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ABSTRACT 
The aim of Dr N V Nagendram in this paper is to extend the concepts of B1 near-rings and after in depth study to 
introduce the concepts of B1 – near-field spaces and strong B1 – near-field spaces.  We say that a right near-field space 
N is a B1 – near-field space if for every a ∈ N, there exists x ∈ N* where N* = N – {0}, such that N ax = N xa. By way of 
generalization, we define N as a strong B1 – near-field space if N ab = N ba ∀ a, b ∈ N. Dr. N. V. Nagendram discuss 
some of their properties and obtain a characterization and also a structure theorem. 
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SECTION 1: INTRODUCTION 
 
Throughout, this paper N stands for a right near-field space (N, +, .), with at least  two elements and “0” denotes the 
identity element of the near-field (N, +).  Obviously 0n = 0 ∀ n ∈ N. If in addition, n0 = 0 ∀ n ∈ N then we say that N 
is zero symmetric near-field. A sub near-field space (M, +) of (N, +) is called an N- sub near-field space of N if         
NM ⊂ M and an invariant N- sub near-field space of N if MN ⊂ M as well. N is called weak commutative near-field 
space if abc = acb ∀ a, b, c ∈ N (by G pilz [4]). N is said to be regular near-field space if for every a∈N there exists     
b∈N such that a = aba. An element a is said to be nilpotent if ak = 0 for some positive integer k. N is called nil near-
field space if every element of N is nilpotent. N is called integral near-field space if N has no non-zero zero divisors. N 
is called a Pk near-field space if there exists a positive integer k such that xkN = xNx ∀ x∈N. For any sub near-field 
space A of near-field space N, we denote by A* the set of all non-zero elements of A. In particular N* = N – {0}. N is 
called a strong B1 near-field space if N* = N B1(a) ∀ a ∈ N where N B1(a) = {x ∈ N* / axa = xa}. For basic concepts and 
terms used but left undefined in this paper we refer to Gunter Pilz [4]. 
 
Near-field over a regular delta Near-Ring is a generalized structure of a near-field. Dr. N.V. Nagendram introduced the 
notion of B1 – near-field spaces over a regular delta near-ring.          
 
Dr. N.V. Nagendram after in depth study of near-rings, regular near-rings, regular δ-near-ring, various types of regular 
δ-near-rings, near-fields, semi near-fields and near-field space over regular delta near-rings extended the concept to    
B1 – near-field spaces over a regular delta near-ring and characterization of  B1 – near-field spaces over a regular delta 
near-ring.  
 
As in near-ring theory it is interesting to fuzzify some sub structures of near-field spaces over regular delta near-rings 
of a near-ring. Hence our aim in this paper is to study B1– sub-near-field spaces and B1 – near-field spaces. 
 
The organization of this paper is as follows:  
 
In section 2, some fundamental and preliminary definitions and results are given.  
 
In section 3, B1 – near-field spaces of a near-field over regular delta near-ring are defined and obtained some results in 
relation B1 – near-field spaces.  
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In section 4, Study of Strong B1 – near-field spaces of a near-field over regular delta near-ring and are defined. Also 
obtain some results in relation Strong B1 – near-field spaces. 
 
Section 5 concludes the paper. In depth study of various types of near-fields [10], Dr. N V Nagendram extended the    
B1 – near-fields and strong B1–near-fields over regular delta near-ring in a near-field space by applying the topological 
applications making it into algebraic topology in modern and abstract algebra for large scale scope of applications in 
algebra of mathematics. Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study  
topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, 
though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study 
topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for 
example, allows for a convenient proof that any subgroup of a free group is again a free group. 
 
SECTION 2: FUNDAMENTAL DEFINITIONS AND RESULTS 
 
In this section we recall some fundamental definitions and results for the sake of completeness in the sense of topology: 
 
2.1 Definition: zero symmetric near-field. N stands for a right near-field space (N, +,.), with at least two elements and 
“0” denotes the identity element of the near-field (N, +).   
 
Obviously 0n = 0 ∀ n ∈ N. If in addition, n0 = 0 ∀ n ∈ N then we say that N is zero symmetric near-field. 
 
2.2 Definition: sub near-field space. A sub near-field space (M, +) of (N, +) is called an N- sub near-field space of N 
if NM ⊂ M and an invariant N- sub near-field space of N if MN ⊂ M as well. 
 
2.3 Definition: weak commutative near-field space [G Pilz4]. N is called weak commutative near-field space if      
abc = acb ∀ a, b, c ∈ N.  
 
2.4 Definition: regular near-filed space.  N is said to be regular near-field space if for every a ∈ N there exists b∈N 
such that a = aba.  
 
2.5 Definition: nil near-field space. An element a is said to be nilpotent if ak = 0 for some positive integer k.  
 
N is called nil near-field space if every element of N is nilpotent. 
 
2.6 Definition: Integral near-field space. N is called integral near-field space if N has no non-zero zero divisors.  
 
2.7 Definition: Pk near-field space. N is called a Pk near-field space if there exists a positive integer k such that        
xkN = xNx ∀ x ∈ N. 
 
Here is an extension of the results from [3], [4] and [5] mentioned remarks as below: 
 
2.8 Result: a B1 −  near-field space N has no non-zero nilpotent elements ⇔ a2 = 0 ⇒ a = 0 ∀ a ∈ N. 
 
2.9 Result: a B1 −  near-field space N is zero symmetric ⇔ left ideal of B1 −  N is an B1 −  N-sub near-field space of N. 
 
2.10 Result: Let a B1 − near-field space N be zero symmetric then the following are equivalent:  

(i) a B1 −  near-field space N has no non-zero nilpotent elements   
(ii) a B1 −  near-field space N is a sub direct product of integral near-fields say Ni  for all i = 1,2,3,........  

 
2.11 Result: If N is a strong B1 −  near-field space then N is zero symmetric. 
 
2.12 Result: N is a strong B1 −  near-field space ⇔ axa = xa ∀ a, x ∈ N. 
 
SECTION 3: B1 - NEAR-FIELD SPACES OVER REGULAR DELTA NEAR - RINGS 
 
In this section, I discuss about a right near-field space N is said to be left bi-potent if Na = Na2 ∀ a ∈ N. 
 
3.1 Definition: B1 near-field space. A right near-field space N is said to be left nilpotent if Na = Na2 ∀ a ∈ N. Then N 
is a B1 – near-field space if for every a ∈ N, there exists x ∈ N* such that N ax = N xa.  
 
3.2 Example: Every constant near-field space is a B1 −  near-field space. 
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3.3 Example: The near-field space (Z4, +,.) where (Z4, +) is the group of integers modulo “4” and “.” is defined as 
follows (Scheme (4), p.407 of Gunter Pilz [4]). 
 

    

02003
03002
01001
00000
3210.

 

 
This is a B1 −  near-field space over a regular δ-near-ring. 
 
3.4 Theorem: Let N be a near-field space. Each of the following implies that N is a B1 −  near-field space over a regular 
δ-near-ring. 

(i) N is a zero symmetric nil near-field space over a regular δ-near-ring. 
(ii) N is a weak commutative. 
(iii) N has identity “1”. 
(iv)  N is a near-field space over a regular δ-near-ring. 

 
Proof: To prove (i): Let a∈N. if a = 0, then ∀ x ∈ N*, Nax = Nxa = N0 = {0}. If a ∈ N*, since N is nil near-field space 
over a regular δ-near-ring, there exists a positive integer k such that ak = 0. Put x = ak-1 ≠ 0.  
 
Now Nax = Naak-1 = Nak = Nak-1a = Nxa = N0 = {0}, Thus N is a B1 −  near-field space over a regular δ-near-ring. 
 
To prove (ii): Let a ∈ N. ∀ x ∈ N*, y ∈ Nax ⇒ y = nax where n ∈ N. Since N is weak commutative, y = nxa ∈ Nxa. 
Therefore Nax ⊂ Nxa. Similarly we can show that Nxa ⊂ Nax and (ii) follows. 
 
To prove (iii): Follows by taking x = 1 in the definition 3.1. 
 
To prove (iv): Follows from (iii). 
 
This completes the proof of the theorem. 
 
3.5 Theorem: Let N be a B1 −  near-field space over a regular δ-near-ring. If N is a strong B1 −  near-field space over a 
regular δ-near-ring without non-zero zero divisors then the following are true: 

(i) Every non-zero N-sub near-field space over a regular δ-near-ring of N is a B1 −  near-field space over a regular 
δ-near-ring. 

(ii) Every non-zero ideal of near-field space over a regular δ-near-ring N is an B1 −  near-field space over a regular 
δ-near-ring. 

 
Proof: Since N is a strong B1 − near-field space over a regular δ-near-ring, by result 2.11 N is zero symmetric near-field 
space and by result 2.12 
aba = ba ∀ a, b, c ∈ N                                                                                                                                                       (1) 
 
(i)  Let M be an N- sub near-field space of N and let m ∈ M. If m = 0 then ∀ x ∈ N*, Nmx = N0 = {0} (Since N is zero 
symmetric near-field space) = N xm. For m ≠ 0, since N is a B1 −  near-field space over a regular δ-near-ring, ∃ y ∈ N* 
such that N my = N ym                                                                                                                                                     (2) 
 
Let n = ym.  
⇒ n ∈ M*. Now Mmn = Mm(ym) ⊂ Nm(ym) ⊂ (Nmy)m = (Nym)m [by (2)]  
⇒                                 = N(mym)m [by (1)]  
⇒                                 = Nm(ym)m ⊂ M(ym)m = Mnm. 
i.e., Mmn ⊂ Mnm                                                                                                                                                              (3) 
 
In a similar fashion we get Mnm ⊂ Mmn                                                                                                                         (4) 
(3) and (4) ⇒ Mmn = Mnm. 
Consequently, M is a B1 −  near-field space over a regular δ-near-ring. 
(ii) Since N is zero symmetric near-field space, by result 2.9 demands that every ideal of near-field space is an N-sub 
near-field space of Nand now (ii) follows from (i). 
This completes the proof of the theorem. 
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3.6 Proposition: Let N be a B1 −  near-field space over a regular δ-near-ring. Then for every a ∈ N, there exists x ∈ N* 
such that the following are true. 

(i) ∃ n ∈ N ∋ axa = nax.  
(ii) Nax ⊂ Na ∩ Nx. 
(iii) If N is a Boolean near-field space over a regular δ-near-ring then Naxa = Nxa. 
(iv) If N is a strong B1 −  near-field space over a regular δ-near-ring then ∃ n ∈ N ∋ xa = nax. 

 
Proof: Let a ∈ N.  
Since N is a B1 −  near-field space over a regular δ-near-ring, ∃ x ∈ N* ∋ Nax = Nxa                                                      (1) 

(i) Since axa ∈ Nxa, by using (1) we get axa = nax for some n ∈ N and (i) follows. 
(ii)  (1) ⇒ Nax = Nxa ⊂ Na. Obviously, Nax ⊂ Nx. 
∴ Nax ⊂ Na ∩ Nx. 
(iii) When N is Boolean  near-field space over a regular δ-near-ring, Nxa = Nxa2 = (Nxa)a = (Nax)a  [by (1)] and 

(iii) follows. 
(iv) Since N is a strong B1 −  near-field space over a regular δ-near-ring, the result follows from result 2.12 and (i). 

This completes the proof of proposition. 
 
SECTION 4: STRONG B1 - NEAR-FIELD SPACES OVER REGULAR DELTA NEAR-RINGS 
 
In this section, By generalizing the concept of B1 −  near-field space over a regular δ-near-ring, Dr. N.V. Nagendram 
introduce strong B1 −  near-field space over a regular δ-near-ring. Also study some of its important properties, obtain a 
simple characterization under a condition and also a structure theorem. 
 
4.1 Definition: strong B1 near-field space. For any sub near-field space A of near-field space N, we denote by A* the 
set of all non-zero elements of A. In particular N*=N–{0}. N is called a strong B1 near-field space if N* =NB1(a) ∀ a∈N 
where N B1(a) = {x ∈ N* /  axa = xa}. 
 
In other words, we say that N is a strong B1 −  near-field space over a regular δ-near-ring if Nab = Nba ∀ a, b ∈ N. 
 
4.2 Example: Every commutative near-field space over a regular δ-near-ring is a strong B1 − near-field space over a 
regular δ-near-ring. 
 
4.3 Example: Consider the near-field space (N, +, .) where (N, +) is the Klein’s four group {0, a, b, c} and “.” Is 
defined as follows (scheme p.408 Gunter Pilz[4]) 

    

bcac
cbab
aaaaa

cba

0
0

00000
0.

 

 
This is a strong B1 −  near-field space over a regular δ-near-ring. 
 
4.4 Proposition: Every strong B1 − near-field space over a regular δ-near-ring is a B1 − near-field space over a regular    
δ-near-ring. 
 
Proof: Obvious. 
 
4.5 Note: Converse of proposition 4.4 is not valid. For example we consider the near-field space (N, +, .) where (N, +) 
is the Klein’s four group {0, a, b, c} and “.” Is defined as follows (Scheme (14), p.408 of Gunter Pilz [4]) 

    

bcac
cbab
aaaaa

cba

0
0

00000
0.

 

This is a B1 −  near-field space over a regular δ-near-ring. But it is not a strong B1 − near-field space over a regular        
δ-near-ring since, N ac ≠ N ca. 
 



Dr. N. V. Nagendram*/ A Note on B1-NEAR-FIELD SPACES Over Regular δ-Near-Rings (B1 - NFS-R-δ-NR) / IJMA- 6(8), August-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                      148   

 
4.6 Note: It is clear that the property of N being strong B1 −near-field space over a regular δ-near-ring is preserved 
under near-field homo-morphisms.  
 
Consequently, the following theorem can be deduced. 
 
4.7 Theorem: Every strong B1 − near-field space over a regular δ-near-ring is isomorphic to a sub direct product of sub 
directly irreducible strong B1 −  near-field space over a regular δ-near-rings. 
 
Proof: by theorem 1.62, p.26 of Gunter Pilz [4] we get, N is isomorphic to a sub direct product of sub directly 
irreducible near-fields Ni’s, say, and each Ni is a homomorphic image of N under the usual projection map πi. The 
desired result now follows from note 4.6. This completes the proof of the theorem. 
 
4.8 Lemma: If N is a strong B1 −  near-field space over a regular δ-near-ring ⇔ ∀ a, b, c ∈ N, ∃ n ∈ N ∋ abc = ncb. 
 
Proof: ⇒(If part): Let a, b, c ∈ N. Now abc ∈ N bc.  
 
Since N is a strong B1 −  near-field space over a regular δ-near-ring, N bc = N cb.  
∴ abc ∈ N cb. 
⇒ abc = ncb for some n ∈ N. 
 
⇐(IFF Part): Let a, b, c ∈ N.  
 
Now abc ∈ N bc.  
∃ n ∈ N ∋ abc = ncb ∈ N cb. 
∴ N bc ⊂ N cb. 
 
In similar manner we get N cb⊂N bc. Thus N is a strong B1 − near-field space over a regular δ-near-ring. This 
completes the proof of the lemma. 
 
4.9 Theorem: Let N be a strong B1 − near-field space over a regular δ-near-ring. If N is regular then we have the 
following: 

(i) ∀ a ∈ N, ∃ x ∈ N such that a = a2x. 
(ii) N has no non-zero nilpotent elements. 
(iii) Any two principal N-sub near-field spaces of N commute with each other. 
(iv) N is a P1 - near-field space over a regular δ-near-ring. 
(v) N is left bi-potent. 

 
Proof: Obvious. 
 
4.10 Corollary: Let N be a zero symmetric strong B1 −  near-field space over a regular δ-near-ring. If N is regular near-
field space then N is the sub-direct product of integral near-field spaces over a regular δ-near-ring. 
 
4.11 Theorem: Let N be a strong B1 −  near-field space over a regular δ-near-ring. If N is Boolean near-field space over 
a regular δ-near-ring then the following are true: 

(i) NaNb = Nab ∀ a, b ∈ N. 
(ii) All principal N-sub near-field spaces of N commute with one another. 
(iii) Every ideal of N is a strong near-field space over a regular δ-near-ring. 
(iv) Every N-sub near-field space of N is a strong near-field space over a regular δ-near-ring. 
(v) Every N – sub near-field space of N is an invariant N-sub near-field space of N over a regular δ-near-ring. 

 
Proof: Obvious. 
 
Here the discussion with the following characterization of strong near-field space over a regular δ-near-ring. 
 
4.12 Theorem: Let N be a Boolean B1- near-field space over a regular δ-near-ring. Then N is a strong B1- near-field 
space over a regular δ-near-ring ⇔ Na ∩ Nb = Nab ∀ a, b ∈ N. 
 
Proof: ⇒(If Part) Let y ∈ Na ∩ Nb. 
∴ y = na = n′b for some n, n′ ∈ N. 
 
Now by lemma 4.8, ∃ z ∈ N ∋ y2 = (na)(n′b) = (nan′)b = (zn′a)b = (zn′)ab ∈ Nab. 
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Since, N is Boolean, this yields y ∈ Nab.  
 
Thus Na ∩ Nb ⊂ Nab                                                                                                                                                        (1) 
 
Since N is a strong B1- near-field space over a regular δ-near-ring,  
Nab = N ba.  
 
But N ba ⊂ Na and N ab ⊂ N b. 
 
Hence, N ab ⊂ Na ∩ Nb                                                                                                                                                    (2) 
(1), (2) ⇒ we get Na ∩ Nb = N ab. 
 
⇐(only IF Part): Let a, b ∈ N. now N ab = Na ∩ Nb = Nb ∩ Na = Nba. Thus N is a strong B1- near-field space over a 
regular δ-near-ring. 
 
This completed the proof of the theorem. 
 
SECTION 5: CONCLUSION 
 
Near-field space theory over regular delta near-rings under algebra of mathematics has many applications in the study 
of permutation groups, block schemes and projective geometry. Near-field spaces over regular delta near-rings provide 
a non-linear analogue to the development of Linear Algebra, combinatorial problems and useful for agricultural 
experiments. In this paper Dr. N.V. Nagendram presented the notion of B1 - near-field spaces over regular delta near-
rings and derived the properties and characterization of the strong B1 - near-field spaces over regular delta near-rings. 
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