS ),( τX  is ζIF  –strongly connected, if there exists no nonempty CSIFζ  U and V in X,  

1≠=VU such that 1,1 ⊆+⊇+ BABA υυµµ . 
 
Example 3.19: Let },{ baX = , },1,0{ 1~~ G=τ  where };)6.0,6.0(),6.0,6.0,({1 XxxG ∈><=  

};)6.0,2.0(),1.0,3.0,({2 XxxG ∈><=  

.Then G1 and G2  are OSIFζ in X, also 1,1 ⊆+⊇+ BABA υυµµ . Hence X is ζIF  –strongly connected.  
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Theorem 3.20: Let ),(),(: κτ YXf →  be an ζIF -irresolute surjection. If X is an ζIF  –strongly connected, 
then so is Y.  
 
Proof: Suppose that Y is not ζIF  –strongly connected, then there exists CSIFζ  U and V in Y such that 

~~ 0,0 ≠≠ VU , ~0=∩VU . Since f is ζIF -irresolute, f-1 (U), f-1 (V) are CSIFζ  in X and 

~
11 0)()( =∩ −− VfUf , ~

1
~

1 0)(,0)( ≠≠ −− VfUf . [If ~
1 0)( =− Uf  then f(f-1(U))=U  which implies 

f(0~)=U. So  U=0~  a contradiction]. Hence X is ζIF  –strongly connected, a contradiction. Thus ),( κY  is ζIF  –
strongly connected. 
 
Remark 3.21: ζIF  –strongly connected and ζIF C5 –connected are independent. 

 
  
Example 3.22: Let },{ baX = , },1,0{ 1~~ G=τ  where };)6.0,6.0(),6.0,6.0,({1 XxxG ∈><=  

};)6.0,2.0(),1.0,3.0,({2 XxxG ∈><= . 

Then G1 and G2  are OSIFζ in X. Also 1,1 ⊆+⊇+ BABA υυµµ . Hence X is ζIF  –strongly connected. But X 
is not ζIF C5 –connected, since G1 is both OSIFζ  and CSIFζ  in X 
 
Example 3.23: Let },{ baX = , },,,,1,0{ 212121~~ GGGGGG ∩∪=τ  where 

};)4.0,3.0(),5.0,6.0,({1 XxxG ∈><=  

};)4.0,2.0(),4.0,5.0,({2 XxxG ∈><= . 
X is ζIF C5 –connected, but X is not ζIF  –strongly connected since G1 and G2  are OSIFζ in X such that 

1,1 ⊆+⊇+ BABA υυµµ . 
 
Lemma 3.24: [ 8 ] (i) BABA ⊆⇒=∩ ~0 . (ii) ~0≠∩⇒⊄ BABA  
 
Definition 3.25: A and B are non-zero intuitionistic fuzzy sets in ),( τX . Then A and B are said to be  

(i) ζIF –weakly separated if  BAcl ⊆)(ζ and ABcl ⊆)(ζ . 

(ii) ζIF –q- separated if ~~ 0)((,0)( =∩=∩ BclABAcl ζζ . 
 
Definition 3.26: An IFTS ),( τX  is ζIF CS –disconnected if there exists ζIF –weakly separated non-zero 

intuitionistic sets U and V in ),( τX such that ~1=∪VU . 
 
Example 3.27:  Let },{ baX = , },1,0{ 1~~ G=τ  where };)5.0,7.0(),1.0,2.0,({1 XxxG ∈><=  

};)1,0(),0,1,({2 XxxG ∈><= , };)0,1(),1,0,({3 XxxG ∈><=  

G2 and G3 are OSIFζ in X. Hence G2 and G3 are ζIF –weakly separated  and ~32 1=∪GG . Hence X is ζIF CS 
–disconnected. 
 
Definition 3.28: An IFTS ),( τX  is ζIF CM –disconnected if there exists ζIF –q- separated non-zero IFS’s  U and 

V in ),( τX such that ~1=∪VU . 
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Example 3.29: Let },{ baX = , },1,0{ 1~~ G=τ  where };)5.0,7.0(),1.0,2.0,({1 XxxG ∈><=  

};)1,0(),0,1,({2 XxxG ∈><= , };)0,1(),1,0,({3 XxxG ∈><=  

G2 and G3 are OSIFζ in X.  ~32~32 0)((,0)( =∩=∩ GclGGGcl ζζ which implies G2 and G3 are ζIF –q- 

separated and ~32 1=∪GG . Hence X is ζIF CM –disconnected. 
 
Remark 3.30: An IFTS ),( τX  is ζIF CS –disconnected if and only if ),( τX is ζIF CM –connected. 
 
Definition 3.31: An IFTS ),( τX  is ζIF –regular open set if  AAcl =))(int(ζζ  and ζIF –regular closed if 

AAcl =))int((ζζ . 
 
Definition 3.32: An IFTS ),( τX  is ζIF –super disconnected if there exists an ζIF –regular open set A in X such 

that ,0~≠A ,1~≠A . X is called ζIF –super connected if X is not ζIF –super disconnected. 
 
Example 3.33: Let },{ baX = , },1,0{ 1~~ G=τ  where };)5.0,7.0(),1.0,2.0,({1 XxxG ∈><=  

};)1,0(),0,1,({2 XxxG ∈><= , };)0,1(),1,0,({3 XxxG ∈><=  

G2 and G3 are OSIFζ in X and 22 ))(int( GGcl =ζζ . This implies G2  is an ζIF –regular open in X. Hence X is 
an ζIF –super disconnected. 
 
Theorem 3.34: Let ),( τX  be an IFTS. Then the following are equivalent: 

(a) X is ζIF –super connected. 

(b)  For each  OSIFζ ~0≠U in X, we have ~1)( =Uclζ . 

(c)  For each  CSIFζ ~1≠U in X, we have ~0)int( =Uζ . 

(d) There exists no OSIFζ s U and V in X such that ~0≠U , ~0≠V  and VU ⊆ . 

(e) There exists no OSIFζ s U and V in X such that ~0≠U , ~0≠V , )(UclV ζ=  and  )(VclU ζ= . 

(f) There exists no CSIFζ s U and V in X such that ~1≠U , ~1≠V , )int(UV ζ=  and  )int(VU ζ= . 
 
Proof: 

)()( ba ⇒  Assume that there exists an ~0≠U  such that ~1)( ≠Uclζ . Take ))(int( AclU ζζ= . Then A is 
proper ζ –regular open set in X which contradicts that X is ζIF –super connectedness. 

)()( dc ⇒  Let U and V be OSIFζ  in X such that ~0≠U , ~0≠V and VU ⊆ . Since V  is an CSIFζ  in X, 

~1≠V by (c) ~0)int( =Vζ . But VU ⊆ implies ~~ 0)int()int(0 =⊆=≠ VUU ζζ  which is a 
contradiction.  

)()( ad ⇒ Let ~0≠U , ~1≠U be an ROSIFζ  in X. If we take )(UclV ζ= , we get ~0≠V . ( If not 

~0≠V implies 0)( =Uclζ ⇒ ~1)( =Uclζ ⇒ ~~~ 11)1int())(int( =⇒=== UAclU ζζζ ). We also 

have  VU ⊆  which is a contradiction. Therefore X is ζIF –super connected. 

)()( ea ⇒ Let U and V be OSIFζ  in X such that ~0≠U , ~0≠V , )(UclV ζ=  and )(VclU ζ= .  Now we 

have UUclUUcl === )()int())(int( ζζζζ , ~0≠U   , ~1≠U , since if ~1=U , then  

00)()(1~ =⇒=⇒= VVclVcl ζζ . But ~0≠V . Therefore ~1≠U ,  implies U is proper ROSIFζ  in X 
which is a contradiction to (a). Hence (e) is true.  

)()( ae ⇒ Let U be OSIFζ  in X such that ))(int( AclU ζζ= , ~0≠U , ~1≠U . Now take )(UclV ζ= . In 

this case, ~0≠V  and V is an OSIFζ  in X  and )(UclV ζ=  and  

UUclUclUclclUcl ==== ))(int()(int()(()( ζζζζζζζ . But this is a contradiction to (e). Therefore X is 
ζIF –super connected space.  
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)()( fe ⇒ Let U and V be CSIFζ  in X such that  ~1≠U , ~1≠V , )int(UV ζ=  and )int(VU ζ= . Taking 

UC =  and  VD = , C and D become OSIFζ  in X  and  ~~ 0,0 ≠≠ DC , 

DVUUUclCcl ===== )int())int(()()( ζζζζ  and similarly CDcl =)(ζ . But this is a contradiction to 
(e). Hence (f) is true.  

)()( ef ⇒ We can prove this by the similar way as in )()( fe ⇒ . 
 
Theorem 3.34: Let ),(),(: κτ YXf →  be an ζIF -irresolute surjection. If X is an ζIF  –super connected, then 
so is Y. 
 
Proof: Suppose that Y is not ζIF  –super connected, then there exists OSIFζ  U and V in Y such that 

~~ 0,0 ≠≠ VU , VU ⊆ . Since f  is ζIF -irresolute, f-1 (U), f-1 (V) are OSIFζ  in X and 

)()()( 111 VfVfUfVU −−− =⊆⇒⊆ . Hence ~
1

~
1 0)(,0)( ≠≠ −− VfUf  which means that  X is ζIF  –

super connected, which is a contradiction.  
 

Definition 3.35: An IFTS ),( τX  is called ζIF  –connected between two intuitionistic fuzzy  

sets A and B if there is no OSIFζ  E in ),( τX  such that EA ⊆  and BqE . 
 
Example 3.36: Let },{ baX = , },1,0{ 1~~ G=τ  where };)3.0,3.0(),6.0,6.0,({1 XxxG ∈><=  be IFTS. 
Consider the IFSs  

};)6.0,7.0(),4.0,2.0,({2 XxxG ∈><= , };)3.0,6.0(),6.0,6.0,({3 XxxG ∈><=  

G1 is OSIFζ in X. Then X is ζIF  –connected between G2 and G3. 
 
Theorem 3.37: If an IFTS ),( τX  is an ζIF  –connected  between two intuitionistic fuzzy sets A and B, then it is 

5IFC  –connected  between two intuitionistic fuzzy sets U and V. 
 
Proof: Suppose ),( τX  is not 5IFC  –connected  between  two intuitionistic fuzzy sets U and V then there exists an 

IFOS E in ),( τX  such that EU ⊆  and VqE  which implies ),( τX  is not  ζIF  –connected  between U and V, a 

contradiction to our hypothesis. Therefore ),( τX  is 5IFC  –connected  between U and V. 
However, the converse of  the above theorem may not be true, as shown by the following example, 
 
Example 3.38: Let },{ baX = , },1,0{ 1~~ G=τ  where };)3.0,3.0(),6.0,6.0,({1 XxxG ∈><=  be IFTS. 
Consider the IFSs  

};)6.0,7.0(),4.0,2.0,({2 XxxG ∈><= , };)3.0,6.0(),6.0,6.0,({3 XxxG ∈><=  

G1 is OSIFζ in X. Then X is −5ζIF connected between G2 and G3. Consider  IFS  

};)6.0,5.0(),4.0,5.0,({4 XxxG ∈><= . G4  is an OSIFζ  such that 32 GG ⊆  and which implies X is ζIF  –
disconnected between G2 and G3. 
 
Theorem 3.39: Let ),( τX  be an IFTS and U and V be IFS in ),( τX . If  UqV then ),( τX  is ζIF  –connected  
between U and V. 
 
Proof: Suppose ),( τX  is not ζIF  –connected  between U and V. Then there exists an OSIFζ  E in ),( τX  such 

that  EU ⊆  and VqE . This implies that VU ⊆ . That is BqU which is a contradiction to our hypothesis. 
Therefore ),( τX  is ζIF  –connected  between U and V. 
However, the converse of the above theorem need not be true, as shown by the following example. 
 
Example 3.40: In the above example 3.38, X is ζIF  –connected between G2 and G3.  But G2  is not q-coincident with 

G3,  since )()(
32

xx GG υµ ⊂ . 
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