A NOTE ON GENERALIZED L-CONTACT STRUCTURE

L. K. PANDEY*

D S Institute of Technology & Management, Ghaziabad, (U.P.) – 201007, India.

(Received On: 10-08-15; Revised & Accepted On: 31-08-15)

ABSTRACT

Keywords: Generalized Lorentzian structure, generalized induced connection, generalized D-conformal transformation.

1. INTRODUCTION

Let \(V_n \) be an odd \((n = 2m + 1) \) dimensional differentiable manifold, on which there are defined a tensor field \(F \) of type (1, 1), contravariant vector fields \(T_i \), covariant vector fields \(A_i \), where \(i = 3, 4, 5, \ldots (n - 1) \), and a Lorentzian metric \(g \), satisfying for arbitrary vector fields \(X, Y, Z, \ldots \)

\[
(1.1) \quad \bar{X} = X - \sum_{i=3}^{n-1} A_i(X) T_i, \quad \bar{T}_i = 0, \quad A_i(T_i) = -1, \quad \bar{X} \equiv F X, \quad A_i(\bar{X}) = 0, \quad \text{rank} F = n - i
\]

\[
(1.2) \quad g(\bar{X}, \bar{Y}) = g(X, Y) + \sum_{i=3}^{n-1} A_i(X) A_i(Y), \quad \text{where} \quad A_i(X) = g(X, T_i), \quad F(X, Y) \equiv g(\bar{X}, \bar{Y}) = -g(X, Y) = -F(Y, X),
\]

Then \(V_n \) will be called a generalized Lorentzian contact manifold and the structure \((F, T_i, A_i, g)\) will be known as generalized Lorentzian contact structure.

Let \(D \) be a Riemannian connection on \(V_n \), then we have

\[(1.3) (a) \quad (D_X F)(\bar{Y}, Z) - (D_F Y)(\bar{X}, Z) + \sum_{i=3}^{n-1} A_i(Y)(D_X A_i)(Z) + \sum_{i=3}^{n-1} A_i(Z)(D_X A_i)(Y) = 0
\]

\%(b) \quad (D_X F)(\bar{X}, \bar{Y}) = (D_F X)(\bar{Y}, \bar{Z})
\]

\[(1.4) (a) \quad (D_X F)(\bar{Y}, \bar{Z}) + (D_F Y)(\bar{X}, \bar{Z}) + \sum_{i=3}^{n-1} A_i(Y)(D_X A_i)(\bar{Z}) - \sum_{i=3}^{n-1} A_i(Z)(D_X A_i)(\bar{Y}) = 0
\]

\%(b) \quad (D_X F)(\bar{X}, \bar{Z}) + (D_F X)(\bar{Y}, \bar{Z}) = 0
\]

2. GENERALIZED CONNECTION IN A GENERALIZED LORENTZIAN CONTACT MANIFOLD

Let \(V_{2m-1} \) be submanifold of \(V_{2m+1} \) and let \(c : V_{2m-1} \rightarrow V_{2m+1} \) be the inclusion map such that

\[
d \in V_{2m-1} \rightarrow cd \in V_{2m+1},
\]

Where \(c \) induces a linear transformation (Jacobian map) \(J : T_{2m-1}^* \rightarrow T_{2m+1}^* \). \(T_{2m-1} \) is a tangent space to \(V_{2m-1} \) at point \(d \) and \(T_{2m+1} \) is a tangent space to \(V_{2m+1} \) at point \(cd \) such that \(\bar{X} \) in \(V_{2m-1} \) at \(d \rightarrow J\bar{X} \) in \(V_{2m+1} \) at \(cd \)

Let \(\bar{g} \) be the induced Lorentzian metric in \(V_{2m-1} \). Then we have

\[(2.1) \quad \bar{g}(\bar{X}, \bar{Y}) \equiv g(J\bar{X}, J\bar{Y})
\]

Corresponding Author: L. K. Pandey*

D S Institute of Technology & Management, Ghaziabad, (U.P.) – 201007, India.
Let us define a type of generalized semi-symmetric non-metric connection B in a generalized Lorentzian contact manifold is given by

$$(2.2)\, IBx\, Y = IdY + \sum_{i=3}^{n-1} A_i(Y)X - \sum_{i=3}^{n-1} g(X, Y)T_i + \sum_{i=3}^{n-1} g(X, Y)U_i,$$

Where U_i are vector fields associated with 1-form d_i defined by

$$(2.3)\, d_i(x) \equiv g(X, U_i),\quad i = 3, 4, 5, \ldots (n - 1).$$

Similarly we have

$$(2.4)\, T_i = fT_i + \rho_i M + \sigma_i N$$

(b) $U_i = fU_i + \theta_i M + \phi_i N,\quad i = 3, 4, 5, \ldots (n - 1).$

Where t_i and $u_i,\ i = 3, 4, 5, \ldots (n - 1)$ are C^∞ vector fields in V_{2m-1} and M, N are unit normal vectors to V_{2m-1}.

Denoting by D the connection induced on the submanifold from D, we have Gauss equation

$$(2.5)\, D_x f\tilde{Y} = f(D_x \tilde{Y}) + p(\tilde{X}, \tilde{Y})M + q(\tilde{X}, \tilde{Y})N$$

Where \tilde{B} is the connection induced on the submanifold from B and r and s are symmetric bilinear functions in V_{2m-1} Inconsequence of (2.2), we have

$$(2.7)\, IBx\, \tilde{Y} = Id\tilde{Y} + \sum_{i=3}^{n-1} A_i(\tilde{Y})X - \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})T_i + \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})U_i,$$

Using (2.5), (2.6) and (2.7), we get

$$(2.8)\, if(D_x \tilde{Y}) + ir(\tilde{X}, \tilde{Y})M + is(\tilde{X}, \tilde{Y})N = if(D\tilde{Y}) + ip(\tilde{X}, \tilde{Y})M + iq(\tilde{X}, \tilde{Y})N + \sum_{i=3}^{n-1} a_i(\tilde{Y})\tilde{X}$$

$$- \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})T_i + \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})U_i.$$}

Using (2.4) (a) and (2.4) (b), we obtain

$$(2.9)\, if(D_x \tilde{Y}) + ir(\tilde{X}, \tilde{Y})M + is(\tilde{X}, \tilde{Y})N = if(D\tilde{Y}) + ip(\tilde{X}, \tilde{Y})M + iq(\tilde{X}, \tilde{Y})N + \sum_{i=3}^{n-1} a_i(\tilde{Y})\tilde{X}$$

$$- \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})T_i + \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})U_i.$$

This gives

$$(2.10)\, iBx\tilde{Y} = iD\tilde{Y} + \sum_{i=3}^{n-1} a_i(\tilde{Y})\tilde{X} - \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})T_i + \sum_{i=3}^{n-1} g(\tilde{X}, \tilde{Y})U_i$$

If

$$(2.11)\, (a)\, ir(\tilde{X}, \tilde{Y}) = ip(\tilde{X}, \tilde{Y}) - \sum_{i=3}^{n-1} \rho_i g(\tilde{X}, \tilde{Y}) + \sum_{i=3}^{n-1} \theta_i g(\tilde{X}, \tilde{Y})$$

(b) $is(\tilde{X}, \tilde{Y}) = iq(\tilde{X}, \tilde{Y}) - \sum_{i=3}^{n-1} \sigma_i g(\tilde{X}, \tilde{Y}) + \sum_{i=3}^{n-1} \phi_i g(\tilde{X}, \tilde{Y}).$

Thus we have

Theorem 2.1: The connection induced on a submanifold of a generalized Lorentzian contact manifold with a generalized semi-symmetric non-metric connection with respect to unit normal vectors M and N is also semi-symmetric non-metric connection iff (2.11) holds.

3. GENERALIZED D-CONFORMAL TRANSFORMATION

Let the corresponding Jacobian map J of the transformation b transforms the structure (F, T_i, A_i, g) to the structure (F_i, V_i, u_i, h) such that

$$(3.1)\, (a) JZ = \overline{Z}$$

(b) $h(JX, JY)ob = e^a g(\overline{X}, \overline{Y}) - e^{2a} \sum_{i=3}^{n-1} A_i(X)A_i(Y)$

(c) $V_i = e^{-\alpha} Jx_i$ (d) $u_i(JX)ob = e^a A_i(X)$

Where σ is a differentiable function on V_i, then the transformation is said to be generalized D-conformal transformation.

Theorem 3.1: The structure (F, V_i, u_i, h) is generalized Lorentzian contact.

Proof: Inconsequence of (1.1), (1.2), (3.1) (b) and (3.1) (d), we get

$$h(J\overline{X}, J\overline{Y})ob = e^{a} g(\overline{X}, \overline{Y}) = h(JX, JY)ob + \sum_{i=3}^{n-1} e^{2a} A_i(X)A_i(Y)$$

$$= h(JX, JY)ob + \sum_{i=3}^{n-1} (u_i(JX)ob)[v_i(JY)ob]$$
This gives
\(h(fX, fY) = h(X, Y) + \sum_{i=3}^{n-1} u_i(X)u_i(Y) \)

Using (1.1), (3.1) (a), (3.1) (c) and (3.1) (d), we get
\(\overline{fX} = fX = -X - \sum_{i=3}^{n-1} A_i(X)T_i = -X - \sum_{i=3}^{n-1} [u_i(X)ob]V_i \)

Also
\(\overline{V} = e^{-\sigma} \overline{I} = 0 \)

Proof follows from equations (3.2), (3.3) and (3.4).

Theorem 3.2: Let \(E \) and \(D \) be the Riemannian connections with respect to \(h \) and \(g \) such that
\[
(3.5) \quad (a) \quad E_{\gamma X} Y = JD_\gamma Y + H(X, Y)
\]
and
\[
(3.5) \quad (b) \quad H(X, Y, Z) \equiv g(H(X, Y), Z)
\]

Then
\[
(3.6) \quad 2E_{\gamma X} Y = 2JD_\gamma Y - J[2\sigma \left\{ \sum_{i=3}^{n-1} (X\sigma)A_i(Y)T_i + \sum_{i=3}^{n-1} (Y\sigma)A_i(X) T_i - \sum_{i=3}^{n-1} (-G\nabla\sigma)A_i(X)A_i(Y) \right\} + e^{-\sigma} - 1] \sum_{i=3}^{n-1} (D_xA_i(Y) + (D_{YI}X) - 2A_i(H(X, Y))T_i)
\]

Proof: Inconsequence of (3.1) (b), we have
\[
JX(h(JY, JZ))ob = X\left\{ e^{\sigma} g(\overline{Y}, \overline{Z}) - \sum_{i=3}^{n-1} e^{2\sigma} A_i(Y)A_i(Z) \right\}
\]

Now
\[
(3.7) \quad h(E_{\gamma X} Y, JZ)ob + h(JY, E_{\gamma X} Z)ob = (X\sigma)e^{\sigma} g(\overline{Y}, \overline{Z}) + e^{\sigma} g(D_x\overline{Y}, \overline{Z}) + e^{\sigma} g(D_x\overline{Y}, \overline{Z}) - \sum_{i=3}^{n-1} (2(X\sigma)e^{2\sigma} A_i(Y)A_i(Z) + e^{2\sigma} (D_xA_i)A_i(Y)A_i(Z) + e^{2\sigma} (D_xA_i)A_i(Z)A_i(Y) + e^{2\sigma} A_i(Y)A_i(Z) + e^{2\sigma} A_i(D_xZ)A_i(Y))
\]

Also
\[
(3.8) \quad h(E_{\gamma X} Y, JZ)ob + h(JY, E_{\gamma X} Z)ob = e^{\sigma} g(D_x\overline{Y}, \overline{Z}) + e^{\sigma} g(H(X, Y), \overline{Z}) + e^{\sigma} g(F, D_x\overline{Z}) - \sum_{i=3}^{n-1} \left\{ e^{2\sigma} A_i(D_xY)A_i(Z) + e^{2\sigma} A_i(Y)A_i(H(X, Z)) \right\} + e^{\sigma} g(\overline{F}, \overline{D_xZ})
\]

Inconsequence of (1.3) (a), (3.7) and (3.8), we have
\[
(3.9) \quad (X\sigma)g(\overline{F}, \overline{Z}) - 2(X\sigma)e^{\sigma} \sum_{i=3}^{n-1} (A_i(Y)A_i(Z)) - (e^{\sigma} - 1) \sum_{i=3}^{n-1} ((D_xA_i)A_i(Y)A_i(Z) + (D_xA_i)A_i(Z)A_i(Y)) + e^{\sigma} \sum_{i=3}^{n-1} \left\{ e^{2\sigma} A_i(D_xY)A_i(Z) + e^{2\sigma} A_i(Y)A_i(H(X, Z)) \right\} = 2H(X, Y, Z) = \gamma H(X, Y, Z)
\]

Writing two other equations by cyclic permutation of \(X, Y, Z \) and subtracting the sum from the sum of the first two. Also using symmetry of \('H ' \) in the first two slots, we get
\[
(3.10) \quad 2H(X, Y, Z) = -2e^{\sigma} \sum_{i=3}^{n-1} ((X\sigma)A_i(Y)A_i(Z) + (Y\sigma)A_i(Z)A_i(X) - (Z\sigma)A_i(X)A_i(Y)) - (e^{\sigma} - 1) \sum_{i=3}^{n-1} \left\{ (D_xA_i)A_i(Y) + (D_xA_i)A_i(X) \right\} - 2A_i(H(X, Y)) + A_i(Y) \left\{ (D_xA_i)A_i(Y) \right\} + A_i(Y) \left\{ (D_xA_i)A_i(X) \right\}
\]

This implies
\[
(3.11) \quad 2H(X, Y) = -2e^{\sigma} \sum_{i=3}^{n-1} ((X\sigma)A_i(Y)YT_i + (Y\sigma)A_i(X)TI_i - (Z\sigma)A_i(X)A_i(Y)) - (e^{\sigma} - 1) \sum_{i=3}^{n-1} \left\{ (D_xA_i)A_i(Y) + (D_xA_i)A_i(X) - 2A_i(H(X, Y)) \right\} T_i + A_i(X)D_xT_i + A_i(Y)D_xT_i - A_i(X)(-G\nabla A_i)(Y) - A_i(Y)(-G\nabla A_i)(X)
\]

(3.6) follows from (3.11) and (3.5) (a).

References

Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]