International Journal of Mathematical Archive-6(9), 2015, 32-36 MA Available online through www.ijma.info ISSN 2229 - 5046

ON $\hat{\mu}\beta$ - CLOSED SET IN BITOPOLOGICAL SPACES

J. SUBASHINI* Department of Mathematics, RVS College of Arts & Science, Sulur, Coimbatore, India.

K. INDIRANI

Nirmala College for women, Red fields, Coimbatore, India.

(Received On: 19-08-15; Revised & Accepted On: 19-09-15)

ABSTRACT

T he aim of this paper is to introduce the concept of $\tau_1 \tau_2 \hat{\mu} \beta$ closed and open sets and study their basic properties in bitopological spaces.

Keywords: $\tau_1 \tau_2 \hat{\mu} \beta$ closed sets, $\tau_1 \tau_2 \hat{\mu} \beta$ open sets.

1. INTRODUCTION

A triple (X, τ_1 , τ_2) where X is a non-empty set τ_1 and τ_2 are topologies on X is called a bitopological space. Kelly [10] initiated the study of such spaces. In 1985, Fukutake [5] introduced the concepts of g-closed sets in bitopological spaces and after that several authors turned their attention towards generalization of various concepts of topology by considering bitopological spaces. Andrijevic.D[1], Levin[12], Nagaveni[16], K.Balachandran and Arokiarani[3], Gnanambal[7], Mashour.A.S[15] and Maki[14] introduced the concepts of semi open sets, weakly closed sets, generalized preclosed sets, pre regular closed sets, pre closed sets and α closed sets respectively. S.Pious Missier and E.Sucila [8] introduced $\hat{\mu}$ closed set. In this paper we introduce the notion of $\tau_1 \tau_2 \hat{\mu} \beta$ closed set and their properties.

2. PRELIMINARIES

Definition 2.1: Let A be a subset of X, then A is called $\tau_1 \tau_2$ open [18, 19, 2] if A = A₁UB₁, where A₁ is τ_1 and B₁ is τ_2 .

Definition 2.2: $\tau_1 \tau_2$ regularopen [4] in X if $A = \tau_1 int[\tau_2 cl(A)]$

Definition 2.3: $\tau_1 \tau_2$ pre open [9] in X if A $\subseteq \tau_1$ int[τ_2 cl(A)]

Definition 2.4: $\tau_1 \tau_2$ semi open [13] in X if A $\subseteq \tau_1$ cl[τ_2 int(A)]

Definition 2.5: $\tau_1 \tau_2 \beta$ open [9] in X if A $\subseteq \tau_1 cl[\tau_2 int(\tau_1 cl(A))]$, whenever A $\subseteq U$ and U is open in τ_1 .

Definition 2.6: $\tau_1\tau_2$ g closed [5] in X, if τ_2 cl(A) \subseteq U whenever A \subseteq U and U is open in τ_1 .

Definition 2.7: $\tau_1 \tau_2 w$ closed [6] in X, if $\tau_2 cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in τ_1 .

Definition 2.8: $\tau_1\tau_2g^*$ closed [20] in X, if $\tau_2cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in τ_1 .

Definition 2.9: $\tau_1 \tau_2$ sg closed [17] in X, if τ_2 scl(A) \subseteq U whenever A \subseteq U and U is semi open in τ_1 .

Definition 2.10: $\tau_1\tau_2\alpha g$ closed [17] in X, if $\tau_2\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_1 .

Definition 2.11: $\tau_1\tau_2$ gp closed [17] in X, if τ_2 pcl(A) \subseteq U whenever A \subseteq U and U is open in τ_1 .

Definition 2.12: $\tau_1 \tau_2$ gsp closed [17] in X, if τ_2 spcl(A) \subseteq U whenever A \subseteq U and U is open in τ_1 .

J. Subashini*, K. Indirani / On $\hat{\mu}$ 6 closed set in Bitopological Spaces / Shrinking Sheet in Porous Media / IJMA- 6(9), Sept.-2015.

Definition 2.13: $\tau_1 \tau_2$ gpr closed [17] in X, if τ_2 pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_1 .

Definition 2.14: $\tau_1 \tau_2 \mu$ closed [17] in X, if $\tau_2 cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ open in τ_1 .

Definition 2.15: $\tau_1 \tau_2 g$ closed [17] in X, if $\tau_2 cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in τ_1 .

3. On $\tau_1 \tau_2 \hat{\mu} \beta$ closed set

Definition3.1: A set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2 \hat{\mu}\beta$ closed set in X if $\tau_2 \hat{\mu} cl(A) \subseteq U$ whenever A \subseteq U and U is $\tau_1\beta$ open in X.

Theorem 3.2: Every τ_2 closed set in (X, τ_1, τ_2) is $\tau_1 \tau_2 \hat{\mu}\beta$ closed set but not conversely.

Proof: Assume that A is τ_2 closed and whenever A \subseteq U and U is $\tau_1 \beta$ open. Every τ_2 closed set is $\tau_2 \hat{\mu}$ closed. Therefore $\tau_2 cl(A) \subseteq \tau_2 \hat{\mu} cl(A) \subseteq U$. Therefore $\tau_2 \hat{\mu} cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 \beta$ open. Hence A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed.

Example 3.3: Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{a, d\}$ is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2$ closed.

Theorem 3.4: Every $\tau_1 \tau_2$ regular closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not conversely.

Proof: Let A be a $\tau_1\tau_2$ regular closed set. Every $\tau_1\tau_2$ regular closed set is $\tau_1\tau_2$ closed. By theorem 3.2, A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed.

Example 3.5: Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{d\}$ is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2$ regular closed.

Theorem 3.6: Every $\tau_1 \tau_2$ g closed set is $\tau_1 \tau_2 \hat{\mu}\beta$ closed but not conversely.

Proof: Let A be a $\tau_1 \tau_2$ g closed set. Every $\tau_1 \tau_2$ g closed set is $\tau_1 \tau_2$ closed. By theorem 3.2, A is $\tau_1 \tau_2 \hat{\mu}\beta$ closed.

Example 3.7: Let X= {a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{c\}$ is $\tau_1 \tau_2 \hat{\mu}\beta$ closed but not $\tau_1 \tau_2$ g closed.

Theorem 3.8: Every $\tau_1 \tau_2$ gr closed set is $\tau_1 \tau_2 \beta w g^*$ closed.

Proof: Let A be $\tau_1 \tau_2$ gr closed. Every $\tau_1 \tau_2$ gr closed is $\tau_1 \tau_2$ g closed. By theorem 3.6, A is $\tau_1 \tau_2 \hat{\mu}\beta$ closed.

Example 3.9: Let X= {a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{a\}$ is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2$ gr closed.

Theorem 3.10: Every $\tau_1 \tau_2 g^*$ closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not conversely.

Proof: Let A be a $\tau_1\tau_2$ g* closed set. Every $\tau_1\tau_2$ g* closed set is $\tau_1\tau_2$ g closed. By theorem 3.6, A is $\tau_1\tau_2 \hat{\mu}\beta$ closed.

Example 3.11: Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{d\}$ is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2 g^*$ closed.

Theorem 3.12: Every $\tau_1 \tau_2$ w closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not conversely.

Proof: Let A be $\tau_1 \tau_2$ w closed, whenever A \subseteq U and U is τ_1 semi open. Then $\tau_2 cl(A) \subseteq \tau_2 \hat{\mu} cl(A) \subseteq U$. Since every τ_1 semi open set is $\tau_1\beta$ open. Therefore every $\tau_1\tau_2$ w closed set is $\tau_1\tau_2 \hat{\mu}\beta$ closed.

Example 3.13: Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{a, d\}$ is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2$ w closed.

Theorem 3.14: Every $\tau_1 \tau_2 \alpha g$ closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not conversely.

Proof: Let A be $\tau_1 \tau_2 \alpha g$ closed such that $\tau_2 \alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is τ_1 open. Then $\tau_2 \alpha cl(A) \subseteq \tau_2 cl(A) = \tau_2 cl(A) cl(A) = \tau_2 cl(A) c$ $\tau_2\hat{\mu}cl(A) \subseteq U$. Since every τ_1 open set is $\tau_1\beta$ open. Therefore every $\tau_1\tau_2$ ag closed set is $\tau_1\tau_2$ $\hat{\mu}\beta$ closed.

Example 3.15: Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set $\{c\}$ is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2 \alpha \beta$ closed. © 2015, IJMA. All Rights Reserved 2

J. Subashini^{*}, K. Indirani / On $\hat{\mu}\beta$ closed set in Bitopological Spaces / Shrinking Sheet in Porous Media / IJMA- 6(9), Sept.-2015.

Theorem 3.16: Every $\tau_1 \tau_2 sg$ closed set is $\tau_1 \tau_2 \hat{\mu}\beta$ closed but not conversely.

Proof: Let A be $\tau_1\tau_2 sg$ closed such that $\tau_2scl(A) \subseteq U$, whenever $A \subseteq U$ and U is τ_1 semi open. Then $\tau_2scl(A) \subseteq \tau_2cl(A) \subseteq \tau_2\hat{\mu}cl(A) \subseteq U$. Since every τ_1 semi open set is $\tau_1\beta$ open. Therefore every $\tau_1\tau_2$ sg closed set is $\tau_1\tau_2\hat{\mu}\beta$ closed.

Example 3.17:Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set {a, c, d} is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2$ sg closed.

Theorem 3.18: Every $\tau_1 \tau_2 g \alpha$ closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not conversely.

Proof: Let A be $\tau_1\tau_2 \ g\alpha$ closed such that $\tau_2\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $\tau_1 \alpha$ open. Then $\tau_2\alpha cl(A) \subseteq \tau_2 cl(A) \subseteq \tau_2 \hat{\mu} cl(A) \subseteq U$. Since every $\tau_1 \alpha$ open set is $\tau_1 \beta$ open. Therefore every $\tau_1 \tau_2$ ga closed set is $\tau_1 \tau_2 \hat{\mu}\beta$ closed.

Example 3.19: Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$. Then the set {c, d} is $\tau_1 \tau_2 \hat{\mu} \beta$ closed but not $\tau_1 \tau_2$ ga closed.

Theorem 3.20: Every $\tau_1 \tau_2$ gs closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed.

Proof: Let A be $\tau_1\tau_2$ *gs* closed such that $\tau_2scl(A) \subseteq U$, whenever $A \subseteq U$ and U is τ_1 open. Then $\tau_2scl(A) \subseteq \tau_2cl(A) \subseteq \tau_2\hat{\mu}cl(A) \subseteq U$. Since every τ_1 open set is $\tau_1\beta$ open. Therefore every $\tau_1\tau_2$ gs closed set is $\tau_1\tau_2\hat{\mu}\beta$ closed.

Theorem 3.21: Every $\tau_1 \tau_2$ gsp closed set is $\tau_1 \tau_2 \hat{\mu} \beta$ closed.

Proof: Let A be $\tau_1\tau_2$ gsp closed such that τ_2 spcl(A) $\subseteq U$, whenever A $\subseteq U$ and U is τ_1 open. Then τ_2 spcl(A) $\subseteq \tau_2$ cl(A) $\subseteq \tau_2$ $\hat{\mu}$ cl(A) $\subseteq U$. Since every τ_1 open set is $\tau_1\beta$ open. Therefore every $\tau_1\tau_2$ gsp closed set is $\tau_1\tau_2$ $\hat{\mu}\beta$ closed.

Remark 3.22: Every $\tau_1\tau_2 \theta$ closed, $\tau_1\tau_2 \pi$ closed, $\tau_1\tau_2 \delta$ closed set is $\tau_1\tau_2$ closed set. Therefore every $\tau_1\tau_2 \theta$ closedset, $\tau_1\tau_2 \pi$ closed, $\tau_1\tau_2 \beta$ closed set is $\tau_1\tau_2 \beta$ closed.

Theorem 3.23: Let A be a subset of a bitopological space (X, τ_1, τ_2) . If A is $\tau_1 \tau_2 \hat{\mu}\beta$ closed then $\tau_2 \hat{\mu} cl(A)$ -A does not contain non empty $\tau_1\beta$ closed sets.

Proof: Suppose that A is $\tau_1\tau_2 \hat{\mu}\beta$ closed. Let F be a $\tau_1\beta$ closed set such that $F \subseteq \tau_2 \hat{\mu}cl(A)$ -A. Since $F \subseteq \tau_2 \hat{\mu}cl(A)$ -A, we have $F \subseteq \tau_2 \hat{\mu}cl(A)$ -A $\cap A^c$. Consequently $F \subseteq A^c$, we have $A \subseteq F^c$. since F is $\tau_1\beta$ closed set, we have F^c is $\tau_1\beta$ open. Since A is $\tau_1\tau_2\hat{\mu}\beta$ closed. We have $\tau_2\hat{\mu}cl(A) \subseteq F^c$. Thus $F \subseteq [\tau_2\hat{\mu}cl(A)-A]^c = X - [\tau_2\hat{\mu}cl(A)]$. Hence $F \subseteq \varphi$. But $\varphi \subseteq F$. Therefore $F = \varphi$.

Theorem 3.24: Let A be a τ_1 open set in (X, τ_1, τ_2) and U be $\tau_1\beta$ open in A. Then U=A∩W for some $\tau_1\beta$ open set W in X.

Proof: Let A be a τ_1 open set in (X, τ_1, τ_2) and let U be $\tau_1\beta$ open in X. Since U is $\tau_1\beta$ open in A, we have U = $\tau_1 cl[\tau_2 int(\tau_1 cl(U))]$

- $= \tau_1 cl[A \cap \tau_2 int(\tau_1 cl(U))]$
- $= \tau_1 c_1[x_1 + \tau_2 in(\tau_1 c_1(U))]$ = A \(\begin{aligned}
 = A \(\begin{aligned}
 = A \(\text{tr}_1 cl(A) \(\text{tr}_1 cl(U)))]\) = A \(\begin{aligned}
 = A \(\text{tr}_1 cl(\text{tr}_2 int(\text{tr}_1 cl(U)))]\) = A \(\text{tr}_1 cl(\text{tr}_2 int(\text{tr}_1 cl(A)))]\) = A \(\text{tr}_1 cl(\text{tr}_2 int(\text{tr}_1 cl(A)))]\) = A \(\text{tr}_1 cl(\text{tr}_2 int(\text{tr}_1 cl(A)))]\) = A \(\text{tr}_2 int(\text{tr}_1 cl(A)))\) = A \((\text{tr}_2 int(\text{tr}_2 int(\text{tr}_1 cl(A)))\) = A \((\text{tr}_2 int(\text{tr}_2 i

Remark 3.25: If A is τ_1 open and U is $\tau_1 \beta$ open in X then U \cap A is $\tau_1 \beta$ open in A.

Theorem 3.26: If $X \in \tau_2 \hat{\mu} cl(A)$ if and only if $U \cap A \neq \varphi$ for every $\tau_1 \beta$ open set U containing X.

Proof: Let $X \in \tau_2 \hat{\mu} cl(A)$. Suppose that there exist a $\tau_1 \beta$ open set U containing X such that $U \cap A = \varphi$. Then $A \subseteq U^c$ and U^c is $\tau_1 \beta$ closed set. Since $A \subseteq U^c$, $\tau_2 \hat{\mu} cl(A) \subseteq \tau_2 \hat{\mu} cl(U^c)$. Since $X \in \tau_2 \hat{\mu} cl(A)$ we have $X \in \tau_2 \hat{\mu} cl(U^c)$, since U^c is $\tau_1 \beta$ closed set $\Rightarrow X \in U^c$. Hence $X \notin U$, which is a contradiction that $X \in U$. Therefore $U \cap A \neq \varphi$. Hence $U \cap A \neq \varphi$ for every $\tau_1 \beta$ open set U containing X. Suppose that $X \notin \tau_2 \hat{\mu} cl(A)$, then there exists a $\tau_1 \beta$ open set U containing X such that $U \cap A = \varphi$. This is contradiction to $U \cap A \neq \varphi$. Hence $X \notin \tau_2 \hat{\mu} cl(A)$, then

J. Subashini*, K. Indirani / On $\hat{\mu}$ B closed set in Bitopological Spaces / Shrinking Sheet in Porous Media / IJMA- 6(9), Sept.-2015.

Theorem 3.27: If A is $\tau_1\beta$ open in (X, τ_1, τ_2) then $A \cap \tau_2 \hat{\mu} cl(A) \subseteq \tau_2 \hat{\mu} cl(B)$ for any subset B of A.

Proof: Let A be $\tau_1 \beta$ open in (X, τ_1, τ_2) . Let $B \subseteq A$ and $x \in A \cap \tau_2 \hat{\mu} cl(B)$. Then $x \in \tau_2 \hat{\mu} cl(B)$. Let U be a $\tau_1 \beta$ open subset of A such that $X \in U$. By theorem 3.24, there exists a $\tau_1 \beta$ open subset W of X such that $U = A \cap W$. Since $X \in U$, we have $X \in A \cap W$. Hence $X \in A$ and $X \in W$.since $X \in \tau_2 \hat{\mu} cl(B)$ and W is $\tau_1 \beta$ open subset in X, we have $W \cap B \neq \varphi$. Now $U \cap B = (A \cap W) \cap B = W \cap (A \cap B) = W \cap B \neq \varphi$. Hence $U \cap B \neq \varphi$ for any $\tau_1 \beta$ open subset U of A such that $X \in U$. Therefore $X \in \tau_2 \hat{\mu} cl(B)$. Hence $A \cap \tau_2 \hat{\mu} cl(B) \subseteq \tau_2 \hat{\mu} cl(B)$ for any subset B of A.

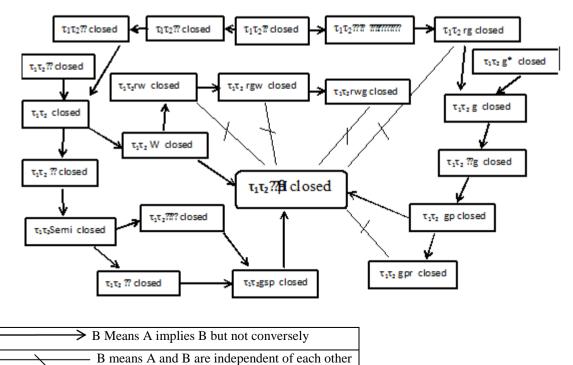
Theorem 3.28: Let A and B be subsets such that $A \subseteq B \subseteq \tau_2 \hat{\mu} cl(A)$. If A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed, then B is $\tau_1 \tau_2 \hat{\mu} \beta$ closed.

Proof: Let A and B subsets such that $A \subseteq B \subseteq \tau_2 \hat{\mu} cl(B)$. Suppose that A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed. Let $B \subseteq U$ and U is $\tau_1 \beta$ open in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Hence $A \subseteq U$ and U is $\tau_1 \beta$ open in X. Since A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed we have $\tau_2 \hat{\mu} cl(A) \subseteq U$. Since $B \subseteq \tau_2 \hat{\mu} cl(A) \Rightarrow \tau_2 \hat{\mu} cl(B) \subseteq \tau_2 \hat{\mu} cl(A) = \tau_2 \hat{\mu} cl(A) \subseteq U$. Hence $\tau_2 \hat{\mu} cl(B) \subseteq U$. Therefore B is $\tau_1 \tau_2 \hat{\mu}$ closed.

Example 3.29: The figure is justified with the following examples.

Let X={a, b, c, d} be a bitopological space with topologies $\tau_1 = \{\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X, \emptyset\}$ and $\tau_2 = \{\{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X, \emptyset\}$.

- 1. $\tau_1\tau_2$ closed sets in X are X, \emptyset , {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}
- 2. $\tau_1 \tau_2 \hat{\mu} \beta$ closed sets in X are X, $\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{a, b\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}$
- 3. $\tau_1 \tau_2$ regular closed sets in X are X, \emptyset , {c, d}, {a, c, d}
- 4. $\tau_1 \tau_2$ gr closed sets in X are X, Ø, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}
- 5. $\tau_1 \tau_2$ g* closed sets in X are X, Ø, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}
- 6. $\tau_1 \tau_2$ g closed sets in X are X, $\emptyset, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$
- 7. $\tau_1 \tau_2 \alpha$ closed sets in X are X, \emptyset , {a}, {b}, {a, b}, {a, b, c}
- 8. $\tau_1 \tau_2$ semi closed sets in X are X, \emptyset , {b}, {d}, {a, b}, {b, c}, {b, d}, {a, b, d}, {b, c, d}
- 9. $\tau_1 \tau_2$ w closed sets in X are X, Ø, {d}, {b, d}, {a, b, d}, {b, c, d}
- 10. $\tau_1\tau_2$ sg closed sets in X are X, \emptyset , {a} {b}, {c}, {d}, {a, b}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}
- 11. $\tau_1\tau_2\beta$ closed sets in X are X, \emptyset , {b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}
- 12. $\tau_1\tau_2$ pre closed sets in X are X, \emptyset , {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, c, d}
- 13. $\tau_1 \tau_2$ swg closed sets in X are X, \emptyset , {b}, {d}, {b, d}, {c, d}, {a, c, d}
- 14. $\tau_1 \tau_2$ g α closed sets in X are X, \emptyset , {b}, {d}, {b, c}, {b, d}, {b, c, d}
- 15. $\tau_1\tau_2$ ga* closed sets in X are X, \emptyset , {b}, {d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}
- 16. $\tau_1 \tau_2 \mu$ closed sets in X are X, \emptyset , {d}, {a, d}, {b, d}, {c, d}, {a, c, d}, {a, c, d}, {b, c, d}
- 17. $\tau_1 \tau_2$ gs closed sets in X are X, \emptyset , {a}, {b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}
- 18. $\tau_1 \tau_2 \alpha g$ closed sets in X are X, \emptyset , {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}
- 19. $\tau_1\tau_2$ gsp closed sets in X are X, \emptyset , {a}, {b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}



Α

A

J. Subashini^{*}, K. Indirani / On $\hat{\mu}$ 6 closed set in Bitopological Spaces / Shrinking Sheet in Porous Media / IJMA- 6(9), Sept.-2015.

4. On $\tau_1 \tau_2 \hat{\mu} \beta$ open set

Definition 4.1: A subset A of a bitopological (X, τ_1, τ_2) is called $\tau_1 \tau_2 \hat{\mu} \beta$ open in X if its complement is $\tau_1 \tau_2 \hat{\mu} \beta$ closed in X.

Theorem 4.2: A subset A of a bitopological space (X, τ_1, τ_2) is $\tau_1 \tau_2 \hat{\mu}\beta$ open if and only if $F \subseteq \tau_2 \hat{\mu}$ int(A) whenever $F \subseteq A$ and F is $\tau_1 \tau_2 \beta$ closed in X.

Proof: Suppose that A is $\tau_1 \tau_2 \hat{\mu}\beta$ open. Let $A \subseteq F$ and F is $\tau_1 \beta$ closed in X. Then $A^c \subseteq F^c$ and F^c is $\tau_1\beta$ open in X. Since A is $\tau_1 \tau_2 \hat{\mu}\beta$ open, we have A^c is $\tau_1 \tau_2 \hat{\mu}\beta$ closed. Hence $\tau_2\hat{\mu}cl(A^c) \subseteq F^c$. Consequently, $[\tau_2\hat{\mu}int(A)]^c \subseteq F^c$. Therefore $F \subseteq \tau_2\hat{\mu}int(A)$.Conversely, suppose that $F \subseteq \tau_2\hat{\mu}int(A)$ whenever $F \subseteq A$ and F is $\tau_1\beta$ closed in X. Let $A^c \subseteq U$ and U is $\tau_1\beta$ open in X. Then $U^c \subseteq A$ and U^c is $\tau_1\beta$ closed in X. By our assumption we have $U^c \subseteq \tau_2\hat{\mu}int(A)$.Hence $[\tau_2\hat{\mu}int(A)]^c \subseteq U$. Therefore $\tau_2\hat{\mu}cl(A^c) \subseteq U$. Consequently A^c is $\tau_1\tau_2\hat{\mu}\beta$ closed. Hence A is $\tau_1\tau_2\hat{\mu}\beta$ open.

Theorem 4.3: Let A and B be subsets such that $\tau_2 \hat{\mu}$ int(A) $\subseteq B \subseteq A$. If A is $\tau_1 \tau_2 \hat{\mu} \beta$ open, then B is $\tau_1 \tau_2 \hat{\mu} \beta$ open.

Proof: Suppose that A and B are subsets such that $\tau_2\hat{\mu}int(A) \subseteq B \subseteq A$. Let A be $\tau_1\tau_2 \hat{\mu}\beta$ open. Let $F \subseteq B$ and F is $\tau_1 \beta$ closed in X. Since $F \subseteq A$. Therefore $F \subseteq \tau_2\hat{\mu}int(A)$. Since $\tau_2\hat{\mu}int(A) \subseteq B$, we have $\tau_2\hat{\mu}int[\tau_2\hat{\mu}int(A)] \subseteq \tau_2\hat{\mu}int(B) \Rightarrow \tau_2\hat{\mu}int(B) \Rightarrow F \subseteq \tau_2\hat{\mu}int(B) \Rightarrow B$ is $\tau_1\tau_2\hat{\mu}\beta$ open.

Theorem 4.4: If a subset A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed then $\tau_2 \hat{\mu} cl(A)$ -A is $\tau_1 \tau_2 \hat{\mu} \beta$ open.

Proof: Suppose that A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed. Let $F \subseteq \tau_2 \hat{\mu} cl(A)$ -A and F is $\tau_1 \beta$ closed. Since A is $\tau_1 \tau_2 \hat{\mu} \beta$ closed, we have $\tau_2 \hat{\mu} cl(A)$ -A does not contain non empty $\tau_1 \beta$ closed. By theorem 3.23,

 $F = \varphi \Rightarrow \varphi \subseteq \tau_2 \hat{\mu} cl(A) - A \Rightarrow \tau_2 \hat{\mu} int(\varphi) \subseteq \tau_2 \hat{\mu} int[\tau_2 \hat{\mu} cl(A) - A] \Rightarrow F \subseteq \tau_2 \hat{\mu} int[\tau_2 \hat{\mu} cl(A) - A].$ Therefore $\tau_2 \hat{\mu} cl(A) - A$ is $\tau_1 \tau_2 \hat{\mu} \beta$ open.

REFERENCES

- 1. Andrijevic.D, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32
- 2. Antony Rex Rodrigo. J, Ravi.O, Pandi.A, Santhana.C.M., On (1, 2)*-s-Normal spaces and Pre-(1, 2)*-gs closed functions, Int. J. of Algorithms, Computing and Mathematics, Vol.4, No 1, Feb 2011, 29-42.
- 3. Balachandran.K and Arokiarani.I, On generalized pre closed sets (pre print).
- 4. Bose.S, Sinha.D., Almost open, almost closed, -continuous and almost compact mappings in bitopological spaces. Bull. Calcutta Math. Soc. 73(1981), 345-354.
- 5. Fukutake.T., On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ.Ed.Part III, 35(1986), 19-28.
- 6. Futake.T, Sundaram.P, and Sheik John.M., 2002, -closed sets, -open sets and -continuity in bitopological spaces Bull.Fukuoka Univ.Ed.Vol.51.Part III 1-9.
- 7. Gnanambal.Y, On generalized pre-regular closed sets in topological spaces, indian J.Pune and appl.Math., 28(3),351-360,March 1997.
- 8. Indira.T, $\tau_1 \tau_2$ -[#]g closed sets in bitopological spaces, Annals of pure and Applied Mathematics, Vol-7, No-2 (2014), 27-34.
- 9. Jelic.M., A decomposition of pairwise continuity, J.Inst.Math.Comp.Sci., 3, 25-29(1990).
- 10. Jelic.M., Feebly p-continuous mappings.V International Meeting on Topology in Italy(Itaian) (Lecce, 1990/ Otranto, 1990).Rend.Cire.Mat.Palermo(2) Suppl.No.24(1990),387-395.
- 11. Kelly.J.C., Bitopological spaces, Proc.London.Math.Soc.13(1963)71-89.
- 12. Levine.N, generalized closed sets in topology, Rend.circ.at.Palermo, 19(1970), 89-96.
- 13. Maheswari.S.N and Prasad.R., Semi open sets and semi continuous functions in bitopological spaces. Math Notae, 26, (1977/78), 29-37.
- 14. Maki.H, Devi.R and Balachandran.K, Associated topologies of generalized α closed sets d α –generalized closed sets., Mem.Sci.Kochi.Univ.Ser.Math.,15(1994),51-63.
- 15. Mashour.A.S,Abd El-monsef and El.Deep.S.N, On Pre continuous and weak pre continuous mappings, Proc.Math.Phys.Soc. Egypt 31(1981), 47-53.
- 16. Nagaveni.N, Studies on generalizations of homeomorphisms in topological spaces, Ph.D Thesis, Bharathiar University, 1999.
- 17. S.Pious Missier and E.Sucila, On $\hat{\mu}$ closed sets in Topological spaces, IJMA 4(3)(2013), 309-315.
- 18. Ravi.O, Pious Missier.S, SalaiParkunan.T and Pandi.A., Remarks on (1,2)* rw homomorphisms, IJMA-2(4), Apr 2011, Pages 465-475.
- 19. Ravi.O and LellisThivagar., A bitopological (1,2)* semi generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2),29(1)(2006), 79-88.
- 20. Sheikjohn.M and Sundaram.P., g* closed sets in bitopological spaces, Indian J. Pure. Appl. Math, 35(1), 71-80 (2004).

Source of support: Nil, Conflict of interest: None Declared