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ABSTRACT 
In this paper we introduce the concept of 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed sets and investigate some of its properties in topological 
spaces. We also define 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuity and some of its fundamental properties are given. 
 
Key words: 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set, 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous map. 
 
 
1. INTRODUCTION 
 
In 1970, Levine [12] introduced the concept of generalized closed set in topological spaces. Biswas [6] defined semi 
closed sets. Crossley and Hildebrand [7] defined semi closure of a set.  Abd El-Monsef, El-Deeb and Mahmoud [2] 
introduced the concept of 𝛽𝛽 open sets and 𝛽𝛽 continuous mappings. Sundaram and Sheik John [22] introduced the 
concept of weakly closed set. Veerakumar [23] introduced 𝑔𝑔∗closed sets. Dhanapakyam, Subashini and Indirani [9] 
introduced the concept of 𝛽𝛽𝛽𝛽𝑔𝑔∗ closed set in topological spaces. In this paper we define a 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set and 
𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuity. We also study their fundamental properties. 
 
2. PRELIMINARIES 
 
Definition: 2.1 A subset 𝐴𝐴 of 𝑋𝑋 is called generalized closed (briefly 𝑔𝑔-closed) [12] set if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 
and 𝑈𝑈 is open. 
 
Definition: 2.2 A subset 𝐴𝐴 of 𝑋𝑋 is called regular open (briefly 𝑟𝑟-open) [21] set if 𝐴𝐴 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝐴𝐴)) and regular closed 
(briefly 𝑟𝑟-closed) [21] set if  𝐴𝐴 = 𝑐𝑐𝑐𝑐�𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)�. 
 
Definition: 2.3 A subset 𝐴𝐴 of 𝑋𝑋 is called semi open [13] set if 𝐴𝐴 ⊆ 𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))and semi closed [6] set if       
𝑖𝑖𝑖𝑖𝑖𝑖�𝑐𝑐𝑐𝑐(𝐴𝐴)� ⊆ 𝐴𝐴.                                                                                                    
 
Definition: 2.4 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝛼𝛼-open [19] set if 𝐴𝐴 ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))) and 𝛼𝛼-closed [15] set if  
𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝐴𝐴))) ⊆ 𝐴𝐴. 
 
Definition: 2.5 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝛽𝛽-open [2] set if 𝐴𝐴 ⊆ 𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝐴𝐴))) and 𝛽𝛽-closed [11] set if  
𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))) ⊆ 𝐴𝐴. 
 
Definition: 2.6 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝜃𝜃-closed [24] set if 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝜃𝜃 (𝐴𝐴)  
where 𝑐𝑐𝑐𝑐𝜃𝜃 (𝐴𝐴) = {𝑥𝑥 ∈ 𝑋𝑋|𝑐𝑐𝑐𝑐(𝑈𝑈) ∩ 𝐴𝐴 ≠ ∅,𝑈𝑈 ∈ 𝜏𝜏, 𝑥𝑥 ∈ 𝑈𝑈}. 
 
Definition: 2.7 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝛿𝛿-closed [24] set if 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝛿𝛿(𝐴𝐴)  
where 𝑐𝑐𝑐𝑐𝛿𝛿 (𝐴𝐴) = {𝑥𝑥 ∈ 𝑋𝑋|𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝑈𝑈)) ∩ 𝐴𝐴 ≠ ∅,𝑈𝑈 ∈ 𝜏𝜏, 𝑥𝑥 ∈ 𝑈𝑈}. 
 
Definition: 2.8 A subset 𝐴𝐴 of 𝑋𝑋 is called Generalized 𝛼𝛼- closed (briefly 𝑔𝑔𝛼𝛼-closed) [15] if 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 
𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛼𝛼-open in 𝑋𝑋. 
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Definition: 2.9 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝛼𝛼-generalized closed (briefly 𝛼𝛼𝑔𝑔-closed) [16] if 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 
and 𝑈𝑈 is open in 𝑋𝑋. 
 
Definition: 2.10 A subset 𝐴𝐴 of 𝑋𝑋 is called strongly generalized closed (briefly 𝑔𝑔∗-closed) [18] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 
𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝑔𝑔-open in 𝑋𝑋. 
 
Definition: 2.11 A subset 𝐴𝐴 of 𝑋𝑋 is called weakly closed (briefly 𝛽𝛽-closed) [22] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 
is semi open in 𝑋𝑋. 
 
Definition: 2.12 A subset 𝐴𝐴 of 𝑋𝑋 is called weakly generalized closed (briefly 𝛽𝛽𝑔𝑔-closed) [18] if 𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) ⊆ 𝑈𝑈 
whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in 𝑋𝑋. 
 
Definition: 2.13 A subset 𝐴𝐴 of 𝑋𝑋 is called Generalized regular closed (briefly 𝑔𝑔𝑟𝑟-closed) [20] if 𝑟𝑟𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 
𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in 𝑋𝑋. 
 
Definition: 2.14 A subset 𝐴𝐴 of 𝑋𝑋 is called Regular generalized closed (briefly 𝑟𝑟𝑔𝑔-closed) [20] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 
𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is regular open in 𝑋𝑋. 
 
Definition: 2.15 A subset 𝐴𝐴 of 𝑋𝑋 is called Regular weakly closed (briefly 𝑟𝑟𝛽𝛽-closed) [4] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 
and 𝑈𝑈 is regular semi open in 𝑋𝑋. 
 
Definition: 2.16 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝛽𝛽𝛽𝛽𝑔𝑔∗closed set [9] if 𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽 -open in 𝑋𝑋. 
 
Definition: 2.17 A subset 𝐴𝐴 of 𝑋𝑋 is called Generalized pre regular closed (briefly𝑔𝑔𝑔𝑔𝑟𝑟-closed) [11] if 𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  
whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is regular open in 𝑋𝑋. 
 
Definition: 2.18 A subset 𝐴𝐴 of 𝑋𝑋 is called Generalized semi pre closed (briefly𝑔𝑔𝑠𝑠𝑔𝑔-closed) [10] if 𝑠𝑠𝑔𝑔𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  
whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in 𝑋𝑋. 
 
Definition: 2.19 A subset 𝐴𝐴 of 𝑋𝑋 is called 𝛽𝛽𝛼𝛼 closed [5] if 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽 open in 𝑋𝑋. 
 
3. ON (𝜷𝜷𝜷𝜷𝒈𝒈∗𝒔𝒔)  CLOSED SET 
 
Definition: 3.1 A subset 𝐴𝐴 of a topological space (𝑋𝑋, 𝜏𝜏) is called Semi pre closed weakly generalized star semi closed 
(briefly 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠-closed) if 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open in 𝑋𝑋. 
 
Theorem: 3.2 Every closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
Proof: Let 𝐴𝐴 be a closed set in 𝑋𝑋 such that 𝐴𝐴 ⊆ 𝑈𝑈 where 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Since 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴. Therefore 
𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. Hence 𝐴𝐴 is a 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
The converse of above theorem need not be true. 
 
Example: 3.3 Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not closed. 
 
Remark: 3.4 Every 𝜃𝜃-closed, 𝜋𝜋-closed, 𝛿𝛿-closed set is closed. Therefore every 𝜃𝜃-closed,𝜋𝜋-closed, 𝛿𝛿-closed set is 
𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Theorem: 3.5 Every regular closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Proof: Let 𝐴𝐴 be a regular closed set such that 𝐴𝐴 ⊆ 𝑈𝑈 where 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗open. Every regular closed set is closed. By 
theorem 3.2, every regular closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
The converse of above theorem need not be true. 
 
Example: 3.6 Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑏𝑏, 𝑐𝑐} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set but not 
regular closed. 
 
Theorem: 3.7 Every semi closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. 
 
Proof: Let 𝐴𝐴 be a semi closed set such that 𝐴𝐴 ⊆ 𝑈𝑈 where 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗open. Since 𝐴𝐴 is semi closed. 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴. 
Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
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The converse of above theorem need not be true. 
 
Example: 3.8 Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑};  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎, 𝑐𝑐,𝑑𝑑} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set but not 
semi closed. 
 
Theorem: 3.9 Every 𝛼𝛼 closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Proof: Let 𝐴𝐴 be a 𝛼𝛼 closed set such that  𝐴𝐴 ⊆ 𝑈𝑈 where 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Since 𝐴𝐴 is 𝛼𝛼 closed. 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. 
Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
The converse of above theorem need not be true. 
 
Example: 3.10 Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed but not 𝛼𝛼 
closed. 
 
Theorem: 3.11 Every 𝑔𝑔-closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed.                                                                 
 
Proof: Let 𝐴𝐴 be a 𝑔𝑔 closed set such that 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open. Then 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. 
Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 and 𝑈𝑈 is open. Since every open set is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed.  
 
The converse of above theorem need not be true. 
 
Example: 3.12 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑐𝑐} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed but not 
𝑔𝑔 closed. 
 
Theorem: 3.13 Every 𝑔𝑔∗ closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Proof: Let 𝐴𝐴 be a 𝑔𝑔∗ closed set such that 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Since every 𝑔𝑔∗ closed set is 𝑔𝑔 closed. By theorem 
3.11, every 𝑔𝑔∗ closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. 
 
The converse of above theorem need not be true. 
 
Example: 3.14 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not 
𝑔𝑔∗ closed. 
 
Theorem: 3.15 Every 𝛼𝛼𝑔𝑔 closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed.                                                            
 
Proof: Let 𝐴𝐴 be a 𝛼𝛼𝑔𝑔 closed set such that 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open. Then 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. 
Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open. Since every open set is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed 
set. 
 
The converse of above theorem need not be true. 
 
Example: 3.16 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = { {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not 
𝛼𝛼𝑔𝑔 closed. 
 
Theorem: 3.17 Every 𝑔𝑔𝑟𝑟 closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
Proof: Let 𝐴𝐴 be a 𝑔𝑔𝑟𝑟 closed set such that 𝑟𝑟𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open. Then 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑟𝑟𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. 
Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 and 𝑈𝑈 is open. Since every open set is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. 
 
The converse of above theorem need not be true. 
 
Example: 3.18 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = { {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑏𝑏, 𝑐𝑐} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not 
𝑔𝑔𝑟𝑟 closed. 
 
Theorem: 3.19 Every 𝛽𝛽𝛼𝛼 closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set. 
 
Proof: Let 𝐴𝐴 be a 𝛽𝛽𝛼𝛼 closed set such that 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽 open. Then 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝛼𝛼𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈. 
Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽 open. Since every 𝛽𝛽 open set is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
The converse of above theorem need not be true. 
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Example: 3.20 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑐𝑐} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not 
𝛽𝛽𝛼𝛼 closed. 
 
Remark: 3.21 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set and 𝑔𝑔𝑔𝑔𝑟𝑟 closed set are independent to each other as seen from the following example. 
 
Example: 3.22 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not 
𝑔𝑔𝑔𝑔𝑟𝑟 closed. Also 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} is 𝑔𝑔𝑔𝑔𝑟𝑟 closed but not 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Remark: 3.23 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set and 𝑟𝑟𝛽𝛽 closed set are independent to each other as seen from the following example. 
 
Example: 3.24 Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑐𝑐} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed but not 
𝑟𝑟𝛽𝛽 closed. Also 𝐴𝐴 = {𝑎𝑎, 𝑐𝑐} is 𝑟𝑟𝛽𝛽 closed but not 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Remark: 3.25  𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set and 𝑟𝑟𝑔𝑔 closed set are independent to each other as seen from the following example. 
 
Example: 3.26 Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑐𝑐} is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed but not 
𝑟𝑟𝑔𝑔 closed. Also 𝐴𝐴 = {𝑎𝑎, 𝑐𝑐} is 𝑟𝑟𝑔𝑔 closed but not 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
 
Remark: 3.27 The above discussions are summarized in the following diagram. 
 
                          𝛼𝛼𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑                   𝑟𝑟𝑐𝑐𝑔𝑔𝑟𝑟𝑐𝑐𝑎𝑎𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑        𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑          𝑔𝑔𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑 

   

𝛽𝛽𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑                      𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑 

  𝑟𝑟𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑                𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  Closed            𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑        

  𝑟𝑟𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑                                    𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑                               
                                                                            

                                   𝑔𝑔𝑔𝑔𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑                   𝑔𝑔∗𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑 

 
 𝐴𝐴                                             𝐵𝐵  Means 𝐴𝐴 implies 𝐵𝐵 but not conversely. 
 𝐴𝐴                                             𝐵𝐵  Means 𝐴𝐴 and 𝐵𝐵 are independent of each other.                      
 
4. CHARACTERISTICS OF  𝜷𝜷𝜷𝜷𝒈𝒈∗𝒔𝒔 CLOSED SET   
 
Theorem: 4.1 If  𝐴𝐴 and 𝐵𝐵 are 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed sets, then 𝐴𝐴 ∩ 𝐵𝐵 is also 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed in (𝑋𝑋, 𝜏𝜏).    
 
Proof: Let 𝐴𝐴 and 𝐵𝐵 be any two 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed sets in 𝑋𝑋 such that 𝐴𝐴 ⊆ 𝑈𝑈 and 𝐵𝐵 ⊆ 𝑈𝑈, where 𝑈𝑈 is  𝛽𝛽𝛽𝛽𝑔𝑔∗ is open in 𝑋𝑋 and 
so 𝐴𝐴 ∩ 𝐵𝐵 ⊆ 𝑈𝑈. Since 𝐴𝐴 and 𝐵𝐵 are 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed, 𝑆𝑆𝑐𝑐𝑐𝑐(𝐴𝐴)  ⊆ 𝑈𝑈 and 𝑆𝑆𝑐𝑐𝑐𝑐(𝐴𝐴)  ⊆ 𝑈𝑈 and hence  𝑆𝑆𝑐𝑐𝑐𝑐(𝐴𝐴 ∩ 𝐵𝐵) ⊆ 𝑆𝑆𝑐𝑐𝑐𝑐(𝐴𝐴) ∩
𝑆𝑆𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑈𝑈. Thus 𝐴𝐴 ∩ 𝐵𝐵 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed in(𝑋𝑋, 𝜏𝜏).                        
 
Remark: 4.2 The union of two 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed sets in 𝑋𝑋 is generally not an 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set in 𝑋𝑋. 
 
Example: 4.3 Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑} ;  𝜏𝜏 = {{𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐},𝑋𝑋,∅}. Here 𝐴𝐴 = {𝑎𝑎} and 𝐵𝐵 = {𝑐𝑐} be two 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠   
closed subsets of  𝑋𝑋. But 𝐴𝐴 ∪ 𝐵𝐵 = {𝑎𝑎, 𝑐𝑐} is not a 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed.  
 
Theorem: 4.4 If  𝐴𝐴 is a 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set in 𝑋𝑋 if and only if 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 does not contain any non-empty 𝛽𝛽𝛽𝛽𝑔𝑔∗ closed 
set. 
 
Proof: Let 𝐹𝐹 be a 𝛽𝛽𝛽𝛽𝑔𝑔∗ closed set such that 𝐹𝐹 ⊂ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴. Then 𝐹𝐹 ⊂ 𝑋𝑋 − 𝐴𝐴 implies 𝐴𝐴 ⊂ 𝑋𝑋 − 𝐹𝐹. 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed 
set and 𝑋𝑋 − 𝐹𝐹 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Therefore 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊂ 𝑋𝑋 − 𝐹𝐹 that is 𝐹𝐹 ⊂ 𝑋𝑋 − 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴). Hence 𝐹𝐹 ⊂ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ∩ �𝑋𝑋 − 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴)� =
∅. Hence 𝐹𝐹 = ∅. 
 
Conversely let us assume that 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 contains no non-empty 𝛽𝛽𝛽𝛽𝑔𝑔∗ closed set. Let 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. 
Suppose that 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 is not contained in 𝑈𝑈. Then 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ∩ 𝑈𝑈𝑐𝑐  is a non-empty 𝛽𝛽𝛽𝛽𝑔𝑔∗ closed set of 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴. 
which is a contradiction. Hence 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. 
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Theorem: 4.5 If 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed and 𝐴𝐴 ⊆ 𝐵𝐵 ⊆ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴), then 𝐵𝐵 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. 
 
Proof: Since 𝐵𝐵 ⊆ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴), we have 𝑠𝑠𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) and 𝑠𝑠𝑐𝑐𝑐𝑐(𝐵𝐵) − 𝐵𝐵 ⊆ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴. But 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. Hence 
𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 has no non-empty 𝛽𝛽𝛽𝛽𝑔𝑔∗closed, neither does 𝑠𝑠𝑐𝑐𝑐𝑐(𝐵𝐵) − 𝐵𝐵. By theorem 4.4, 𝐵𝐵 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. 
 
Theorem: 4.6 The union of semi closed set and gr closed set is a 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. 
 
Proof: Let 𝐴𝐴 be a semi closed set and 𝐵𝐵 be a 𝑔𝑔𝑟𝑟 closed set. Let 𝐴𝐴 ∪ 𝐵𝐵 ⊆ 𝑈𝑈 and 𝑈𝑈 be 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Since 𝐴𝐴 be semi 
closed, we have 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ⊆ 𝑈𝑈. Since 𝐵𝐵 is 𝑔𝑔𝑟𝑟 closed, we have 𝑟𝑟𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑈𝑈, 𝑈𝑈 is open. But 𝑠𝑠𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑟𝑟𝑐𝑐𝑐𝑐(𝐵𝐵) ⊆ 𝑈𝑈 and 
also we know that every open set is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open. Therefore 𝐴𝐴 ∪ 𝐵𝐵 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set. 
 
Theorem: 4.7 If 𝐴𝐴 is 𝛽𝛽𝛽𝛽𝑔𝑔∗ open and 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋 then 𝐴𝐴 is semi closed set in 𝑋𝑋. 
 
Proof: Let  𝐴𝐴 be 𝛽𝛽𝛽𝛽𝑔𝑔∗ open and 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋. Then 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝐴𝐴. But 𝐴𝐴 ⊆ 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴). Therefore 𝐴𝐴 = 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴). Hence 
𝐴𝐴 is semi closed in 𝑋𝑋. 
 
5. On 𝜷𝜷𝜷𝜷𝒈𝒈∗𝒔𝒔 Continuity Set  
 
Definition: 5.1 A function 𝑓𝑓 ∶ (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) is called, 

1. Continuous [13] if 𝑓𝑓−1(𝑉𝑉) is closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
2. Regular continuous [1] if 𝑓𝑓−1(𝑉𝑉) is regular closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
3. 𝛼𝛼 continuous [17] if 𝑓𝑓−1(𝑉𝑉) is 𝛼𝛼 closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
4. Semi continuous [13] if 𝑓𝑓−1(𝑉𝑉) is Semi closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
5. 𝑔𝑔 continuous [3] if 𝑓𝑓−1(𝑉𝑉) is 𝑔𝑔 closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
6. 𝑔𝑔∗ continuous [23] if 𝑓𝑓−1(𝑉𝑉) is 𝑔𝑔∗ closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
7. 𝑔𝑔𝑟𝑟 continuous [14] if 𝑓𝑓−1(𝑉𝑉) is 𝑔𝑔𝑟𝑟 closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
8. 𝛼𝛼𝑔𝑔 continuous [8] if 𝑓𝑓−1(𝑉𝑉) is 𝛼𝛼𝑔𝑔 closed set in (𝑋𝑋, 𝜏𝜏) for every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 

 
Definition: 5.2 A function 𝑓𝑓 ∶ (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎) is called 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous if 𝑓𝑓−1(𝑉𝑉) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set in (𝑋𝑋, 𝜏𝜏) for 
every closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
 
Theorem: 5.3 Every continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not conversely.   
 
Proof: The proof follows from the fact that every closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
Example: 5.4 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑};  𝜏𝜏 = {𝑋𝑋,∅, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}} and 𝜎𝜎 = �𝑋𝑋,∅, {𝑏𝑏}, {𝑏𝑏,𝑑𝑑}�. Define a map 
𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎,𝑓𝑓(𝑏𝑏) = 𝑐𝑐, 𝑓𝑓(𝑐𝑐) = 𝑑𝑑, 𝑓𝑓(𝑑𝑑) = 𝑑𝑑. This map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not continuous. Since for 
the closed set {𝑎𝑎, 𝑏𝑏,𝑑𝑑} in 𝑌𝑌. 𝑓𝑓−1{𝑎𝑎, 𝑏𝑏,𝑑𝑑} = {𝑎𝑎, 𝑐𝑐,𝑑𝑑} is not closed set in 𝑋𝑋. 
 
Theorem: 5.5 Every regular continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not conversely. 
 
Proof: The proof follows from the fact that every regular closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
Example: 5.6 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑};  𝜏𝜏 = {𝑋𝑋,∅, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}} and 𝜎𝜎 = {𝑋𝑋,∅, {𝑏𝑏}, {𝑏𝑏,𝑑𝑑}}. Define a map 
𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎,𝑓𝑓(𝑏𝑏) = 𝑐𝑐, 𝑓𝑓(𝑐𝑐) = 𝑑𝑑, 𝑓𝑓(𝑑𝑑) = 𝑑𝑑. This map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not regular continuous. 
Since for the closed set {𝑑𝑑} in 𝑌𝑌. 𝑓𝑓−1{𝑑𝑑} = {𝑐𝑐,𝑑𝑑} is not regular closed set in 𝑋𝑋. 
 
Theorem: 5.7 Every semi continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not conversely. 
 
Proof: The proof follows from the fact that every semi closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
Example: 5.8 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑};  𝜏𝜏 = {𝑋𝑋,∅, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}} and 𝜎𝜎 = {𝑋𝑋,∅, {𝑏𝑏}, {𝑏𝑏,𝑑𝑑}}. Define a map 
𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎,𝑓𝑓(𝑏𝑏) = 𝑐𝑐, 𝑓𝑓(𝑐𝑐) = 𝑑𝑑, 𝑓𝑓(𝑑𝑑) = 𝑑𝑑 This map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not semi continuous. Since 
for the closed set {𝑎𝑎, 𝑏𝑏,𝑑𝑑} in 𝑌𝑌. 𝑓𝑓−1{𝑎𝑎, 𝑏𝑏,𝑑𝑑} = {𝑎𝑎, 𝑐𝑐,𝑑𝑑} is not semi closed set in 𝑋𝑋. 
 
Theorem: 5.9 Every 𝑔𝑔𝑟𝑟 continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not conversely. 
 
Proof: The proof follows from the fact that every 𝑔𝑔𝑟𝑟 closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed set. 
 
Example: 5.10 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑};  𝜏𝜏 = {𝑋𝑋,∅, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}} and 𝜎𝜎 = {𝑋𝑋,∅, {𝑏𝑏}, {𝑏𝑏,𝑑𝑑}}. Define a map 
𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎,𝑓𝑓(𝑏𝑏) = 𝑑𝑑, 𝑓𝑓(𝑐𝑐) = 𝑐𝑐, 𝑓𝑓(𝑑𝑑) = 𝑏𝑏. This map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous, but not 𝑔𝑔𝑟𝑟 continuous. Since 
for the closed set {𝑑𝑑} in 𝑌𝑌. 𝑓𝑓−1{𝑑𝑑} = {𝑏𝑏} is not 𝑔𝑔𝑟𝑟 closed set in 𝑋𝑋. 
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Remark: 5.11   

1. Every 𝑔𝑔 closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. Therefore every 𝑔𝑔 continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous.   
2. Every 𝑔𝑔∗ closed set is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 closed. Therefore every𝑔𝑔∗continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous.   
3 Every 𝛼𝛼𝑔𝑔 closed set is  𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. Therefore every 𝛼𝛼𝑔𝑔 continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
4 Every 𝛼𝛼 closed set is  𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. Therefore every 𝛼𝛼 continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
5 Every 𝛽𝛽𝛼𝛼 closed set is  𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed. Therefore every 𝛽𝛽𝛼𝛼 continuous map is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous. 

 
Theorem: 5.12 If 𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous and 𝑔𝑔 ∶ 𝑌𝑌 → 𝑍𝑍 is continuous then their composition 𝑓𝑓 ∘ 𝑔𝑔:𝑋𝑋 → 𝑍𝑍 is 
𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
 
Proof: Let  𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous and 𝑔𝑔 ∶ 𝑌𝑌 → 𝑍𝑍 is continuous. Let 𝑈𝑈 be a closed set in 𝑍𝑍.Therefore 𝑔𝑔−1(𝑈𝑈) 
is closed in Y and 𝑓𝑓−1(𝑔𝑔−1(𝑈𝑈)) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋. Therefore 𝑓𝑓 ∘ 𝑔𝑔 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
 
Theorem: 5.13 Let 𝑋𝑋 = 𝐴𝐴 ∪ 𝐵𝐵, where 𝐴𝐴 and 𝐵𝐵 are closed in 𝑋𝑋. Let 𝑓𝑓 ∶ 𝐴𝐴 → 𝑌𝑌 and 𝑔𝑔 ∶ 𝐵𝐵 → 𝑌𝑌 be continuous. If 
𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) for every 𝑥𝑥 ∈ 𝐴𝐴 ∩ 𝐵𝐵 then 𝑓𝑓 and 𝑔𝑔 are combine to give 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous function ℎ ∶ 𝑋𝑋 → 𝑌𝑌 defined by 
ℎ(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) if 𝑥𝑥 ∈ 𝐴𝐴, and ℎ(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) if 𝑥𝑥 ∈ 𝐵𝐵. 
 
Proof: Let 𝐶𝐶 be a closed subset of 𝑌𝑌. Now ℎ−1(𝐶𝐶) = 𝑓𝑓−1(𝐶𝐶) ∪ 𝑔𝑔−1(𝐶𝐶). Since 𝑓𝑓 is continuous, 𝑓𝑓−1(𝐶𝐶) is closed in 𝐴𝐴 
and therefore closed in 𝑋𝑋. Similarly 𝑔𝑔−1(𝐶𝐶) is closed in 𝐵𝐵 and therefore closed in 𝑋𝑋. Their union ℎ−1(𝐶𝐶) is also closed 
in 𝑋𝑋. Therefore ℎ is continuous. By theorem (5.3) ℎ is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous. 
 
Theorem: 5.14 Let 𝑓𝑓 ∶ (𝑋𝑋, 𝜏𝜏) → (𝑌𝑌,𝜎𝜎)be a function where 𝑋𝑋 and 𝑌𝑌 be topological spaces. Then the following are 
equivalent. 

a. 𝑓𝑓 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
b. The inverse of each open set in 𝑌𝑌 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  open in 𝑋𝑋. 
c. For each subset 𝐴𝐴 of 𝑋𝑋, 𝑓𝑓(𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐(𝐴𝐴)) ⊆ 𝑐𝑐𝑐𝑐�𝑓𝑓(𝐴𝐴)�. 

 
Proof: 
(𝒊𝒊) ⇒ (𝒊𝒊𝒊𝒊): Let 𝐵𝐵 be an open subset of 𝑌𝑌. Then 𝑌𝑌 − 𝐵𝐵 is closed in 𝑌𝑌. Since 𝑓𝑓 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous,𝑓𝑓−1(𝑌𝑌 − 𝐵𝐵) is 
𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋. That is,𝑋𝑋 − 𝑓𝑓−1(𝐵𝐵) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋. Hence 𝑓𝑓−1(𝐵𝐵) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  open in 𝑋𝑋. 
 
(𝒊𝒊𝒊𝒊)  ⇒ (𝒊𝒊): Let 𝐺𝐺 be a closed subset of 𝑌𝑌. Then 𝑌𝑌 − 𝐺𝐺 is open in 𝑌𝑌. Then𝑓𝑓−1(𝑌𝑌 − 𝐺𝐺) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  open in 𝑋𝑋. That is 
𝑋𝑋 − 𝑓𝑓−1(𝐺𝐺) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  open in 𝑋𝑋. Hence 𝑓𝑓−1(𝐺𝐺) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋 , which implies that 𝑓𝑓 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
 
(𝒊𝒊𝒊𝒊)  ⇒ (𝒊𝒊𝒊𝒊𝒊𝒊): Let 𝐴𝐴 be a subset of 𝑋𝑋. Since  𝐴𝐴 ⊂ 𝑓𝑓−1�𝑓𝑓(𝐴𝐴)�, 𝐴𝐴 ⊂ 𝑓𝑓−1 �𝑐𝑐𝑐𝑐�𝑓𝑓(𝐴𝐴)��. Now 𝑐𝑐𝑐𝑐�𝑓𝑓(𝐴𝐴)� is a closed set in 𝑌𝑌. 

Then by (𝑖𝑖𝑖𝑖), 𝑓𝑓−1 �𝑐𝑐𝑐𝑐�𝑓𝑓(𝐴𝐴)�� is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋 containing 𝐴𝐴. But 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐(𝐴𝐴) is the smallest 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed set 

in 𝑋𝑋 containing 𝐴𝐴. Therefore 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑓𝑓−1 �𝑐𝑐𝑐𝑐�𝑓𝑓(𝐴𝐴)��. Hence 𝑓𝑓�𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐(𝐴𝐴)� ⊆ 𝑐𝑐𝑐𝑐�𝑓𝑓(𝐴𝐴)�.        
             
(𝒊𝒊𝒊𝒊𝒊𝒊)  ⇒ (𝒊𝒊𝒊𝒊): Let 𝐵𝐵 be a closed subset of 𝑌𝑌. Then 𝑓𝑓−1(𝐵𝐵) is a subset of 𝑋𝑋. By (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑓𝑓 �𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐 �𝑓𝑓−1(𝐵𝐵)�� ⊆

𝑐𝑐𝑐𝑐 �𝑓𝑓 �𝑓𝑓−1(𝐵𝐵)�� ⊆ 𝑐𝑐𝑐𝑐(𝐵𝐵) = 𝐵𝐵. This implies 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐 �𝑓𝑓−1(𝐵𝐵)� ⊆ 𝑓𝑓−1(𝐵𝐵). But 𝑓𝑓−1(𝐵𝐵) ⊆ 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐 �𝑓𝑓−1(𝐵𝐵)�. 
Hence 𝑓𝑓−1(𝐵𝐵) = 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 𝑐𝑐𝑐𝑐 �𝑓𝑓−1(𝐵𝐵)� and 𝑓𝑓−1(𝐵𝐵) is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  closed in 𝑋𝑋. This implies that 𝑓𝑓 is 𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠  continuous. 
 
Remark: 5.15 The above discussions are summarized in the following diagram. 
 
                    𝛼𝛼𝑔𝑔 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠                              𝑟𝑟𝑐𝑐𝑔𝑔𝑟𝑟𝑐𝑐𝑎𝑎𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠       Continuous        𝑔𝑔𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠           

                     𝛽𝛽𝛼𝛼 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠                   𝛼𝛼 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠 

       𝑟𝑟𝛽𝛽 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠            𝛽𝛽𝛽𝛽𝑔𝑔∗𝑠𝑠 continuous          𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟s        

                      𝑟𝑟𝑔𝑔 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠                              𝑔𝑔 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠                           
                                                                           

                𝑔𝑔𝑔𝑔𝑟𝑟 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠                               𝑔𝑔∗𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑐𝑐𝑟𝑟𝑠𝑠 
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