CR- SUBMANIFOLD OF NEARLY HYPERBOLIC COSYMPLECTIC MANIFOLD WITH A QUARTER SYMMETRIC NON METRIC CONNECTION

NIKHAT ZULEKHA*1, SHADAB AHMAD KHAN2, MOBIN AHMAD3

1,2Department of Mathematics, Integral University, Kursi Road Lucknow-226026, India.
3Department of Mathematics, Faculty of Science, Jazan University, Jazan-2069, Saudi Arabia.

(Received On: 30-08-15; Revised & Accepted On: 23-09-15)

ABSTRACT

In present paper, we study some properties of CR-submanifold of a nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection, obtain some result on ξ-horizontal and ξ-vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection. We also find the integrability conditions of some distributions and study parallel distributions (horizontal & vertical distributions) on CR-submanifold of a nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection.

Keywords and Phrases: CR-submanifold, nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection, parallel distribution, and integrability condition.

INTRODUCTION

The notion of CR-submanifolds of a Kaehler manifold was introduced and studied by A. Bejancu in ([1], [2]). Since then, several paper on Kaehler manifold were published. CR-submanifolds of Sasakian manifold was studied by C.J.Hsu in [3] and M.Kobayashi in [4]. Later, several geometers (see, [5], [6], [7], [8], [9], [10]) enrich the study of CR-submanifolds of almost contact manifolds. On the other hand, almost hyperbolic (f, g, η, ξ)-structure was defined and studied by M.D.Upadhyay and K.K.Dube in [11]. L.Bhatt and K.K.Dube studied CR-submanifolds of a trans-hyperbolic Sasakian manifold in [12]. Ahmad M. and Ali K. study CR-submanifold of a nearly hyperbolic cosymplectic manifold [13]. In this paper, we study some properties of CR-Submanifold of nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection.

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection. In section 3, some properties of CR-Submanifold of nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection are investigated. In section 4, some result on parallel distribution on ξ-horizontal and ξ-vertical CR-Submanifold of nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connections are obtained.

2. PRELIMINARIES

Let M be an n-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure (θ, ξ, η, g), where a tensor θ of type (1,1) a vector field ξ, called structure vector field and η, the dual 1-form of ξ satisfying the following

\[\theta^2 X = X + \eta(X) \xi, \quad g(X, \xi) = \eta(X), \]
\[\eta(\xi) = -1, \quad \theta(\xi) = 0, \quad \eta \theta = 0, \]
\[g(\theta X, \theta Y) = -g(X, Y) - \eta(X) \eta(Y) \]

For any X, Y tangent to M [9, 6]. In this case
\[g(\theta X, Y) = -g(X, \theta Y). \]

Corresponding Author: Nikhat Zulekha*1, 1,2Department of Mathematics, Integral University, Kursi Road Lucknow-226026, India.
An almost hyperbolic contact metric structure $(\mathcal{F}, \xi, \eta, g)$ on \overline{M} is called hyperbolic cosymplectic manifold [12] if and only if
\[
(\nabla_X \mathcal{F})Y + (\nabla_Y \mathcal{F})X = 0 \quad \text{for all } X, Y \text{ tangent to } \overline{M}.
\]

A hyperbolic cosymplectic manifold \overline{M} is called nearly hyperbolic cosymplectic manifold, if
\[
\nabla_X \xi = 0 \quad \text{for a Riemannian Connection } \nabla.
\]

Now, Let M be a submanifold immersed in \overline{M}. The Riemannian metric induced on M is denoted by the same symbol g. Let TM and $T^\perp M$ be the Lie algebra of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connection on N, then the Gauss and Weingarten formulas are given respectively by
\[
\nabla_X Y = \nabla_X Y + h(X, Y).
\]

Now we define a quarter symmetric non-metric connection
\[
\overline{\nabla}_X Y = \nabla_X Y + \eta(Y)\mathcal{F}X
\]

Putting $Y = N$
\[
\overline{\nabla}_X N = \nabla_X N + \eta(N)\mathcal{F}X
\]
\[
\overline{\nabla}_Y N = \nabla_Y N
\]

Adding above two equations
\[
(\overline{\nabla}_X \mathcal{F})Y + \mathcal{F}((\overline{\nabla}_Y \mathcal{F})X + \mathcal{F}(\nabla_X \mathcal{F}Y - \nabla_Y \mathcal{F}X)) + \mathcal{F}(\nabla_Y \mathcal{F}X - \nabla_X \mathcal{F}Y) = (\overline{\nabla}_X \mathcal{F})Y + (\overline{\nabla}_Y \mathcal{F})X
\]

From (2.5) and quarter symmetric non-metric connection
\[
(\overline{\nabla}_X \mathcal{F})Y + (\overline{\nabla}_Y \mathcal{F})X + \mathcal{F}(\nabla_X \mathcal{F}Y - \nabla_Y \mathcal{F}X) + \mathcal{F}(\nabla_Y \mathcal{F}X - \nabla_X \mathcal{F}Y) = 0
\]
\[
(\overline{\nabla}_X \mathcal{F})Y + (\overline{\nabla}_Y \mathcal{F})X = -\eta(Y)\mathcal{F}^2 X - \eta(X)\mathcal{F}^2 Y
\]
\[
(\overline{\nabla}_X \mathcal{F})Y - (\overline{\nabla}_Y \mathcal{F})X = -\eta(Y)(X + \eta(X)\xi) - \eta(X)(Y + \eta(Y)\xi)
\]

Quarter symmetric non-metric connection
\[
\overline{\nabla}_X Y = \nabla_X Y + \eta(Y)\mathcal{F}X
\]

Putting $Y = \xi$
\[
\overline{\nabla}_X \xi = \nabla_X \xi + \eta(\xi)\mathcal{F}X
\]

Putting $Y = \mathcal{F}$
\[
\overline{\nabla}_X \mathcal{F} = \nabla_X \mathcal{F} + \eta(\mathcal{F})\mathcal{F}X
\]
Definition 1: An m-dimensional submanifold M of \bar{M} is called a CR-Submanifold of almost nearly hyperbolic contact manifold \bar{M}, if there exists a differentiable distribution $D:x \to D_x$ on M satisfying the following conditions:

i. D is invariant, that is $\mathcal{D}D_x \subset D_x$ for each $x \in M$.

ii. The complementary orthogonal distribution D^\perp of D is anti-invariant, that is $\mathfrak{D}D_x \subset D_x$. If $\dim D_x = 0$ (resp., $\dim D_x = 0$), then the CR-Submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution D (resp., D^\perp) is called the horizontal (resp., vertical) distribution. Also, the pair (D, D^\perp) is called $\xi - \text{horizontal}$ (resp., ξ-vertical) if $\xi_x \subset D_x$ (resp., $\xi_x \subset D^\perp_x$).

3. SOME BASIC LEMMAS

Lemma 3.1: Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} then

\begin{align*}
&\text{(3.1)} \quad -\eta(Y)PX - \eta(X)PY - 2\eta(X)\eta(Y)p\xi + \mathcal{D}(\nabla X Y) + \mathfrak{D}(\nabla Y X) = PA_{\varphi QY}X - PA_{\varphi QY}Y \\
&\text{(3.2)} \quad -\eta(Y)QX - \eta(X)QY - 2\eta(X)\eta(Y)\eta \xi + 2Bh(X, Y) = Q\nabla X (\mathfrak{D} Y) + Q\nabla Y (\mathfrak{D} X) - QA_{\varphi QY}X - QA_{\varphi QY}Y \\
&\text{(3.3)} \quad \mathcal{D}Q(\nabla X Y) + \mathfrak{D}(\nabla Y X) + 2Ch(X, Y) = h(X, \mathfrak{D} Y) + h(Y, \mathfrak{D} X) + \mathcal{D}Q\mathfrak{D} QY + \mathcal{D}Q\mathfrak{D} QX \text{ for any } X, Y \in TM.
\end{align*}

Proof: Using (2.4), (2.5), (2.6), we get

\begin{align*}
Y &= PY + QY, \\
\mathfrak{D}Y &= \mathfrak{D}PY + \mathfrak{D}QY.
\end{align*}

Differentiating covariantly

Left side: \(\nabla X \mathfrak{D}Y = (\nabla X \mathfrak{D})Y + \mathfrak{D}(\nabla X Y)\)

\begin{align*}
&\nabla X \mathfrak{D}Y = \nabla X (\mathfrak{D}Y) + \mathfrak{D}(\nabla X Y) \\
&= (\nabla X \mathfrak{D})Y + \mathfrak{D}(\nabla X Y) + \mathfrak{D}h(X, Y)
\end{align*}

Right side:

\begin{align*}
\nabla X (\mathfrak{D} Y) + \mathfrak{D}(\nabla X Y) &= \nabla X (\mathfrak{D} Y) + \mathfrak{D}(\nabla X Y) + \mathfrak{D}h(X, Y) \\
&= \nabla X (\mathfrak{D} Y) + \mathfrak{D}(\nabla X Y) + \mathfrak{D}h(X, Y)
\end{align*}

From Left and Right side

\((\nabla X \mathfrak{D})Y + \mathfrak{D}(\nabla X Y) + \mathfrak{D}h(X, Y) = \nabla X (\mathfrak{D} Y) + \mathfrak{D}(\nabla X Y) + \mathfrak{D}h(X, Y) - A_{\varphi QY}X + \nabla^\perp_{\xi} \mathfrak{D}QY.
\)

Interchanging $X \& Y$,

\((\nabla Y \mathfrak{D})X + \mathfrak{D}(\nabla Y X) + \mathfrak{D}h(Y, X) = \nabla Y (\mathfrak{D} X) + \mathfrak{D}(\nabla Y X) + \mathfrak{D}h(Y, X) - A_{\varphi QY}Y + \nabla^\perp_{\xi} \mathfrak{D}QX.
\)

Adding above two equations

\begin{align*}
(\nabla X \mathfrak{D})Y + (\nabla Y \mathfrak{D})X + \mathfrak{D}(\nabla X Y) + \mathfrak{D}(\nabla Y X) + 2\mathfrak{D}h(X, Y) &= \nabla X (\mathfrak{D} Y) + \nabla Y (\mathfrak{D} X) + \mathfrak{D}h(X, Y) + \mathfrak{D}h(Y, X) - A_{\varphi QY}X - A_{\varphi QY}Y + \nabla^\perp_{\xi} \mathfrak{D}QX + \mathfrak{D}QX.
\end{align*}

Using (2.12), we have

\begin{align*}
-\eta(Y)X - \eta(X)Y &= 2\eta(X)\eta(Y)\xi + \mathfrak{D}(\nabla X Y) + \mathfrak{D}(\nabla Y X) + 2\mathfrak{D}h(X, Y) \\
&= \nabla X (\mathfrak{D} Y) + \nabla Y (\mathfrak{D} X) + \mathfrak{D}h(X, Y) - A_{\varphi QY}X - A_{\varphi QY}Y + \nabla^\perp_{\xi} \mathfrak{D}QX + \mathfrak{D}QX
\end{align*}

Comparing horizontal, vertical and normal components, we get

Tangential Component:

\begin{align*}
-\eta(Y)PX - \eta(X)PY - 2\eta(X)\eta(Y)\xi + \mathfrak{D}(\nabla X Y) + \mathfrak{D}(\nabla Y X) &= PA_{\varphi QY}X + PA_{\varphi QY}Y
\end{align*}

Vertical Component:

\begin{align*}
-\eta(Y)QX - \eta(X)QY - 2\eta(X)\eta(Y)\xi + 2Bh(X, Y) &= Q\nabla X (\mathfrak{D} Y) + Q\nabla Y (\mathfrak{D} X) - QA_{\varphi QY}X - QA_{\varphi QY}Y
\end{align*}

Normal Component:

\begin{align*}
\mathcal{D}Q(\nabla X Y) + \mathfrak{D}(\nabla Y X) + 2Ch(X, Y) &= h(X, \mathfrak{D} Y) + h(Y, \mathfrak{D} X) + \mathcal{D}Q\mathfrak{D} QY + \mathcal{D}Q\mathfrak{D} QX
\end{align*}

Hence the Lemma is proved. ☐
Lemma 3.2: Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \tilde{M} then

\[2(\overline{\nabla}_Y \phi)Y = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi + \nabla_X \phi Y - \nabla_Y \phi X + h(Y, \phi X) - h(Y, \phi X) - \phi[X, Y] \]

\[2(\overline{\nabla}_Y \phi)X = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi - \nabla_X \phi Y + \nabla_Y \phi X + h(Y, \phi X) - h(X, \phi Y) + \phi[X, Y] \]

for any $X, Y \in D$.

Proof: From Gauss formula (2.7), we have

\[\overline{\nabla}_Y Y = \nabla_Y Y + h(X, Y). \]
\[\overline{\nabla}_Y \phi Y = \nabla_Y \phi Y + h(X, \phi Y). \]
\[\overline{\nabla}_Y \phi X = \nabla_Y \phi X + h(\phi X, Y). \]

(3.6) \[\overline{\nabla}_Y \phi Y - \nabla_Y \phi X = \nabla_Y \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y]. \]

Also, we have

\[\overline{\nabla}_Y \phi Y = (\nabla_Y \phi)Y + \phi \overline{\nabla}_Y Y. \]
\[\overline{\nabla}_Y \phi X = (\nabla_Y \phi)X + \phi \overline{\nabla}_Y X. \]

Subtracting above,

\[\overline{\nabla}_Y \phi Y - \nabla_Y \phi X = (\nabla_Y \phi)Y - (\nabla_Y \phi)X + \phi(\overline{\nabla}_Y Y - \nabla_Y X) \]

(3.7) \[\overline{\nabla}_Y \phi Y - \nabla_Y \phi X = (\nabla_Y \phi)Y - (\nabla_Y \phi)X + \phi[X, Y]. \]

From (3.6) and (3.7), we get

\[(\overline{\nabla}_Y \phi)Y - (\nabla_Y \phi)X + \phi[X, Y] = \nabla_Y \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X). \]

(3.8) \[(\overline{\nabla}_Y \phi)Y - (\nabla_Y \phi)X = \nabla_Y \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y]. \]

Adding (3.8) and (2.12), we obtain

\[2(\overline{\nabla}_Y \phi)Y = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi + \nabla_X \phi Y + h(Y, \phi Y) - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y] \]

Subtracting (3.8) from (2.12), we obtain

\[2(\overline{\nabla}_Y \phi)X = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi - \nabla_X \phi Y - h(X, \phi Y) + \nabla_Y \phi X + h(Y, \phi X) + \phi[X, Y] \]

Hence the Lemma is proved. □

Corollary 3.3: If M be a ξ-vertical CR-submanifold of a CR-submanifold of a nearly hyperbolic cosymplectic manifold \tilde{M} with quarter symmetric metric connection. Then

\[2(\overline{\nabla}_Y \phi)Y = \nabla_Y \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y] \]

and

\[2(\overline{\nabla}_Y \phi)X = \nabla_Y \phi X - \nabla_X \phi Y - h(X, \phi Y) + h(Y, \phi X) + \phi[X, Y] \] for any $X, Y \in D$.

Lemma 3.4: Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \tilde{M} then

\[2(\overline{\nabla}_Y \phi)Y = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi + A_{\phi Y} Y - A_{\phi Y} X + V_{\phi Y} Y - V_{\phi Y} X - \phi[X, Y] \]

and

\[2(\overline{\nabla}_Y \phi)X = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi - A_{\phi Y} Y + A_{\phi Y} X - V_{\phi Y} Y + V_{\phi Y} X + \phi[X, Y] \] for any $X, Y \in D^\perp$.

Proof: From Weingarten formula (2.8), we have

\[\overline{\nabla}_Y N = -A_{\phi Y} X + V_{\phi Y} X \]

Putting

\[N = \phi Y \]
\[\overline{\nabla}_Y \phi Y = -A_{\phi Y} Y + V_{\phi Y} Y. \]
\[\overline{\nabla}_Y \phi X = -A_{\phi Y} X + V_{\phi Y} X. \]

(3.10) \[\overline{\nabla}_Y \phi Y - \nabla_Y \phi X = A_{\phi Y} Y - A_{\phi Y} X + V_{\phi Y} Y - V_{\phi Y} X. \]

Also,

(3.11) \[\overline{\nabla}_Y \phi Y - \nabla_Y \phi X = (\overline{\nabla}_Y \phi)Y - (\overline{\nabla}_Y \phi)X + \phi[X, Y]. \]

From (3.10) and (3.11), we get

(3.12) \[(\overline{\nabla}_Y \phi)Y - (\overline{\nabla}_Y \phi)X = A_{\phi Y} Y - A_{\phi Y} X + V_{\phi Y} Y - V_{\phi Y} X - \phi[X, Y]. \]

(2.12) \[(\overline{\nabla}_Y \phi)Y + (\overline{\nabla}_Y \phi)X = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi \]
Corollary 3.5: If M be a horizontal CR-submanifold of of a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} with quarter symmetric metric connection. Then

$$2(\overline{\nabla}_X\phi) = -A_{\eta X}X - A_{\eta Y}Y + \nabla^Y_\phi Y - \nabla^Y_\phi X - \phi[X,Y].$$

and

$$2(\overline{\nabla}_Y\phi) = A_{\eta Y}X - A_{\eta X}Y + \nabla^Y_\phi X - \nabla^Y_\phi Y + \phi[X,Y].$$

for any $X, Y \in D^1$.

Lemma 3.6: Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M} then

$$2(\overline{\nabla}_X\phi) = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi - A_{\eta Y}X + \nabla^Y_\phi Y - \eta(X) - \phi[X,Y].$$

Also, we have

$$2(\overline{\nabla}_Y\phi) = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi + A_{\eta Y}X - \nabla^Y_\phi Y + \eta(Y) - \phi[X,Y].$$

By virtue of (3.14) and (3.15), we get

$$(\overline{\nabla}_X\phi)(Y) = A_{\eta Y}X + \nabla^Y_\phi Y - \eta(Y) - \phi[X,Y].$$

(2.12) $$(\overline{\nabla}_Y\phi)(Y) = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi$$

Adding (3.16) and (2.12), we obtain

$$2(\overline{\nabla}_X\phi) = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi - A_{\eta Y}X + \nabla^Y_\phi Y - \eta(Y) - \phi[X,Y].$$

Subtracting (3.16) from (2.12), we obtain

$$2(\overline{\nabla}_Y\phi) = -\eta(Y)X - \eta(X)Y - 2\eta(X)\eta(Y)\xi + A_{\eta Y}X - \nabla^Y_\phi Y + \eta(Y) - \phi[X,Y].$$

Hence the Lemma is proved. □

4. PARALLEL DISTRIBUTION

Definition 2: The horizontal (resp., vertical) distribution $D(\operatorname{resp.}, D^1)$ is said to be parallel [13] with respect to the connection on M if $\nabla_XY \in D$ (resp., $\nabla_XW \in D^1$) for any vector field $X, Y \in D$ (resp., $W, Z \in D^1$).

Theorem 4.1: Let M be a ξ-vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold \bar{M}. If the horizontal distribution D is parallel, Then

$$h(X, \phi Y) = h(Y, \phi X).$$

for any $X, Y \in D$

Proof: Using parallelism of horizontal distribution D, we have

$$(\overline{\nabla}_X(\phi Y)) = D^1 \text{ and } \overline{\nabla}_X\phi X \in D$$

for any $X, Y \in D$.

From Vertical component,

$$-\eta(Y)QX - \eta(X)QY - 2\eta(X)\eta(Y)\xi + 2Bh(X, Y) = Q\nabla_X(\phi PY) + Q\nabla_Y(\phi PX) - QA_{\phi Y}X - QA_{\phi X}Y$$

As Q is a projection operator on D^1, We have

$$Bh(X, Y) = 0.$$
Putting \(N = h(X, Y) \)
\(\emptyset h(X, Y) = B h(X, Y) + Ch(X, Y) \)

From (4.3)
\[
2 \emptyset h(X, Y) = 2C h(X, Y)
\]

From normal component,
\[
\emptyset Q(\nabla_X Y) + \emptyset Q(\nabla_Y X) + 2Ch(X, Y) = h(X, \emptyset P Y) + h(Y, \emptyset P X) + \nabla^\perp \emptyset Q X.
\]
\[
2 Ch(X, Y) = h(X, \emptyset P Y) + h(Y, \emptyset P X)
\]

(4.5) \(2Ch(X, Y) = h(X, \emptyset Y) + h(Y, \emptyset X) \), \(\text{for any } X, Y \in D \).

Applying (4.5) in (4.4)
\[
2 \emptyset h(X, Y) = h(X, \emptyset Y) + h(Y, \emptyset X)
\]

Replacing \(X \) by \(\emptyset X \)
\[
2 \emptyset h(\emptyset X, Y) = h(\emptyset X, \emptyset Y) + h(Y, \emptyset^2 X)
\]
\[
2 \emptyset h(\emptyset X, Y) = h(\emptyset X, \emptyset Y) + h(Y, X + \eta(X) \xi)
\]
\[
2 \emptyset h(\emptyset X, Y) = h(\emptyset X, \emptyset Y) + h(Y, X) + h(Y, \eta(X) \xi)
\]

(4.7) \(2 \emptyset h(\emptyset X, Y) = h(\emptyset X, \emptyset Y) + h(Y, X) \)

Now, replacing \(Y \rightarrow \emptyset Y \) in (4.6), we get
\[
h(X, \emptyset^2 Y) + h(\emptyset Y, \emptyset X) = 2 \emptyset h(X, \emptyset Y).
\]
\[
h(X, Y + \eta(Y) \xi) + h(\emptyset Y, \emptyset X) = 2 \emptyset h(X, \emptyset Y).
\]

(4.8) \(h(X, Y) + h(\emptyset Y, \emptyset X) = 2 \emptyset h(X, \emptyset Y) \).

Thus from (4.7) and (4.8), we find
\[
2 \emptyset h(\emptyset X, Y) = 2 \emptyset h(X, \emptyset Y).
\]

Operating \(\emptyset \) on both sides, we get
\[
h(X, \emptyset Y) = h(Y, \emptyset X).
\]

Hence the Theorem is proved. \(\Box \)

Theorem 4.2: Let \(M \) be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \(\bar{M} \). If the distribution \(D^\perp \) is parallel with respect to the connection on \(M \), then
\[
A_{\emptyset Y} X + A_{\emptyset X} Y \in D^\perp, \text{ for any } X, Y \in D^\perp.
\]

Proof: Let \(X, Y \in D^\perp \) then using Weingarten Formula.

We have,
\[
\nabla_X N = -A_{\emptyset X} + \nabla^\perp_X N
\]

Putting \(N = \emptyset Y \)
\[
\nabla_X \emptyset Y = -A_{\emptyset Y} X + \nabla^\perp_X \emptyset Y
\]
\[
(\nabla_X \emptyset) Y + \emptyset (\nabla_X Y) = -A_{\emptyset Y} X + \nabla^\perp_X \emptyset Y
\]

Using Gauss Formula
\[
(\nabla_X \emptyset) Y = -A_{\emptyset Y} X + \nabla^\perp_X \emptyset Y - \emptyset (\nabla_X Y + h(X, Y))
\]

(4.11) \((\nabla_X \emptyset) Y = -A_{\emptyset Y} X + \nabla^\perp_X \emptyset Y - \emptyset (\nabla_X Y) - \emptyset h(X, Y) \)

Interchanging \(X \) and \(Y \)
\[
(\nabla_Y \emptyset) = -A_{\emptyset X} Y + \nabla^\perp_Y \emptyset Y - \emptyset (\nabla_Y X - \emptyset h(Y, X))
\]

(4.12) \((\nabla_Y \emptyset) = -A_{\emptyset X} Y + \nabla^\perp_Y \emptyset Y - \emptyset (\nabla_Y X) - \emptyset h(Y, X) \)

Adding (4.11) and (4.12), we get
\[
(\nabla_X \emptyset) Y + (\nabla_Y \emptyset) X = -A_{\emptyset Y} X - A_{\emptyset X} Y + \nabla^\perp_X \emptyset Y + \nabla^\perp_Y \emptyset X - \emptyset (\nabla_X Y) - \emptyset (\nabla_Y X) - 2 \emptyset h(X, Y)
\]

From (2.13) and (4.13)
\[
- \eta(X) Y - \eta(Y) X - 2 \eta(X) \eta(Y) \xi = -A_{\emptyset Y} X - A_{\emptyset X} Y + \nabla^\perp_X \emptyset Y + \nabla^\perp_Y \emptyset X - \emptyset (\nabla_X Y) - \emptyset (\nabla_Y X) - 2 \emptyset h(X, Y)
\]

Taking inner product w.r.t. \(Z \in D \)
\[
- \eta(X) g(Y, Z) - \eta(Y) g(X, Z) - 2 \eta(X) \eta(Y) g(\xi, Z) = -g(A_{\emptyset Y} X, Z) - g(A_{\emptyset X} Y, Z) + g(\nabla^\perp_X \emptyset Y, Z)
\]
\[
+ g(\nabla^\perp_Y \emptyset X, Z) - g(\emptyset (\nabla_X Y), Z) - g(\emptyset (\nabla_Y X), Z) - 2 \emptyset g(\emptyset h(X, Y), Z)
\]
\[g(A_{gY}X + A_{gX}Y, Z) = 0 \]

This implies that
\[(A_{gY}X + A_{gX}Y) \in D^\perp \]

for any \(X, Y \in D^\perp \).

Hence theorem is proved.

Definition 4.3: A CR-submanifold is said to be mixed-totally geodesic if
\[h(X, Y) = 0, \text{ if } X \in D \text{ and } Z \in D^\perp \]

Lemma 4.4: Let \(M \) be a CR-submanifold of a nearly trans-hyperbolic Cosymplectic manifold \(\tilde{M} \). Then \(M \) is mixed totally geodesic if and only if \(A_{gX}X \in D \) for all \(X \in D \).

Definition 4.5: A Normal vector field \(N \neq 0 \) is called \(D - \text{parallel} \) normal section if
\[\nabla_X N = 0, \text{ for all } X \in D \]

Theorem 4.6: Let \(M \) be a mixed totally geodesic CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \(\tilde{M} \). Then the normal section \(N \in \partial D^\perp \) is \(D - \text{parallel} \) if and only if \(\nabla_X \emptyset N \in D \) for all \(X \in D \).

Proof: Let \(N \in \partial D^\perp \), then from (3.2) we have
\[-\eta(Y)QX - \eta(X)QY - 2\eta(X)\eta(Y)Q\xi + 2Bh(X, Y) = Q\nabla_X (\emptyset PY) + Q\nabla_Y (\emptyset PX) - QA_{gY}X - QA_{gX}Y \]

As \(Q \) is a projection operator on \(D^\perp \), then
\[2Bh(X, Y) = Q\nabla_Y (\emptyset X) - QA_{gY}X. \]

Using definition of mixed geodesic CR-submanifold,
\[h(X, Y) = 0, \text{ if } X \in D \text{ and } Z \in D^\perp \]

\[Q\nabla_Y (\emptyset X) = QA_{gY}X. \]

As \(A_{gY}X \in D \), for \(X \in D \).

Therefore, \(QA_{gY}X = 0 \)
\[Q\nabla_Y (\emptyset X) = 0 \]

By normal component
\[\emptyset Q(\nabla_X Y) + \emptyset Q(\nabla_Y X) + 2Ch(X, Y) = h(X, \emptyset PY) + h(Y, \emptyset PX) + \nabla_X \emptyset QY + \nabla_Y \emptyset QX \]

As \(Q \) is a projection operator on \(D^\perp \), then
\[\emptyset Q(\nabla_X Y) = \nabla_X \emptyset QY \]
\[\emptyset Q(\nabla_Y X) = \nabla_Y \emptyset QY \]

Putting \(Y = \emptyset N \)
\[(\emptyset Q)\nabla_X \emptyset N = \nabla_X \emptyset Q \]
\[(\emptyset Q)\nabla_Y \emptyset N = \nabla_Y \emptyset Q \]

(4.15)
\[(\emptyset Q)\nabla_X \emptyset N = \nabla_X \emptyset \]

Then by Definition of Parallelism of \(N \), We have
\[(\emptyset Q)\nabla_X \emptyset N = 0 \]
\[Q\nabla_X \emptyset N = 0 \]

Consequently, we get
\[\nabla_X (\emptyset N) \in D, \text{ for all } X \in D \]

Converse part is easy consequence of (4.20)

This completes the Proof.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]