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ABSTRACT

In present paper, we study some properties of CR-submanifold of a nearly hyperbolic cosymplectic manifold with a
quarter symmetric non metric connection, obtain some result on &-horizontal and -vertical CR-submanifold of a
nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection. We also find the integrability
conditions of some distributions and study parallel distributions (horizontal & vertical distributions) on CR-
submanifold of a nearly hyperbolic cosymplectic manifold with a quarter symmetric non metric connection.

Keywords and Phrases: CR-submanifold, nearly hyperbolic cosymplectic manifold with a quarter symmetric non
metric connection, parallel distribution, and integrability condition.

INTRODUCTION

The notion of CR-submanifolds of a Kaehler manifold was introduced and studied by A. Bejancu in ([1], [2]). Since
then, several paper on Kaehler manifold were published. CR-submanifolds of Sasakian manifold was studied by
C.J.Hsu in [3] and M.Kobayashi in [4]. Later, several geometers (see, [5], [6], [7], [8], [9], [10]) enrich the study of
CR-submanifolds of almost contact manifolds. On the other hand, almost hyperbolic (f, g,n, &)-structure was defined
and studied by M.D.Upadhyay and K.K.Dube in [11]. L.Bhatt and K.K.Dube studied CR-submanifolds of a trans-
hyperbolic Sasakian manifold in [12]. Ahmad M. and Ali K. study CR-submanifold of a nearly hyperbolic
cosymplectic manifold [13]. In this paper, we study some properties of CR- Submanifold of nearly hyperbolic
cosymplectic manifold with a quarter symmetric non metric connection.

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic cosymplectic manifold
with a quarter symmetric non metric connection. In section 3, some properties of CR- Submanifold of nearly
hyperbolic cosymplectic manifold with a quarter symmetric non metric connection are investigated. In section 4, some
result on parallel distribution on ¢&-horizontal and &-vertical CR- Submanifold of nearly hyperbolic cosymplectic
manifold with a quarter symmetric non metric connections are obtained.

2. PRELIMINARIES

Let M be an n-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric
structure (9, &,1. g), where a tensor @ of type (1,1) a vector field &, called structure vector field and 7, the dual 1-form
of & satisfying the following

(1) *’X=X+nX)§ gX,&) =nX),

(22) n@=-1 06 =0, nod =0,

(23)  g@X,0Y) = —gX,Y) —n(Xn(Y)

For any X,Y tangent to M [9, 6]. In this case
(24)  g@x,Y) =—g(X, 0Y).
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An almost hyperbolic contact metric structure (@,£,n,g) on M is called hyperbolic cosymplectic manifold [12] if and
only if
(25)  (Vx@)Y + (Vy@)X = 0 for all X,Y tangent to M.

A hyperbolic cosymplectic manifold M is called nearly hyperbolic cosymplectic manifold, if
(2.6) V& = 0 for a Riemannian Connection V.

Now, Let M be a submanifold immersed in M. The Riemannian metric induced on M is denoted by the same symbol g.
Let TM and T*M be the Lie algebra of vector fields tangential to M and normal to M respectively and V be the
induced Levi-Civita connection on N, then the Gauss and Weingarten formulas are given respectively by

(2.7)  VyY = VY + h(X,Y).

Now we define a quarter symmetric non-metric connection

Putting Y =N
VXN = VxN

(28) VyN =—AyX + VgNfor any X,Y € TM and N € T*M, where V* is a connection on the normal bundle
T+M, h is the second fundamental form and A is the Weingarten map associated with N as

(2.9) gANX,Y) = g(h(X,Y),N) forany X € M and X € T, M. We write

(210) X =PX+QX
where PX € D and QX € D*.

Similarly, for N normal to M, we have
(211) ON =BN +CN
where BN (resp.CN) is the tangential component (resp.normal component) of @N.

Now we define a quarter symmetric non-metric connection

Putting Y = @Y
VXQY = VXQ)Y

(Vx @)Y + 8(VyY) = (VxB)Y + 8(VxY)

Interchanging X and Y
(Vy@)X + 8(VyX) = (Vy @)X + 8(VyX)

Adding above two equations
VDY + (Vy0)X + 8(VxY — Vs Y) + 0(V, X — VyX) = (Vx0)Y + (V, @)X

From (2.5) and quater symmetric non-metric connection

Tx0)Y + (Vy0)X + 6(n(Y)0X) + d(n(X)QY) =0

x®)Y + (V,0)X = —n(¥)02X — n(X)@>Y

V@Y + (V@)X = —n() (X + (X)) —nO Y +n(¥)$)
(212)  (T@)Y + (V)X = —n(¥)X = n(X)Y = 2n(X)n(V)§

Quarter symmetric hon-metric connection

Putting Y = ¢

Vyé = Vx + (50X
(2.13) Vy0¢ = —0X
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Definition 1: An m-dimensional submanifold M of M is called a CR-Submanifold of almost nearly hyperbolic contact
manifold M, if there exists a differentiable distribution D: x — D, on M satisfying the following conditions:

i D is invariant, that is @D, c D, for each x € M.

ii. The complementary orthogonal distribution Dt of D is anti-invariant, that is @D}i c TiM. If
dim D} = 0 (resp.,dim D, = 0), then the CR-Submanifold is called an invariant (resp., anti-invariant)
submanifold. The distribution D (resp., D1) is called the horizontal (resp., vertical) distribution. Also, the pair
(D,D*) is called & — horizontal (resp.,vertical) if & € Dy (resp.,éx € Di).

3. SOME BASIC LEMMAS

Lemma 3.1: Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold M then

B.1)  —n(MPX —n(X)PY = 2n(X)n(Y)PE + OP(VxY) + OP(VyX) = PVx(DPY) + PVy(PPX) — PAgoy X
—PApoxY

B2) (X —nX)QY —2nX)n(Y)QS + 2Bh(X,Y) = QVx(DPY) + QVy(BPX) — QApey X — QAgoxY

(3.3 BQ(VyY) + BQ(VyX) + 2Ch(X,Y) = h(X,@PY) + h(Y,®PX) + V3BQY + V3 8QX for any X,Y € TM.

Proof: Using (2.4), (2.5), (2.6), we get
Y = PY + QY.
@Y = @PY + 0QY.

Differentiating covariantly

Left side: Vy0Y = (V40)Y + 0(V,Y)
= (V@)Y + 0(VxY + h(X,Y))

Right side:  Vyx(@PY + @QY) = Vx(OPY) + Vx (BQY).
Vx(BPY + ®QY) = Vx(®PY) + h(X,®PY) — Agoy X + Vx@QY.

From Left and Right side
(k@)Y + @(VxY) + Bh(X,Y) = Vx(BPY) + h(X,BPY) — Agoy X + Vi BQY.

Interchanging X & Y,
(@)X + 8(VyX) + Bh(Y,X) = Vy(BPX) + h(Y, DPX) — AgoxY + V7 DQX.

Adding above two equations
(V@)Y + (7, 0)X + 0(VyY) + 8(Vy X) + 20h(X,Y) = Vx (BPY) + Vy (BPX) + h(X,®PY) + h(Y,BPX)

Using (2.12), we have
—1nMX —nX)Y = 2n(Xn(Y)& + 0(VyY) + O(Vy X) + 20h(X,Y)
= Vy(@PY) + Vy(BPX) + h(X,®PY) + h(Y,®PX) — Apgr X — AgoxY + V3BQY + V3 0QX
—n(Y)PX —n(¥Y)QX —n(X)PX —n(X)QY — 2n(X)n(Y)P — 2n(XIn(Y)QE + OP(VxY) + @Q(VxY)
+P@(VyX) + 0Q(VyX) + 2Bh(X,Y) + 2Ch(X,Y) = PV (@PY) + QV4(@PY) + PVy(BPX) + QVy,(BPX)
+h(X,®PY) + h(Y,BPX) — PAgoy X — QApor X — PAgoxY — QAgoxY + V3 0QY + V§ QX

Comparing horizontal, vertical and normal components, we get
Tangential Component:
—n(Y)PX —n(X)PY — 2n(X)n(Y)PE + 0P (V4Y) + OP(VyX)

Vertical Component:
()X —n(X)QY — 2n(X)n(Y)Q¢ + 2Bh(X,Y) = QVx(OPY) + QVy(OPX) — QAgor X — QAgoxY

Normal Component:
BQ(VxY) + 0Q(VyX) + 2Ch(X,Y) = h(X,BPY) + h(Y,®PX) + V3BQY + V3 BQX

Hence the Lemma is proved.
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Lemma 3.2: Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold M then
2(Vx @)Y = —n(V)X —n()Y = 2n(XIn(¥Y)§ + Vx @Y — Vy0X + h(X, 0Y) — h(Y, 0X) — O[X,Y]

2(Vy0)X = —n(Y)X —n(X)Y — 2n(X)n(Y)E — Vx@Y + VyBX + h(Y,0X) — h(X, BY) + O[X,Y]
forany X,Y € D.

Proof: From Gauss formula (2.7), we have
VyY = VyY + h(X,Y).
V@Y = Vy@Y + h(X, BY).
Vy@X = VyBX + h(BX,Y).
(3.6) Vy@Y —V,0X = V@Y + h(X,0Y) — Vy0X — h(Y, 0X).

Also, we have
Vy@Y = (VxB)Y + BV, Y.

Subtracting above,
Vx@Y = Vy0X = (Vx®)Y — (V@)X + B(VxY — VyX)
(3.7  Vy@Y —Vy0X = (Vx0)Y — (Vy @)X + O[X,Y].

From (3.6) and (3.7), we get
Vx@®)Y — (Ty®)X + B[X, Y] = Vx@Y + h(X,0Y) — V,0X — h(Y, X).
(38)  (Vy®)Y — (Vy @)X = V48Y + h(X,BY) — Vy8X — h(Y, 8X) — O[X,Y].

Adding (3.8) and (2.12), we obtain
2(Vy®)Y = —n(Y)X —n(X)Y — 2n(X)n(Y)§& + V@Y + h(X,dY) — Vy0X — h(Y,DX) — B[X, Y]

Subtracting (3.8) from (2.12), we obtain
2(Vy0)X = —n(V)X —n(X)Y — 2n(X)n(Y)E — Vx@Y — h(X,BY) + V40X + h(Y,0X) + O[X,Y]

Hence the Lemma is proved.

Corollary 3.3: If M be a & —vertical CR-submanifold of a CR- submanifold of a nearly hyperbolic cosymplectic
manifold M with quarter symmetric metric connection. Then

2(Vx@)Y = Vx@Y + h(X,®Y) — Vy8X — h(Y, 0X) — @[X, Y]
and
2(Vy0)X = Vy0X — Vx@Y — h(X,BY) + h(Y, ®X) + @[X,Y] for any X,Y € D.

Lemma 3.4: Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold M then
2(V4 @)Y = —n(Y)X —n(X)Y —2n(X)n(Y)é + ApxY — Agy X + V3 BY — V30X — B[X, Y]
and
2(Vy0)X = —n(V)X —n(X)Y = 2n(X)n(Y)E — AgxY + AgyX — V3 @Y + V40X + O[X,Y] for any X,Y € D*.

Proof: From Weingarten formula (2.8), we have

Putting N = @Y
V@Y = —Agy X + V4 0Y.
Vy@X = —AgyY + V40X,
(3.10) Vy@Y — Vy@X = AgyY — AgyX + VEBY — VH0X.

Also,

From (3.10) and (3.11), we get
(312) (Vx@)Y — (Vy@)X = AgxY — AgyX + V50Y — Vy@X — O[X,Y].
(2.12) (Vx®)Y + (Vy@)X = —n(NX = n(X)Y = 2n(Xn(Y)§
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Adding (3.12) and (2.12), we obtain
2(V4@)Y = —n(V)X —nX)Y —2n(X)n(Y)E + ApxY — Apy X + V3 @Y — V30X — B[X, Y]

Subtracting (3.12) from (2.12), we obtain
2(Vy0)X = —n(NX —n(X)Y — 2n(X)N(Y)E — AgxY + AgyX — Vx0Y + V$0X + O[X, Y]

Hence the Lemma is proved.

Corollary 3.5: If M be a ¢ — horizontal CR-submanifold of of a CR- submanifold of a nearly hyperbolic cosymplectic
manifold M with quarter symmetric metric connection. Then

2(Vy @)Y = ApyY — AgyX + V@Y — V§0X — @[X,Y].
and

2(Vy@)X = AgyX — AgyY + V40X — Vx@Y + Q[X,Y]. for any X,Y € D*.

Lemma 3.6: Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold M then
2(V4@)Y = —n(V)X —n(X)Y — 2n(X)n(Y)é — Agy X + V3 @Y — Vy0X — h(Y,0X) — @B[X, Y]
2(Vy0)X = —n(V)X —n(X)Y = 2n(X)n(Y)E + AgyX — VXOY + V, 0X + h(Y,0X) + O[X,Y]

forany X € Dand Y € DL.

Proof: Using Gauss and Weingarten formula for X € D and Y € D+ respectively, we have
Vy@Y = —AgyX + V@Y.

and Vy0X =V, 0X + h(Y, 0X).

(3.14) Vy®Y —Vy0X = —AgyX + V5 0Y — Vy 60X — h(Y, 8X).

Also, we have

By virtue of (3.14) and (3.15), we get
(3.16) (Vx@)Y — (YY(Z))X = —Agy X + V3 @Y — Vy0X — h(Y,0X) — @[X,Y].
(2.12) (V@)Y + (V@)X = —n(NX — n(X)Y — 2n(XIn(V)§

Adding (3.16) and (2.12), we obtain
2(VB)Y = —n(V)X —nX)Y — 2n(X)n(Y)& — Agy X + Vx @Y — Vy0X — h(Y,0X) — B[X,Y]

Subtracting (3.16) from (2.12), we obtain
2(Vy0)X = —n(V)X — n(X)Y = 2n(X)n(Y)& + AgyX — V¥BY + V,0X + h(Y,0X) + 0[X,Y]

Hence the Lemma is proved.
4. PARALLEL DISTRIBUTION

Definition 2:The horizontal (resp., vertical) distribution D (resp.,D') is said to be parallel [13] with respect to the
connection on M if VyY € D (resp.,V,W € D*) for any vector field X,Y € D (resp.,W,Z € D1).

Theorem 4.1: Let M be a & — vertical CR-submanifold of a nearly hyperbolic cosymplectic manifold M. If the
horizontal distribution D is parallel, Then
(4.1) h(X,0Y) =h(,0X). foranyX,Y €D

Proof: Using parallelism of horizontal distribution D, we have
(4.2) Vy(@Y) €D andVy@X €D foranyX,Y €D.

From Vertical component,
—n(¥V)QX —n(X)QY — 2n(X)n(Y)Q¢ + 2Bh(X,Y) = QVx(DPY) + QVy(DPX) — QApor X — QAgoxY

As Q is a projection operator on D+, We have
4.3) Bh(X,Y) = 0.

We know,
@®N = BN + CN
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Putting N = h(X,Y)
Ph(X,Y) = Bh(X,Y) + Ch(X,Y)

From (4.3)
(4.4) 20h(X,Y) =2Ch(X,Y)

From normal component,
PQ(VyY) + 0Q(VyX) + 2Ch(X,Y) = h(X, PY) + h(Y, BPX) +V4BQY + Vi PQX.
2Ch(X,Y) = h(X,®PY) + h(Y, ®PX)

(45) 2Ch(X,Y) =h(X,0Y)+ h(Y,0X), forany X,Y € D.

Applying (4.5) in (4.4)
(4.6) 20h(X,Y) =h(X,0Y) + h(Y,0X)

Replacing X by X
20h( 0X,Y) = h( 90X, 0Y) + h(Y, §2X)
20h( BX,Y) = h( 0X,0Y) + h(Y, X + n(X)§)
20h( 0X,Y) = h( X, 0Y) + h(Y,X) + h(Y,n(X)§)
(4.7)  20h(BX,Y) = h( 8X,®Y) + h(Y,X)

Now, replacing Y — @Y in (4.6), we get
h(X, ®*Y) + h(®Y,0X) = 20h(X,BY).
h(X,Y +n(Y)$) + h(BY,0X) = 20h(X, BY).
(4.8) h(X,Y)+ h(®Y,0X) = 20h(X, 0Y).

Thus from (4.7) and (4.8), we find
20h(0X,Y) = 20h(X, @Y).

Operating @ on both sides, we get
h(X,®Y) = h(Y,0X).
Hence the Theorem is proved.

Theorem 4.2: Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold M. If the distribution D* is
parallel with respect to the connection on M, then
(4.9) AgyX + AgxY € D* . for any X,Y € D*.

Proof: Let, X,Y € D .then using Weingarten Formula .

We have,

Putting N = @Y
VyBY = —Agy X + Vi @Y

Using Gauss formula
(Vx@)Y = —Agy X + V@Y — @(VyY + h(X,Y))
(411) (V@)Y = —AgyX + V§@Y — @VyY — Bh(X,Y)

Interchanging X and Y
(4.12) (Vy@)X = —AgxY + V30X — @Vy X — Bh(Y, X)

Adding (4.11) and (4.12), we get
(4.13)  (Vx@)Y + (Vy @)X = —Agy X — AgyY + V@Y + V30X — @V, Y — @V, X — 20h(X,Y)

From (2.13) and (4.13)
—nX)Y — n(V)X —2nXOn(Y)E = —AgyX — ApxY + V¥ @Y + V30X — @VyY — @Vy X — 20h(X,Y)

Taking inner product w.rto Z€ D
—nXg(¥.2) — n(NgX,2) - 2nOn (1) g (¢, 2) = —g(AgyX,Z) — g(AgxY,Z) + g(Vx @Y, Z)
+9(Vy0X,2) — g(@VxY,Z) — g(@VyX ,Z) — 20g(h(X,Y),Z)

© 2015, IJMA. All Rights Reserved 72



Nikhat Zulekha*', Shadab Ahmad Khanz, Mobin Ahmad® / CR- Submanifold of Nearly Hyperbolic Cosymplectic Manifold with a
Quarter Symmetric Non metric Connection / IIMA- 6(9), Sept.-2015.

This implies that
(AgyX + AgyY) € D*
for any X,Y € D*.

Hence theorem is proved.
Definition 4.3: A CR-submanifold is said to be mixed-totally geodesic if h(X,Z) = 0, for all X € D and Z € D*.

Lemma 4.4: Let M be a CR-submanifold of a nearly trans-hyperbolic Cosymplectic manifold M. Then M is mixed
totally geodesic if and only if AyX € D forall X € D.

Definition 4.5: A Normal vector field N # 0 is called D — parallel normal sectionif V$#N = 0, forall X € D.

Theorem 4.6: Let M be a mixed totally geodesic CR-submanifold of a nearly trans- hyperbolic Sasakian manifold M.
Then the normal section N € @D+ is D parallel if and only if Vy®N € D for all X € D.

Proof: Let N € @D*, then from (3.2) we have
—n(¥)QX —n(X)QY — 2n(X)n(Y)Q¢ + 2Bh(X,Y) = QVx(@PY) + QVy(OPX) — QAper X — QAgoxY

As Q is a projection operator on D+, then
(4.15) 2Bh(X,Y) = QVy(@X) — QAgy X.

Using definition of mixed geodesic CR-submanifold,
h(X,Y)=0, if X€DandZ € D*
(4.16)  QVy(9X) = QAgyX.

As AgyX €D, for X €D.

Therefore, QAgyX =0
(4.17) QVy(®X) =0

By normal component
PQ(VxY) + 0Q(VyX) + 2Ch(X,Y) = h(X, PY) + h(Y, ®PX) + VE0QY + V00X

As Q is a projection operator on D+, then
BQ(VyY) = Vx0QY

Putting, Y = @N
(DQ)Vy@N = V§@>N
(BQ)Vx®N = V(N +n(N)$)
(4.20) (BQ)Vyx®N = VN

Then by Definition of Parallelism of N, We have
(BQ)VxON =0
QVx®N =0

Consequently, we get
Vx(@N) € D, forallX €D.

Converse part is easy consequence of (4.20)
This completes the Proof.
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