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ABSTRACT 
Defining the function ( ),r x n∆  related to the r-totatives of n we study certain properties of it.  
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1. INTRODUCTION 
 
Throughout this paper r denotes a fixed positive integer. For positive integers a and b, their greatest rth power common 
divisor is denoted by ( ),

r
a b . It is clear that ( )1,a b  is the greatest common divisor (a, b) of a and b; and that 

( ), 1ra b =  if and only if (a, b) is r-free (we recall that a positive integer is r-free if it is not divisible by the rth power 
of any prime). 
 
For a positive integer n, a number τwith ( ), 1rnτ = will be called a r-totative of n. Note that 1-totatives of n are 

referred as totatives of n by J.J.Sylvester (see [7], p.124). V.L. Klee [4] has defined the function ( )r nφ  as the number 

of integers m with 1 m n≤ ≤  and ( ), 1rm n = . Note that ( ) ( )1 n nφ φ= , the well-known Euler function; and that 

( )r nφ is the number of r-totatives of n in [ )0,n . Denote the number of r-totatives m of n with m x≤ by ( ),r x nφ . 
 
Here we define the function     
(1.1) ( )

( )

( )
, 1

, 1
m n r

r r
m xn

x n x nφ
=

≤

∆ = −∑ ( ) ( ),r rxn n x nφ φ= −   

Note that ( ) ( )1, : ,x n x n∆ = ∆  was studied by Codeca and Nair [1].  In this paper we present some proerties of 
(1.1) and the results involving this function in seciton 3.  
 
2. PRELIMINARIES 

 
The r-analogue of the Mobius function, ( )r nµ , is defined (see [4]) by 

(2.1) ( ) ( ) 1 2

1 1

1 ... '
0

t r r r
r t i

if n

n if n p p p where p s are distinct primes
otherwise

µ

=


= − =



  

and showed that it is multiplicative. V.L.Klee [4] has proved that 

(2.2) ( ) ( )
| |

r r r
d n n

n nn d
d δ

φ µ µ δ
δ
 = =  
 

∑ ∑   
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Since ( ),r x nφ  is the number of r-totatives m of n with m x≤ , it is easy to show that  

(2.3) ( ) ( )
| |

,r r r
d n n

x n xx n d
d nδ

δφ µ µ
δ

     = =          
∑ ∑   

where [y] is the greatest integer not exceeding y.  
 
(2.4) Suppose for a given n let ( )r rN N n=  is the rth power of the maximal square free divisor of n.  Then note that 

( ) ( ), 1 , 1rr r
a n a N= ⇔ = . Hence we may assume, without loss to generality, that n itself is an rth power of a 

squarefree number m, say rn m= . In all that follows n is always of this form. 
 
Note that  
 
(2.5) ( ),r x n∆ is periodic in x with period 1. 
 
(2.6) Let ( )1 21 ... 1

r na a a nφ= < < < = −  be the ( )r nφ  r-totatives of n in the interval [ )1,n . We write 

0oa = and ( ) 1r na nφ + = . Then ( ) 1ri n in a aφ − +− = and [ ]0,1ia
n
∈ for ( ) 10

r ni aφ +≤ ≤ . If ia ’s are defined as in (2.6) 

we observe that  
 

(2.7) 
( ), ri

r i

na n i a
n n

φ ∆ = − 
 

 for ( )0 ri nφ≤ ≤  

 

(2.8) ( ) ( ), ,i i
r r r

a ax n n x n
n n

φ   ∆ = ∆ − −   
   

 which imply that ( ),r x n∆  is a piecewise linear function of x 

with each line segment in 1,i ia a
n n

+ 
 

 having the gradient ( )r nφ− . 

 
3. MAIN RESULTS 

 
3.1 Lemma: ( ) ( ) ( ){ }

|
,r r r

d n
x n n d xdµ µ∆ = − ∑  

Proof: By (1.1), (2.3) and (2.2) we get 

( ) ( )
|

,r r
d n

xn xnx n d
d d

µ   ∆ = −    
∑  

         ( )
|

r
d n

xnd
d

µ  = −  
 

∑ { }
|

r
d n

n xd
d

µ  = −  
 

∑  

where {y} denotes the fractional part of y. Since the contribution of divisiors d of n to the sum on the right is non-zero 
if and only if d is the rth power of square free integer, so that  

( ) ( )
( ) { }

|
, r

r
d n r

n
x n xd

d
µ
µ

∆ =∑ ( ) ( ){ }
|

r r
d n

n d xdµ µ= − ∑ , 

proving the Lemma. 
 
As a consequence of Lemma 3.1, we have the identity: 

(3.2) If | np / , ( ) ( ) ( ), , ,r r
r r rx n p xp n x n∆ = ∆ −∆  

 
It is easy to see that  

(3.3) ( ) ( ) ( ) { }
|

1,
2r r r

d n
x n n d xdµ µ  ∆ = − − 

 
∑  
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Theorem A: If ( ), 1
r

n =   then ( )
1

0
, ,r r

n

u n n u n
−

=

+ ∆ = ∆ 
 

∑




 

 
Proof: By (3.3) we have  

( ) ( )
1 1

0 | 0

1,
2r r

n d n n

u n ud nn n dµ µ
− −

= =

+     = − + −        
∑ ∑ ∑
 

  

 

             ( ) ( ) { }
|

1
2r r

d n
n d udµ µ  = − − 

 
∑ , 

Since, 
1

0

1
2n

ud n−

=

  + −    
∑


 

{ } 1
2

ud= − , by a result of Landau ([5], p.170), we get   

( )
1

0
, ,r r

n

u n n u n
−

=

+ ∆ = ∆ 
 

∑




, 

proving the theorem.     
  

Theorem B: ( ) ( ) ( )1
2

0

1, 2
12

n r
r

n
x n dx

n
ω φ

∆ =∫  

 
Proof: By (3.3) we have 

( ) ( ) ( ) { } { }
1

|2

1 1
2

1 2 1 2
|0 0

1 1,
2 2

d n

r r r
d n

x n dx d d xd xd dxµ µ   ∆ = − −  
  

∑∫ ∫  

 
Now using the result of Franel [3], namely 

{ } { }
1

1 2
0

1 1
2 2

xd xd dx  − −  
  ∫  

( )2

1 2

1 2

,1
12

d d
d d

=  

 
it follows that  

(3.4) ( ) ( ) ( ) ( )
1

|2

2
1

1 22
1 2

| 1 20

,1,
12

d n

r r r
d n

d d
x n dx d d

d d
µ µ∆ = ∑∫  

 

Let ( )1 2,D d d=  so that 1 1d Dδ= , 2 2d Dδ=  and ( )1 2, 1δ δ = ,  Then (3.4) gives 

( ) ( )
1 2

1
1 22

| 1 20 |

1,
12

r
r

ND n
D

x n dx
δ δ

µ δ δ

δ δ
∆ = ∑ ∑∫

( ) ( )
| |

1
12

r r

ND n
D

δ

µ δ τ δ
δ

= ∑ ∑  

 

(3.5) ( ) ( )
1

2

0

1,
12r x n dx g n∆ =∫ ,   

where ( )
|D n

ng n f
D

 =  
 

∑  in which ( ) ( ) ( )
|

r r

d m

d d
f m

d
µ τ

=∑ , 

clearly ( )f m  is a multiplicative arithmetic function and ( ) 11r
rf p

p
= − .  

Therefore ( ) ( ) ( )1r rg p f p f= +
12 1 rp

 
= − 

 

( )
2

r
r

r

p
p

φ
= . 
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Again since ( )g n  is multiplicative, it gives that ( ) ( ) ( )2 n r n
g n

n
ω φ

= . 

Hence ( ) ( ) ( )1
2

0

1, 2
12

n r
r

n
x n dx

n
ω φ

∆ =∫ , 

 
proving the theorem.  
 
We need the following Lemma proved in [1] (Corollary. p.347) for our next result: 

3.6 Lemma: Let 1 2 3 ...α α α α< < < <


 be the points in ( )0,1  such that they are symmetric about 
1
2

 and if   

( ) 1
xi

i
s x x

α ≤

= −∑   then ( ) ( )
1

2 2

1 0

1 1
6i

i
s s x dxα

=

= +∑ ∫




.  

 
Theorem C: For 1n >  and if ( )1 2 ...

r na a aφ< < < are the r-totatives of n then  

( )
( )

( ) ( )2

1

1 1 1, 2
12 6

r n
n ri

r
ir

na n
n n n

φ
ω φ

φ =

 ∆ = + 
 

∑  

 

Proof: Since ( ) ( ), 1 , 1
r r

n n nτ τ= ⇔ − = , the intervals 0,
2
n 
 

 and ,
2
n n 

 
 have the same number of 

r-totatives, it follows that the numbers ia
n

 are symmetrically distributed about 
1
2

 in ( )0,1 . Taking i
i

a
n

α =  for 

( )1 ri nφ≤ ≤  in Lemma 3.6 and noting ,i i
r

a as n
n n

   = ∆   
   

, we get 

( )
( )

( )
1

2 2

1 0

1 1, ,
6

r n
i

r r
ir

a n x n dx
n n

φ

φ =

 ∆ = ∆ + 
 

∑ ∫ . 

 
Using Thereom B, we have 

( )
( )

( ) ( )2

1

1 1 1, 2
12 6

r n
n ri

r
ir

na n
n n n

φ
ω φ

φ =

 ∆ = + 
 

∑  

proving the theorem. 
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