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ABSTRACT 

The concept of range quaternion hermitian (q-EP) matrices is introduced as a generalization of quaternion hermitian 
and EP matrices. Necessary and sufficient conditions are determined for a matrix to be q-EPr (q - EP and rank r), 
Equivalent characterization of q - EP matrix are equivalent characterization at q- EP matrixes are discussed. As an 
application, it is shown that the class of all EP matrices having the same range space form a group under 
multiplication. 
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1. INTRODUCTION 
 
Let Hnxn be the space of nxn quaternion matrices. For A∈Hnxn, Let T * †A ,A ,A ,R(A),N(A) and rk(A) denote the 
transpose, conjugate transpose Moore-Penrose inverse range space, null space and  rank of A respectively. We denote  
the solution of the equation AXA= A by A−  for A∈Hnxn, The Moore-Penrose inverse †A of A is  the  unique solution   
of  the  equations AXA= A, XAX = A, (AX)* = AX  and (XA)  = XA [2]. In this paper  we introduce  the concept of      
q-EP hermitian and EP matrices and extended many of the basic results on q - hernitian and q- EP matrices [2,4,5], A  
matrix nxnA C∈  is said to be EP or called as range hermitian if N(A)=N(A*) or equivalently R(A) = R (A*)  [3,P 163]  
Relation  between q- EP and EP matrices are discussed. 
 
2. Q - EP MATRICES 
 
The Concept of range quaternion hemitian (q- EP) matrices introduced as a generalization of q - hermitian and EP 
matrices. Necessary and sufficient condition are determined for a matrix to be q-EPr (q - EP and rank r). Equivalently   
characterizations of a q- EP are discussed. As an application, it is shown that the class of all q - EP matrices having the 
same range space form a group under multiplication.                        
 
Definition: A matrix A∈Hnxn is said to be quaternion EP if R(A) = R (A*) or equivalently N(A) = N (A*).A is said  to 
be  quaternion EPr if A is quaternion EP and of rank r. 
 
Remark 1: If K is any scalar and A is a quaternion matrix then R(KA) = R  (KA*). 
 
Remark 2: The concept of q-EP matrix is an analogue of the concept of EP matrix [P. 163, 4]. 
 
Remark 3: Further, if A is q -hermitian then A = A* implies that R(A) = R (A*). Automatically holds and therefore A 
is q -EP. However the converse need not true. 
 
Remark 4: Every quaternion EP matrix is complex matrix if any two axis is zero among i, j and k.  
 
Remarks-5: A is q - EP matrix if only if A is an EP matrix. 
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Example: 

(i)  

2 1 2 3 4 2 4 6 8
1 2 3 4 3 3 6 9 12
2 4 6 8 3 6 9 12 4

i j k i j k
i j k i j k
i j k i j k

+ + + + + + 
 − − − + + + 
 − − − − − − 

 is a q – hermitian and q-EP. 

(ii) 

1 2 0
0 1 0
0 0 1

 
 
 
  

 is EP and q - EP not q - Hermitian. 

 
Theorem 1: For A∈  Hnxn the following are equivalent: 

(1) A is q - EP 
(2) †A  is q - EP 
(3) N (A) = N ( †A ) 
(4) N (A) = N (A*) 
(5) R (A) =  R ( *A ) 
(6) †A A = †AA  
(7) A = A*H for a non - singular nxn matrix H. 
(8) A = HA* for a non - singular nxn matrix H. 
(9) A* = HA for a non - singular nxn matrix H. 
(10) A* = AH for anon - singular nxn matrix H. 
(11) Hn = R(A) ⊕  *N(A )  
(12) Hn = R (A*) ⊕  N (A) 

 
Proof: 
(1) ⇔ (2) 
A is q – EP           ⇔ A is EP   (by Remark 5) 
                ⇔ †A  is EP 
                ⇔ †A  is q- EP 
 
Thus the equivalence of (1) and (2) is proved. 
 
(2) ⇔ (3) 

†A  is q – EP ⇔ A is   q - EP 
  ⇔ N(A)   = N(A*) 
  ⇔ N (A) = N( †A ) 
 
(3) ⇔ (4) 
N (A)  = N( †A ) ⇔ †A  is   q - EP 
  ⇔ A is   q - EP (by definition q - EP) 
  ⇔ N(A) =   N(A*) 
 
Similarly by the definition (4) ⇔ (5). Thus equivalence of (3), (4) and (5). 
 
(5) ⇔ (6) 
R (A) = R (A*) ⇔ A is q - EP 

  ⇔ A is EP 
  ⇔ A †A  = †A A  
 

(6) ⇔  (7) 
†AA = †A A  ⇔ R (A) = R (A*) 
  ⇔ A is q - EP 
  ⇔ A* =AH1 for a non singular nxn matrix H1  
  ⇔ A = A* (H1) - 1 

  ⇔ A = A* H, where H = (H1)- 1 

  ⇔ A = A* H, where H = (H1)- 1  is a non - singular nxn  matrix. 
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(6) ⇔ (8): 

†AA = †A A    ⇔ A is q- EP 
  ⇔ A* = H1A for a non-singular nxn matrix H.,  
  ⇔ A = 1

1 *H A−   
  ⇔ A = HA*, where H = (H1)- 1  is a non – singular matrix. 
 

Thus equivalence of (7) ⇔ (9) and (8) ⇔ (10) follows immediately by taking conjugate transpose. 
 

(9) ⇔ (11): *A  = HA for a non - singular nxn matrix H. 
                          ⇔ A*A = HAA 
                          ⇔ A*A = H A2 
                          ⇔ rk (A*A) =  rk (HA2) 
                          ⇔ rk (A*A) =  rk  (A2) 

  
Over the complex field, A*A and A have the same rank. Therefore, 
rk 2(( ) ) ( * ) ( ) ( *)A rk A A rk A rk A= = =  

               ⇔  R (A*) N (A*) = { }0  

               ⇔ R (A*) N (A) = { }0  

               ⇔ Hn = R(A*)⊕N (A) 
 
This can be proved along the same line and using rk (A*) = rk (A). Thus (11)⇔ (12)  

 
(11) ⇔ (1): If   Hn = R (A*)⊕  N(A) then R (A*)  N (A) = { }0 . For x∈N(A), x∉R(A)* ⇔  x ∈N(A)* = N (A*)  
 
Hence N(A) ⊆N (A*) and rk (A) = rk (A*) 
     ⇔ N (A) = N (A*) 
     ⇔ A is q- EP 
 
Thus (11) ⇔ (1) holds. Similarly, we can prove (12) ⇔ (1). Hence the theorem.  
 
Theorem 2: If A∈  Hnxn is normal and AA* is q - EP then A is q- EP. 
 
Proof: Since A is normal, A is EP moreover AA* is q-EP. 
⇒R(AA*) = R ((AA*)*) 
⇒R (A) = R ((A)*) 
⇒R (A) = R(A*) 
⇒  A is   q- EP. 
Hence the theorem.   

 
Theorem 3: Let 'E' be quaternion hermitian idempotent. Then Hq(E) = {A:A is q-EP and R(A) = R(E)}forms a  
maximal  subgroup at Hnxn  containing E as identity. 

                          
Proof: Since E as identity is quaternion hermitian, it is automatically q - Ep. Thus E∈Hq (E).  
 

 Next we shall prove that for any A∈Hq(E) then †A ∈ Hq(E). Now for any   
A∈Hq (E)  ⇔  A is q - EP and R(A)  = R(E).  

† †( ) ( ) ( )*
( *)
( )
( )

R A R A R A
R A
R A
R E

= =
=
=
=

 
Thus 

†A ∈Hq (E). Since E = E* = E2. 
 
E being hermitian idempotent with R (A) = R (E).E is Projection on R(A).  
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Therefore  
E = †AA = †A A  that is E =   for any A∈Hq (E). 
 
Now EA = A =AE ⇒   for every A∈Hq (E) which shows that ‘E’ is identity, for Hq (E). Now for any A∈Hq (E) we 
have † †AA E A= ⇒    
 
That is † †AA E A= ⇒ is the inverse of A. 
 
Suppose A, B ( )qH E∈  ⇒  A and B are q - EP with R(A) = R(E) = R(B). 
 
Also rk (A) = rk (A2). AB is q - EPr. ⇒  Moreover, 
 
Thus E= †AA = †A A = †BB = †B B  
 
Now 
R(AB)⊆R(A) = R(E) 
R(AB)⊆R(E) 
 
Therefore, AB Hq (E) is closed under multiplication Thus we have shows that Hq(E) is a subgroup of Hnxn with   
identity E. Maximality of Hq(E) follows from the theorem "H(E)={ }; ( ) ( )A Ais EP and R A R E= forms a maximal 
subgroup containing E as identity" Hence   the theorem. 
 

Remark 6: Let
2 *F F F= = be symmetric idempotent in Hnxn Then 

H(F) ={ }: ( ) ( )nxnB H Bis q EP and R B R F∈ − = is maximal Subgroup of Hnxn Containing F as identity theorem 
2.1, (4). 
 
Theorem 4: Hq (E) and H (F) are isomorphic Subgroups of Hnxn.   
 
Proof: By defining the mappingφ : Hq (E)→H(F)  Such thatφ  (A) = A. One can Prove that φ  is well defined,          
1-1, onto homomorphism. That is,φ is an isomorphism. Thus Hq(E) and H(F) are isomorphic  subgroups of Hnxn. Hence 
the theorem. 
 
Remark 7: For A∈Hnxn there exists q - hermitian matrices P and Q such that A=P+Q  where Q xi yj zk= + + ,Q is a 

matrix then *1 ( )
2

P A A= + and *1 ( )
2

Q A A= − . In the following theorem equivalent condition for matrix A to be   

q - EP. 
 
Theorem 5: For A∈Hnxn, A is q - EP⇔  N(A)⊆N(P) where P is the q - hermitian part  of A. 
 
Proof: If A is q-EP, then by the definition †( ) ( ) ( ) ( )N A N A N A N A∗ ∗= ⇒ =  Then for x∈  N(A), both Ax = 0 

and A*x=0 which implied  that
1px = ( *) 0
2

A A x + =  
 

 
Thus N(A)⊆N(P). Conversely, let N(A)⊆N(P); then Ax = 0⇒Px = 0 and hence Qx= 0. Therefore, N(A)⊆N (Q). 
Thus N(A)⊆N(P) N(Q).Since  both P and Q are q- hermition P = P*, Q = Q*   
 
Hence N(P) =  N(P*) and  N(Q)=N(Q*) 
Now,   
N(A)⊆N(P)∩N(Q) 
         = N(P*)∩N(Q*) 
        ⊆N(P*-Q*) 

Therefore, *N(A) N (A ) ⊆  and rk  (A)  = rk (A*) .Hence N (A) = N (A*). Thus A is q - EP. 
Hence the the theorem. 
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