Pairwise bg closed and Pairwise $* bg$ closed set in Bitopological Spaces

M. TRINITA PRICILLA*
Nirmala College for Women, Coimbatore, India.

R. SINDHIYA
Nirmala College for Women, Coimbatore, India.

(Received On: 27-07-15; Revised & Accepted On: 26-08-15)

ABSTRACT

In this paper, we introduce some new classes of sets namely Pairwise bg closed set, Pairwise $* bg$ closed set. We obtain the basic properties and their relationships with other classes of sets in bitopological spaces. We devote the concept of Pairwise bg and Pairwise $* bg$ continuous functions. The relationship between Pairwise bg continuous and Pairwise $* bg$ continuous and other defined continuous functions are being deliberated.

Keywords and Phrases: Pairwise bg closed set, Pairwise $* bg$ closed set, Pairwise bg continuous function, Pairwise $* bg$ continuous function, Pairwise bg irresolute function, Pairwise $* bg$ irresolute function.

I. INTRODUCTION AND PRELIMINARIES

INTRODUCTION

PRELIMINARIES

Definition: 1.1 [15] Let (X, τ) be a topological space. A set A is called semi-open set if $A \subseteq C_1(\text{Int}(A))$. The complement of semi-open set is semi-closed set.

Definition: 1.2 [16] Let (X, τ) be a topological space. A set A is called pre-open set if $A \subseteq \text{Int}(C_1(A))$. The complement of pre-open set is pre-closed set.

Definition: 1.3 [19] Let (X, τ) be a topological space. A set A is called α-open set if $A \subseteq \text{int}(C_1(\text{int}(A)))$. The complement of α-open set is α-closed set.

Definition: 1.4 [2] Let (X, τ) be a topological space. A set A is called b-open set if $A \subseteq C_1(\text{Int}(A)) \cup \text{Int}(C_1(A))$. The complement of b-open set is called b-closed set.

Corresponding Author:
M. Trinita Pricilla*, Nirmala College for Women, Coimbatore, India.
Definition: 1.5 [9] A subset A of a bitopological space \((X, \tau_1, \tau_2)\) is called \(\tau_1 \tau_2 - sg\) closed if \(\tau_2 - scl(A) \subseteq U\) whenever \(A \subseteq U\) and U is \(\tau_1\)-semi open in X.

Definition: 1.6 [12] A subset A of a bitopological space \((X, \tau_1, \tau_2)\) is called \(\tau_1 \tau_2 - \omega\) closed if \(\tau_2 - cl(A) \subseteq U\) whenever \(A \subseteq U\) and U is \(\tau_1\)-semi open in X.

2. Pairwise \(bg\) closed and Pairwise * \(bg\) closed set

Definition: 2.1 A set A of a bitopological space \((X, \tau_1, \tau_2)\) is called Pairwise \(bg\) closed if \(\tau_2 - bcl(A) \subseteq U\) whenever \(A \subseteq U\) and U is \(\tau_1\)-semi open in X.

Definition: 2.2 A set A of a bitopological space \((X, \tau_1, \tau_2)\) is called Pairwise * \(bg\) closed if \(\tau_2 - bcl(A) \subseteq U\) whenever \(A \subseteq U\) and U is \(\tau_1\)-\(\alpha\) open in X.

Theorem: 2.3

(a) Every Pairwise \(bg\) closed set is Pairwise * \(bg\) closed set.
(b) Every \(\tau_1 \tau_2 - \omega\) closed set is Pairwise \(bg\) closed set.
(c) Every \(\tau_1 \tau_2 - \omega\) closed set is Pairwise * \(bg\) closed set.
(d) Every \(\tau_1 \tau_2 - sg\) closed set is Pairwise \(bg\) closed set.
(e) Every \(\tau_1 \tau_2 - sg\) closed set is Pairwise * \(bg\) closed set.

Proof: a) Let A be Pairwise \(bg\) closed set. We have to prove A is Pairwise * \(bg\) closed set. Let \(A \subseteq U\) and U is \(\tau_1\)-\(\alpha\) open in X. Since every \(\alpha\) open set is semi open set then U is \(\tau_1\)-semi open in X. Also since \(A \subseteq U\) and U is \(\tau_1\)-semi open in X and A is Pairwise \(bg\) closed set, then \(\tau_2 - bcl(A) \subseteq U\). Therefore A is Pairwise * \(bg\) closed set. The other results follows from the definitions.

Remark: 2.4 The converse of the above theorems are not true and it is shown by the following examples.

Example: 2.5 Let \(X = \{a, b, c\}; \tau_1 = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}; \tau_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\). Here \(\{a, b\}\) is Pairwise * \(bg\) closed but not Pairwise \(bg\) closed set.

Example: 2.6 Let \(X = \{a, b, c\}; \tau_1 = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}; \tau_2 = \{\emptyset, X, \{b\}, \{b, c\}\}\). Here \(\{c\}\) is Pairwise \(bg\) closed but not \(\tau_1 \tau_2 - \omega\) closed set.

Example: 2.7 Let \(X = \{a, b, c\}; \tau_1 = \{\emptyset, X, \{c\}, \{b, c\}, \{a, c\}\}; \tau_2 = \{\emptyset, X, \{a\}, \{a, c\}\}\). Here \(\{c\}\) is Pairwise * \(bg\) closed but not \(\tau_1 \tau_2 - \omega\) closed set.

Example: 2.8 Let \(X = \{a, b, c\}; \tau_1 = \{\emptyset, X, \{c\}, \{a, b\}\}; \tau_2 = \{\emptyset, X, \{a\}, \{a, c\}\}\). Here \(\{a, c\}\) is Pairwise * \(bg\) closed but not \(\tau_1 \tau_2 - sg\) closed set.

Remark: 2.9 From the above theorems and examples we have the following diagrammatic representation.
Proposition: 2.10 The finite union of Pairwise \(bg \) closed (Pairwise *bg closed) set is Pairwise \(bg \) closed (Pairwise *bg closed).

Proof: Let \(A \) and \(B \) be Pairwise \(bg \) closed (Pairwise *bg closed) subsets of \(X \) and let \(U \) be \(\tau_1 \)-semi open (\(\alpha \) open) in \(X \) such that \(A \cup B \subseteq U \). Then \(\tau_2 - bcl(A) \subseteq U \), \(\tau_2 - bcl(B) \subseteq U \).

Therefore \(\tau_2 - bcl(A \cup B) = \tau_2 - bcl(A) \cup \tau_2 - bcl(B) \subseteq U \). This implies \(\tau_2 - bcl(A \cup B) \subseteq U \). Hence \(A \cup B \) is Pairwise \(bg \) closed (Pairwise *bg closed) set.

Theorem: 2.11 If \(A \) is an Pairwise \(bg \) closed (Pairwise *bg closed) set of \((X, \tau_1, \tau_2) \) such that \(A \subseteq B \subseteq \tau_2 - bcl(A) \) then \(B \) is also an Pairwise \(bg \) closed (Pairwise *bg closed) set of \(X \).

Proof: Let \(B \subseteq U \) where \(U \) is \(\tau_1 \)-semi open (\(\alpha \) open) in \(X \). Then \(A \subseteq B \) implies \(A \subseteq U \). Since \(A \) is pairwise \(bg \) closed (Pairwise *bg closed) then \(\tau_2 - bcl(A) \subseteq U \).

Given \(B \subseteq \tau_2 - bcl(A) \) then \(\tau_2 - bcl(B) \subseteq \tau_2 - bcl(\tau_2 - bcl(A)) \subseteq \tau_2 - bcl(A) \subseteq U \). Therefore \(B \) is Pairwise \(bg \) closed (Pairwise *bg closed) set.

Proposition: 2.12 If \(A \) is Pairwise \(bg \) closed (Pairwise *bg closed) subset of \((X, \tau_1, \tau_2) \) then \([\tau_2 - bcl(A)] - A \) does not contain any non empty \(\tau_1 \)-semi closed (\(\alpha \) closed) sets.

Proof: Let \(A \) be Pairwise \(bg \) closed (Pairwise *bg closed) set. Suppose \(F \neq \phi \) is \(\tau_1 \)-semi closed (\(\alpha \) closed) set of \([\tau_2 - bcl(A)] - A \) then \(F \subseteq \tau_2 - bcl(A) - A \). This implies \(F \subseteq \tau_2 - bcl(A) \) and \(F \subseteq X - A \). Consider \(A \subseteq X - F \) then \(F \subseteq [\tau_2 - bcl(A)] \). Therefore, \(F \subseteq [\tau_2 - bcl(A)] \cap [\tau_2 - bcl(A)] = \phi \). Hence \(F = \phi \).

Corollary: 2.13 Let \(A \) be Pairwise \(bg \) closed (Pairwise *bg closed) set in \((X, \tau_1, \tau_2) \) then \(A \) is \(\tau_2 - b \) - closed iff \([\tau_2 - bcl(A)] - A \) is \(\tau_1 \)-semi closed (\(\alpha \) closed) set.

Proof: Let \(A \) be Pairwise \(bg \) closed (Pairwise *bg closed) set. If \(A \) is \(\tau_2 - b \) - closed we have \(\tau_2 - bcl(A) = A \) then \([\tau_2 - bcl(A)] - A = \phi \) which is \(\tau_1 \)-semi closed (\(\alpha \) closed) set.

Conversely, let \([\tau_2 - bcl(A)] - A \) is \(\tau_1 \)-semi closed (\(\alpha \) closed) set. Then by proposition 3.3, \([\tau_2 - bcl(A)] - A \) is \(\tau_1 \)-semi closed (\(\alpha \) closed) subset of itself then \([\tau_2 - bcl(A)] - A = \phi \). This implies that \(\tau_2 - bcl(A) = A \). Therefore \(A \) is \(\tau_2 - b \) - closed.

Definition: 2.14 A subset \(A \subseteq X \) is called Pairwise \(bg \) open (Pairwise *bg open) set iff its complement is Pairwise \(bg \) closed (Pairwise *bg closed) set.

Theorem: 2.15 A subset \(A \subseteq X \) is Pairwise \(bg \) open (Pairwise *bg open) set iff \(F \subseteq \tau_2 - bint(A) \) whenever \(F \) is semi closed (\(\alpha \) closed) in \(\tau_1 \) such that \(F \subseteq A \).

Proof: Necessity: Let \(A \) be Pairwise \(bg \) open (Pairwise *bg open) set and \(F \) be semi closed (\(\alpha \) closed) in \(\tau_1 \) such that \(F \subseteq A \). Then \(X - A \) is contained in \(X - F \) where \(X - F \) is semi open (\(\alpha \) open) in \(\tau_1 \). Since \(A \) is Pairwise \(bg \) open (Pairwise *bg open), \(\tau_2 - bcl(X - A) \subseteq X - F \). This implies \(X - [\tau_2 - bint(A)] \subseteq X - F \). Thus \(F \subseteq \tau_2 - bint(A) \).

Sufficiency: Suppose \(F \) is semi closed (\(\alpha \) closed) in \(\tau_1 \) and \(F \subseteq A \). This implies \(F \subseteq \tau_2 - bint(A) \). Let \(X - A \subseteq U \), where \(U \) is semi open (\(\alpha \) open) set in \(\tau_1 \). Then \(X - U \subseteq A \) where \(X - U \) is semi closed (\(\alpha \) closed) in \(\tau_1 \). By hypothesis, \(X - U \subseteq \tau_2 - bint(A) \) (i.e. \(X - [\tau_2 - bint(A)] \subseteq U \)). Then \(\tau_2 - bcl(X - A) \subseteq U \) implies \(X - A \) is Pairwise \(bg \) closed (Pairwise *bg closed) set. Therefore \(A \) is Pairwise \(bg \) open (Pairwise *bg open) set.
Theorem 2.16 If \(A \subseteq X \) is Pairwise \(bg \) closed (Pairwise \(bg \) closed) set then \([\tau_2 - bcl(A)] - A\) is Pairwise \(bg \) open (Pairwise \(bg \) open).

Proof: Let \(A \) be Pairwise \(bg \) closed(Pairwise \(bg \) closed). Let \(F \) be semi closed (\(\alpha \) closed) set in \(\tau_1 \) such that \(F \subseteq [\tau_2 - bcl(A)] - A \). Then by proposition 2.13, \(F = \phi \). So \(F \subseteq [\tau_2 - \text{bint}(\tau_2 - bcl(A)) - A] \). This implies \([\tau_2 - bcl(A)] - A\) is Pairwise \(bg \) open (Pairwise \(bg \) open).

3. Pairwise \(bg \) and Pairwise * \(bg \) continuous functions

Definition 3.1
(i) A function \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) where \((X, \tau_1, \tau_2) \) and \((Y, \sigma_1, \sigma_2) \) are bitopological space is pairwise \(bg \) continuous if \(f^{-1}(U) \) is Pairwise \(bg \) closed in \(X \) for each \(\sigma_i \) closed \(U \) in \(Y_i \neq j \) and \(i, j = 1, 2 \)

(ii) A function \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) where \((X, \tau_1, \tau_2) \) and \((Y, \sigma_1, \sigma_2) \) are bitopological space is pairwise * \(bg \) continuous if \(f^{-1}(U) \) is pairwise * \(bg \) closed in \(X \) for each \(\sigma_i \) closed \(U \) in \(Y_i \neq j \) and \(i, j = 1, 2 \)

Theorem 3.2
(a) Every pairwise \(bg \) continuous function is pairwise * \(bg \) continuous function.
(b) Every \(\tau_1 \tau_2 - \omega \) continuous function is pairwise \(bg \) continuous function.
(c) Every \(\tau_1 \tau_2 - \omega \) continuous function is pairwise * \(bg \) continuous function.
(d) Every \(\tau_1 \tau_2 - s\gamma \) continuous function is pairwise * \(bg \) continuous function.
(e) Every \(\tau_1 \tau_2 - s\gamma \) continuous function is pairwise * \(bg \) continuous function.

Proof: a) Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be pairwise \(bg \) continuous. Let \(U \) be \(\sigma_j \) closed set in \(Y \). Then \(f^{-1}(U) \) is Pairwise \(bg \) closed set in \(X \). Since every Pairwise \(bg \) closed set in \(X \) is pairwise * \(bg \) closed set in \(X \) then \(f^{-1}(U) \) is pairwise * \(bg \) closed set in \(X \). Hence \(f \) is pairwise * \(bg \) continuous function. The proof is obvious for others.

Remark: 3.3 The converse of the above theorems are not true as shown by the following examples.

Example 3.4 Let \(X = Y = \{a, b, c\} ; \tau_1 = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}, \{a, c\}; \tau_2 = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}; \sigma_1 = \{\phi, Y, \{a, c\}; \sigma_2 = \{\phi, Y, \{a\} \}. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a function defined by \(f(a) = c, f(b) = b \), \(f(c) = a \).
Here \(f^{-1}(b, c) = \{a, b\} \) is pairwise * \(bg \) closed but not pairwise \(bg \) closed set. Therefore \(f \) is pairwise * \(bg \) continuous but not pairwise \(bg \) continuous function.

Example 3.5 Let \(X = Y = \{a, b, c\} \); \(\tau_1 = \{\phi, X, \{a\}, \{a, c\}, \{a, b\} \}; \tau_2 = \{\phi, X, \{b\}, \{b, c\}; \sigma_1 = \{\phi, Y, \{a, c\}, \sigma_2 = \{\phi, Y, \{a, b\} \}. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be an identity function.
Here \(f^{-1}(c) = \{c\} \) is pairwise * \(bg \) closed but not \(\tau_1 \tau_2 - \omega \) closed set. Therefore \(f \) is pairwise \(bg \) continuous but not pairwise \(bg \) continuous function.

Example 3.6 Let \(X = Y = \{a, b, c\} \); \(\tau_1 = \{\phi, X, \{a\}, \{a, c\}, \{a, b\} \}; \tau_2 = \{\phi, X, \{a\}, \{a, c\}; \sigma_1 = \{\phi, Y, \{b\}, \{b, c\}; \sigma_2 = \{\phi, Y, \{a\} \}. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be an identity function.
Here \(f^{-1}(c) = \{c\} \) is pairwise * \(bg \) closed but not \(\tau_1 \tau_2 - \omega \) closed set. Therefore \(f \) is pairwise * \(bg \) continuous but not pairwise * \(bg \) continuous function.

Example 3.7 Let \(X = Y = \{a, b, c\} \); \(\tau_1 = \{\phi, X, \{a\}, \{a, b\} \}; \tau_2 = \{\phi, X, \{a\}, \{a, c\}; \sigma_1 = \{\phi, Y, \{a\}, \{a, b\}; \sigma_2 = \{\phi, Y, \{a\} \}. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a function defined by \(f(a) = b, f(b) = a, f(c) = c \).
Here \(f^{-1}(b, c) = \{a, c\} \) is pairwise * \(bg \) closed but not \(\tau_1 \tau_2 - s\gamma \) closed set. Therefore \(f \) is but not pairwise * \(bg \) continuous function.

Theorem 3.8 The following are equivalent for a function \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \)
(a) \(f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous).
(b) \(f^{-1}(U) \) is pairwise \(bg \) open (pairwise * \(bg \) open) in \(X \) for each \(\sigma_j \) — open set \(U \) in \(Y, i \neq j \) and \(i, j = 1, 2 \).

Proof: (a) \(\Rightarrow \) (b) Suppose that \(f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous). Let \(A \) be \(\sigma_j \) — open set in \(Y \). Then \(Y - A \) is \(\sigma_j \) — closed set in \(Y \). Since \(f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous), \(f^{-1}(Y - A) \) is pairwise \(bg \) closed (pairwise * \(bg \) closed) in \(X, i \neq j \) and \(i, j = 1, 2 \). Consequently, \(f^{-1}(A) \) is pairwise \(bg \) open (pairwise * \(bg \) open) in \(X \).
(b) \(\Rightarrow \) (a) Suppose that \(f^{-1}(A) \) is pairwise \(bg \) open (pairwise \(* bg \) open) in \(X \) for each \(\sigma_i \) -- open set \(U \) in \(Y \), \(i \neq j \) and \(i, j = 1, 2 \). Let \(V \) be \(\sigma_j \) -- closed set in \(Y \). Then \(X - V \) is \(\sigma_i \) -- open in \(Y \). Then by our assumption, \(f^{-1}(X - V) \) is pairwise \(bg \) open (pairwise \(* bg \) open) in \(X \), \(i \neq j \) and \(i, j = 1, 2 \). Then \(f^{-1}(V) \) is pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(X \). Hence \(f \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous).

Remark: 3.9 The composition of two pairwise \(bg \) continuous (pairwise \(* bg \) continuous) functions is not pairwise \(bg \) continuous (pairwise \(* bg \) continuous) functions as shown by the following example.

Example: 3.10 Let \(X = Y = Z = \{a, b, c\}; \tau_1 = \{\phi, X, \{a, b\}, \{b, c\}; \{a, b\}; \tau_2 = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}\); \(\sigma_1 = \{\phi, Y, \{b\}, \{a, b\}\}; \sigma_2 = \{\phi, Y, \{c\}, \{a, c\}\}; \gamma_1 = \{\phi, Z, \{b\}, \{a, c\}\}; \gamma_2 = \{\phi, Z, \{b\}, \{b, c\}\} \) Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a function defined by \(f(a) = a, f(b) = c, f(c) = b \) and \(g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \gamma_1, \gamma_2) \) be an identity function. Then \(f \) and \(g \) are pairwise \(bg \) continuous function. But \(f^{-1}(g^{-1}(\{a\})) = \{a\} \) is not pairwise \(bg \) closed in \((X, \tau_1, \tau_2) \). Hence \(g \circ f \) is not pairwise \(bg \) continuous function.

Definition: 3.11 A function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is

(a) pairwise \(bg \) irresolute if \(f^{-1}(U) \) is \(\tau_i \tau_j \) -- pairwise \(bg \) closed for each \(\sigma_i \sigma_j \) -- pairwise \(bg \) closed in \(U \) in \(Y \), \(i \neq j \) and \(i, j = 1, 2 \).

(b) pairwise \(* bg \) irresolute if \(f^{-1}(U) \) is \(\tau_i \tau_j \) -- pairwise \(* bg \) closed for each \(\sigma_i \sigma_j \) -- pairwise \(* bg \) closed in \(U \) in \(Y \), \(i \neq j \) and \(i, j = 1, 2 \).

Proposition: 3.12 If \(f \) is pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) then \(f \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function.

Proof: Let \(V \) be \(\sigma_j \) -- closed set in \(Y \). Then \(V \) is \(\sigma_i \sigma_j \) -- pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(Y \). By assumption, \(f^{-1}(V) \) is pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(X \). Hence \(f \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function.

Remark: 3.13 The converse of the above theorem is not true as shown by the following example.

Example: 3.14 Let \(X = Y = Z = \{a, b, c\}; \tau_1 = \{\phi, X, \{a, c\}\}; \tau_2 = \{\phi, X, \{c\}, \{a, c\}\}; \sigma_1 = \{\phi, Y, \{b\}, \{a, c\}\}; \sigma_2 = \{\phi, Y, \{a\}, \{a, b\}\} \) Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a function defined by \(f(a) = a, f(b) = c, f(c) = b \).

Here \(f^{-1}(c) = \{b\} \) and \(f^{-1}(b, c) = \{b, c\} \) is pairwise \(bg \) closed in \((X, \tau_1, \tau_2) \). Hence \(f \) is pairwise \(bg \) continuous. But \(f^{-1}(a, b) = \{a, c\} \) is not pairwise \(bg \) closed in \((X, \tau_1, \tau_2) \). Hence it is not pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function.

Theorem: 3.15 Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2) \) be two functions. Then if \(f \) and \(g \) are pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) then \(g \circ f \) is pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function.

Proof: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2) \) be pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute). Let \(V \) be pairwise \(bg \) closed (pairwise \(* bg \) closed) set in \(Z \). Since \(g \) is pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function, then \(g^{-1}(v) \) is pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(Y \). Since \(f \) is pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function, \((g \circ f)^{-1}(v) = f^{-1}(g^{-1}(v)) \) is pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(X \). Therefore \(g \circ f \) is pairwise \(bg \) irresolute function (pairwise \(* bg \) irresolute).

Theorem: 3.16 Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2) \) be two functions. Then if \(f \) is pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function and \(g \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function. Then \(g \circ f \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function.

Proof: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function and \(g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \mu_1, \mu_2) \) be pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function. Let \(V \) be \(\sigma_j \) -- closed set in \(Z \). Since \(g \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function, then \(g^{-1}(v) \) is pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(Y \).

Since \(f \) is pairwise \(bg \) irresolute (pairwise \(* bg \) irresolute) function, \((g \circ f)^{-1}(v) = f^{-1}(g^{-1}(v)) \) is pairwise \(bg \) closed (pairwise \(* bg \) closed) in \(X \). Therefore \(g \circ f \) is pairwise \(bg \) continuous (pairwise \(* bg \) continuous) function.
Theorem: 3.17 Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2) \) be two functions. Then if \(f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous) function and \(g \) is pairwise continuous. Then \(g \circ f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous) function.

Proof: Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be pairwise \(bg \) continuous (pairwise * \(bg \) continuous) function and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2) \) be pairwise continuous. Let \(V \) be \(\sigma_1 - \) closed set in \(Z \). Since \(g \) is pairwise continuous function, then \(g^{-1}(V) \) is \(\sigma_1 \) closed in \(Y \). Since \(f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous) function, \((gof)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is pairwise \(bg \) closed (pairwise * \(bg \) closed) in \(X \). Therefore \(g \circ f \) is pairwise \(bg \) continuous (pairwise * \(bg \) continuous) function.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]