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ABSTRACT 
In this work, we introduced  𝑇𝑇𝐹𝐹  – Contraction in complete 𝐺𝐺-Metric Spaces and we study some fixed point Theorems of 
generalized 𝑇𝑇𝐹𝐹  – Contraction mapping in complete G-metric spaces. 
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1. INTRODUCTION  

 
Some generalizations of the notion of a metric space have been proposed by some authors. Gahler [1, 2] coined the 
term of 2-metric spaces. This is extended to D-metric space by Dhage (1992) [3, 4]. Dhage proved many fixed point 
Theorems in D-metric space. In 2006, Mustafa in collaboration with Sims introduced a new notion of generalized 
metric space called G-metric space [5]. In fact, Mustafa et al. studied many fixed point results for a self mapping in      
G-metric spaces under certain conditions; see [5, 6, 7, 8 and 9].  
 
In 2010 Moradi et al. [10] introduced a new type of fixed point Theorem by defining  𝑇𝑇𝐹𝐹  –Contraction as a new 
contractive condition in complete metric spaces. In this work, we introduced  𝑇𝑇𝐹𝐹  – Contraction in complete 𝐺𝐺-Metric 
Spaces and we study some fixed point Theorems of generalized 𝑇𝑇𝐹𝐹  – Contraction mapping in complete G-metric 
spaces. 
 
2. DEFINITIONS AND PRELIMINARIES 

 
Definition 2.1 [5]: Let 𝑋𝑋 be a non empty set, and let 𝐺𝐺:𝑋𝑋 × 𝑋𝑋 × 𝑋𝑋 → [0,∞) be a function satisfying the following 
axioms 
(𝐺𝐺1) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧, 
(𝐺𝐺2) 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦) > 0 for all  𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, with 𝑥𝑥 ≠ 𝑦𝑦.v 
(𝐺𝐺3) 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦) ≤ 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋, with 𝑦𝑦 ≠ 𝑧𝑧. 
(𝐺𝐺4)𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐺𝐺(𝑥𝑥, 𝑧𝑧,𝑦𝑦) = 𝐺𝐺(𝑦𝑦, 𝑧𝑧, 𝑥𝑥) =…., (symmetry in all three variables) 
(𝐺𝐺5) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥, 𝑎𝑎, 𝑎𝑎) + 𝐺𝐺(𝑎𝑎,𝑦𝑦, 𝑧𝑧), for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑎𝑎 ∈ 𝑋𝑋 (rectangular inequality) 
 
Then the function 𝐺𝐺 is called a generalized metric, or more specially a 𝐺𝐺-metric on 𝑋𝑋, and the pair (𝑋𝑋,𝐺𝐺) is called a     
𝐺𝐺-metric space. 
 
Example: Let (𝑋𝑋,𝑑𝑑) be a usual metric space. Then (𝑋𝑋,𝐺𝐺𝑠𝑠)  and (𝑋𝑋,𝐺𝐺𝑚𝑚 ) are 𝐺𝐺-metric spaces, where 

𝐺𝐺𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) + 𝑑𝑑(𝑥𝑥, 𝑧𝑧) for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 
                                                                         and 

𝐺𝐺𝑚𝑚 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =max {𝑑𝑑(𝑥𝑥,𝑦𝑦),𝑑𝑑(𝑦𝑦, 𝑧𝑧),𝑑𝑑(𝑧𝑧, 𝑥𝑥)} for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋. 
 
Definition 2.2 [5]: Let (𝑋𝑋,𝐺𝐺) and (𝑋𝑋 ′,𝐺𝐺 ′) be 𝐺𝐺-metric spaces and let 𝑓𝑓: (𝑋𝑋,𝐺𝐺) → (𝑋𝑋 ′,𝐺𝐺 ′) be a function, then 𝑓𝑓 is said 
to be 𝐺𝐺-continuous at a point 𝑎𝑎 ∈ 𝑋𝑋  if given 𝜀𝜀 > 0 there exist 𝛿𝛿 > 0 such that 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋,𝐺𝐺(𝑎𝑎, 𝑥𝑥,𝑦𝑦) < 𝛿𝛿  implies that 
𝐺𝐺 ′(𝑓𝑓𝑎𝑎, 𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦) < 𝜀𝜀. A function 𝑓𝑓 is 𝐺𝐺-continuous on 𝑋𝑋 if and only if it is 𝐺𝐺-continuous at all 𝑎𝑎 ∈ 𝑋𝑋. 
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Definition 2.3 [5]: Let (𝑋𝑋,𝐺𝐺) be a 𝐺𝐺-metric space, and let {𝑥𝑥𝑛𝑛 } be a sequence of points of 𝑋𝑋, therefore; we say that 
{𝑥𝑥𝑛𝑛 }  is 𝐺𝐺 -convergent to 𝑥𝑥  if lim𝑛𝑛 ,𝑚𝑚→∞ 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) = 0 ; that is ,for any 𝜀𝜀 > 0, there exist N ∈ 𝑁𝑁  such that 
𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) < 𝜀𝜀  for all 𝑛𝑛.𝑚𝑚 ≥N.We call 𝑥𝑥 is the limit of the sequence {𝑥𝑥𝑛𝑛 }  and we write 𝑥𝑥𝑛𝑛 → 𝑥𝑥  as 𝑛𝑛 → ∞  or 
lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 𝑥𝑥. 
 
Proposition 2.4 [5]: Let (𝑋𝑋,𝐺𝐺) and (𝑋𝑋 ′,𝐺𝐺 ′) be 𝐺𝐺 metric spaces, then a function 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 is said to be 𝐺𝐺-continuous at 
a point 𝑥𝑥 ∈ 𝑋𝑋  if and only if it is 𝐺𝐺 -sequentially continuous, that is, whenever {𝑥𝑥𝑛𝑛 } is 𝐺𝐺 -convergent to 𝑥𝑥 , {𝑓𝑓𝑥𝑥𝑛𝑛 } is          
𝐺𝐺-convergent to 𝑓𝑓(𝑥𝑥). 
 
Proposition 2.5 [5]: Let (𝑋𝑋,𝐺𝐺) be a 𝐺𝐺-metric space. Then the following statements are equivalent 

(a) {𝑥𝑥𝑛𝑛 } is 𝐺𝐺-convergent to 𝑥𝑥. 
(b) 𝐺𝐺(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛 , 𝑥𝑥) → 0 as 𝑛𝑛 → ∞. 
(c) 𝐺𝐺(𝑥𝑥𝑛𝑛 , 𝑥𝑥, 𝑥𝑥) → 0 as 𝑛𝑛 → ∞. 
(d) 𝐺𝐺(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥) → 0 as 𝑛𝑛 → ∞. 

 
Proposition 2.6 [5]: Let (𝑋𝑋,𝐺𝐺) be a 𝐺𝐺-metric space. A sequence {𝑥𝑥𝑛𝑛} is called 𝐺𝐺-cauchy sequence if given 𝜀𝜀 > 0, there 
is N∈ 𝑁𝑁 such that 𝐺𝐺(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑙𝑙) < 𝜀𝜀 for all 𝑛𝑛,𝑚𝑚, 𝑙𝑙 ≥N; that is if 𝐺𝐺(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑙𝑙) → 0 as 𝑛𝑛,𝑚𝑚, 𝑙𝑙 → ∞. 
 
Proposition 2.7 [5]: In a 𝐺𝐺-metric space (𝑋𝑋,𝐺𝐺), the following two statements are equivalent. 

(1) The sequence {𝑥𝑥𝑛𝑛 } is 𝐺𝐺-cauchy. 
(2) For every 𝜀𝜀 > 0, there exist 𝑁𝑁 ∈ 𝑁𝑁 such that 𝐺𝐺(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑚𝑚 ) < 𝜀𝜀 for all 𝑛𝑛,𝑚𝑚 ≥ 𝑁𝑁. 

 
Definition 2.9 [5]: A 𝐺𝐺-metric space (𝑋𝑋,𝐺𝐺) is said to be 𝐺𝐺-complete (or a complete 𝐺𝐺-metric pace) if every 𝐺𝐺-cauchy 
sequence in (𝑋𝑋,𝐺𝐺) is 𝐺𝐺-convergent in (𝑋𝑋,𝐺𝐺). 
 
Proposition 2.10 [5]: Let  (𝑋𝑋,𝐺𝐺) be a 𝐺𝐺-metric space. Then the function 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is jointly continuous in all three of 
its variables. 
 
Definition 2.11 [5]: A 𝐺𝐺-metric space (𝑋𝑋,𝐺𝐺)is called a symmetric 𝐺𝐺-metric space if  

𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) = 𝐺𝐺(𝑦𝑦, 𝑥𝑥, 𝑥𝑥) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. 
 
Proposition 2.12 [5]: Every 𝐺𝐺-metric space (𝑋𝑋,𝐺𝐺) defines a metric space (𝑋𝑋,𝑑𝑑𝐺𝐺) by                                     

𝑑𝑑𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) + 𝐺𝐺(𝑦𝑦, 𝑥𝑥, 𝑥𝑥) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. 
 
Note that, if (𝑋𝑋,𝐺𝐺) is a symmetric space 𝐺𝐺-metric space, then 

𝑑𝑑𝐺𝐺(𝑥𝑥,𝑦𝑦) = 2 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 
  
However, if (𝑋𝑋,𝐺𝐺) is not asymmetric space, then it holds by the 𝐺𝐺-metric properties that 

3
2
𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) ≤ 𝑑𝑑𝐺𝐺(𝑥𝑥,𝑦𝑦) ≤ 3𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋. 

 
In general, these inequalities cannot be improved. 
 
Proposition 2.13 [5]:  A 𝐺𝐺-metric space (𝑋𝑋,𝐺𝐺) is 𝐺𝐺-complete if and only if (𝑋𝑋,𝑑𝑑𝐺𝐺) is a complete metric space. 
 
Proposition 2.14 [5]: Let (𝑋𝑋,𝐺𝐺) be a 𝐺𝐺-metric space. Then for any 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑎𝑎 ∈ 𝑋𝑋, it follows that  

(1) If 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 then 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧. 
(2) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦) + 𝐺𝐺(𝑥𝑥, 𝑥𝑥, 𝑧𝑧). 
(3) 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) ≤ 2 𝐺𝐺(𝑦𝑦, 𝑥𝑥, 𝑥𝑥). 
(4) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥, 𝑎𝑎, 𝑧𝑧) + 𝐺𝐺(𝑎𝑎,𝑦𝑦, 𝑧𝑧). 
(5) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 2

3
{𝐺𝐺(𝑥𝑥, 𝑎𝑎, 𝑎𝑎) + 𝐺𝐺(𝑦𝑦, 𝑎𝑎, 𝑎𝑎) + 𝐺𝐺(𝑧𝑧, 𝑎𝑎, 𝑎𝑎). 

 
It is well known that the first important result on fixed point theory is Banach Contraction Principle. Due to the 
importance, there exist many extension of it. 
 
Theorem 2.15 [10]:  A mapping   𝑇𝑇:𝑋𝑋 → 𝑋𝑋, where (𝑋𝑋,𝑑𝑑) is a metric space, is said to be a contraction if there exist 
𝑘𝑘 ∈ [0,1) such that for all  𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, 

𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦) ≤ 𝑘𝑘 𝑑𝑑(𝑥𝑥,𝑦𝑦)                                                           (2.1) 
 
If the metric space (𝑋𝑋,𝑑𝑑) is a complete then the mapping satisfying (1) has a unique fixed point. 
 
 



N. Surender*1, B. Krishna Reddy2 /  
Fixed Point of 𝑻𝑻𝑭𝑭-Contractive Single Valued Mappings in Complete 𝑮𝑮-Metric Space / IJMA- 6(9), Sept.-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                        95   

 
Theorem 2.16: A mapping𝑇𝑇:𝑋𝑋 → 𝑋𝑋 , where (𝑋𝑋,𝐺𝐺)  is a 𝐺𝐺 -metric space, is said to be a contraction if there exist 
𝑘𝑘 ∈ [0,1) such that for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋, 

𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧) ≤ 𝑘𝑘 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧).                                                           (2.2) 
 
If the metric space (𝑋𝑋,𝐺𝐺) is complete then the mapping satisfying (2) has a unique fixed point. 
 
Definition 2.17 [10]: Let (𝑋𝑋,𝑑𝑑) be a metric space, let 𝑓𝑓,𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be two self mappings and let 𝐹𝐹: [0,∞) → [0,∞),𝐹𝐹 is 
nondecreasing, continuous from right and 𝐹𝐹−1(0) = 0.  a mapping 𝑓𝑓  is said to be 𝑻𝑻𝑭𝑭 -contraction if there exist            
𝛼𝛼 ∈ [0,1) such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋,  

𝐹𝐹�𝑑𝑑(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦)� ≤ 𝛼𝛼 𝐹𝐹�𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦)�.                                                         (2.3) 
 
Remarks: 

(1) By taking 𝑇𝑇𝑥𝑥 ≡ 𝑥𝑥 and 𝐹𝐹(𝑥𝑥) ≡ 𝑥𝑥 then 𝑇𝑇𝐹𝐹-contraction and contraction are equivalent. 
(2) By taking 𝐹𝐹𝑥𝑥 ≡ 𝑥𝑥  we can define 𝑇𝑇 -contraction and by taking 𝑇𝑇𝑥𝑥 ≡ 𝑥𝑥  we can define 𝐼𝐼𝐹𝐹 -contraction (𝐼𝐼  is 

identity function). 
                       

Definition 2.18 [10]: Let (𝑋𝑋,𝑑𝑑) a metric space. A mapping 𝑇𝑇:𝑋𝑋 → 𝑋𝑋 is said to be sequentially convergent if we have, 
for every sequence {𝑦𝑦𝑛𝑛 },  if {𝑇𝑇𝑦𝑦𝑛𝑛}   is convergence then {𝑦𝑦𝑛𝑛 }  is also convergence. 𝑇𝑇  is said to be subsequentially 
convergent if we have, for every sequence {𝑦𝑦𝑛𝑛 }, if {𝑇𝑇𝑦𝑦𝑛𝑛 } is convergence then {𝑦𝑦𝑛𝑛} has a convergent subsequence. 
 
Definition 2.19 [10]: Let (𝑋𝑋,𝑑𝑑) be a metric space. A mapping 𝑇𝑇:𝑋𝑋 → 𝑋𝑋  is said to be graph closed if for every 
sequence {𝑥𝑥𝑛𝑛 } such that   lim𝑛𝑛→∞ 𝑇𝑇𝑥𝑥𝑛𝑛 = 𝑎𝑎 then for some ∈ 𝑋𝑋, 𝑇𝑇𝑇𝑇 = 𝑎𝑎. 
 
Example: the identity function on 𝑋𝑋 is graph closed. 
 
Before presenting the main results in this paper we introduce following concepts, which will be used in our result. 
 
Definition 2.20: (𝑻𝑻𝑭𝑭 -contraction in 𝑮𝑮-metric space): Let (𝑋𝑋,𝐺𝐺)  be a metric space, let 𝑓𝑓,𝑇𝑇:𝑋𝑋 → 𝑋𝑋  be two self 
mappings and let 𝐹𝐹: [0,∞) → [0,∞),𝐹𝐹 is nondecreasing, continuous from right and 𝐹𝐹−1(0) = 0. a mapping 𝑓𝑓 is said to 
be 𝑻𝑻𝑭𝑭-contraction if there exist 𝛼𝛼 ∈ [0,1) such that for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧  
 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� ≤ 𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)�.                                           (2.4) 
 
Remarks: 

(1) By taking 𝑇𝑇𝑥𝑥 ≡ 𝑥𝑥 and 𝐹𝐹(𝑥𝑥) ≡ 𝑥𝑥 then 𝑇𝑇𝐹𝐹-contraction and contraction are equivalent. 
(2) By taking 𝐹𝐹𝑥𝑥 ≡ 𝑥𝑥  we can define 𝑇𝑇 -contraction and by taking 𝑇𝑇𝑥𝑥 ≡ 𝑥𝑥  we can define 𝐼𝐼𝐹𝐹 -contraction                   

(𝐼𝐼 is identity function). 
 
Definition 2.21: Let (𝑋𝑋,𝐺𝐺) a metric space. A mapping 𝑇𝑇:𝑋𝑋 → 𝑋𝑋 is said to be sequentially convergent if we have, for 
every sequence {𝑦𝑦𝑛𝑛 }, if {𝑇𝑇𝑦𝑦𝑛𝑛}  is convergence then {𝑦𝑦𝑛𝑛 } is also convergence. 𝑇𝑇 is said to be Subsequentially convergent 
if we have, for every sequence {𝑦𝑦𝑛𝑛 }, if {𝑇𝑇𝑦𝑦𝑛𝑛 } is convergence then {𝑦𝑦𝑛𝑛} has a convergent subsequence. 
 
Definition 2.22: Let (𝑋𝑋,𝐺𝐺) be a metric space. A mapping 𝑇𝑇:𝑋𝑋 → 𝑋𝑋 is said to be graph closed if for every sequence 
{𝑥𝑥𝑛𝑛 } such that   lim𝑛𝑛→∞ 𝑇𝑇𝑥𝑥𝑛𝑛 = 𝑎𝑎 then for some ∈ 𝑋𝑋, 𝑇𝑇𝑇𝑇 = 𝑎𝑎. 
 
Example: the identity function on 𝑋𝑋 is graph closed. 
 
Theorem 2.23: [10] Let (𝑋𝑋,𝑑𝑑) be a metric space, let 𝑓𝑓,𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be two self mappings such that 𝑇𝑇 is one to one and 
graph closed (subseuentially convergent and continuous) and 𝑓𝑓 is 𝑇𝑇𝐹𝐹-contraction, that is there exist 𝛼𝛼 ∈ [0,1) such that 
for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋,  

𝐹𝐹�𝑑𝑑(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦)� ≤ 𝛼𝛼 𝐹𝐹�𝑑𝑑(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦)�.                              (2.5) 
 
Where 𝐹𝐹: [0,∞) → [0,∞),𝐹𝐹 is nondecreasing, continuous from right and 𝐹𝐹−1(0) = 0, then 𝑓𝑓 has a unique fixed point 
in 𝑋𝑋, also for every 𝑥𝑥 ∈ 𝑋𝑋, the sequence of iterates {𝑇𝑇𝑓𝑓𝑛𝑛𝑥𝑥} converges to the fixed point. 
 
Motivated by the above result, we address the same question on 𝐺𝐺-metric space. We establish fixed point result in the 
third part of the paper. 
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3. MAIN RESULT  
 
Theorem 3.1: Let (𝑋𝑋,𝐺𝐺) be a complete 𝐺𝐺- metric space, let 𝑓𝑓,𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be two self mappings such that 𝑇𝑇 is one to one 
and graph closed (subseuentially convergent and continuous) and 𝑓𝑓 is 𝑇𝑇𝐹𝐹-contraction, that is there exist 𝛼𝛼 ∈ [0,1) such 
that for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋,  
               𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� ≤ 𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)�.                                                         (3.1) 
Where  𝐹𝐹: [0,∞) → [0,∞),𝐹𝐹 is nondecreasing, continuous from right and 𝐹𝐹−1(0) = 0, then 𝑓𝑓 has a unique fixed point 
in 𝑋𝑋, also for every 𝑥𝑥0 ∈ 𝑋𝑋, the sequence of iterates {𝑓𝑓𝑛𝑛𝑥𝑥0} converges to the fixed point. 
 
Proof: Let 𝑥𝑥0 ∈ 𝑋𝑋 be an arbitrary point and 𝑥𝑥𝑛𝑛 = 𝑓𝑓𝑥𝑥𝑛𝑛−1 = 𝑓𝑓𝑛𝑛𝑥𝑥0                                             (3.2) 
 
Now, 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1)� = 𝐹𝐹(𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛) 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1)� ≤ 𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛)�, 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1)� ≤ 𝛼𝛼.𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛−2,𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛−1)�, 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1)� ≤ 𝛼𝛼.𝛼𝛼.𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛−3,𝑇𝑇𝑥𝑥𝑛𝑛−2,𝑇𝑇𝑥𝑥𝑛𝑛−2)�,                                                                      (3.3) 
 
After repeated applications of R.H.S of the above equation, we obtain 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1)� ≤ 𝛼𝛼𝑛𝑛  𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥0,𝑇𝑇𝑥𝑥1,𝑇𝑇𝑥𝑥1)�                                                                        (3.4) 
 
Again using (3.4) for all 𝑚𝑚,𝑛𝑛 ∈ 𝑁𝑁, taking 𝑚𝑚 > 𝑛𝑛, we have 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑚𝑚 ,𝑇𝑇𝑥𝑥𝑚𝑚 )� = 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑛𝑛𝑥𝑥0,𝑇𝑇𝑓𝑓𝑚𝑚𝑥𝑥0,𝑇𝑇𝑓𝑓𝑚𝑚𝑥𝑥0)�, 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑚𝑚 ,𝑇𝑇𝑥𝑥𝑚𝑚 )� ≤ 𝛼𝛼𝑛𝑛  𝐹𝐹(𝐺𝐺(𝑇𝑇𝑥𝑥0,𝑇𝑇𝑓𝑓𝑚𝑚−𝑛𝑛𝑥𝑥0,𝑇𝑇𝑓𝑓𝑚𝑚−𝑛𝑛𝑥𝑥0)                                                                       (3.5) 
 
Letting 𝑚𝑚,𝑛𝑛 → ∞ in (3.5), we obtain 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑚𝑚 ,𝑇𝑇𝑥𝑥𝑚𝑚 )� → 0+  as  𝑚𝑚,𝑛𝑛 → ∞. 
 
So, we have 𝐺𝐺(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑚𝑚 ,𝑇𝑇𝑥𝑥𝑚𝑚 ) → 0+  as  𝑚𝑚,𝑛𝑛 → ∞. 
 
Thus we hold that {𝑇𝑇𝑥𝑥𝑛𝑛 } is a Cauchy Sequence in complete metric space (𝑋𝑋,𝐺𝐺). 
 
By taking in view the completeness of 𝑋𝑋, we obtain that there exist 𝑣𝑣 ∈ 𝑋𝑋 such that  

 lim
𝑛𝑛→∞

𝑇𝑇𝑥𝑥𝑛𝑛 = 𝑣𝑣                                                                           (3.6) 
 
Note that 𝑇𝑇 is subsequentially convergent, then {𝑥𝑥𝑛𝑛 } has a convergent subsequence, so there is 𝑢𝑢 ∈ 𝑋𝑋 such that  

 lim
𝑘𝑘→∞

𝑥𝑥𝑛𝑛(𝑘𝑘) = 𝑢𝑢                                                                                         (3.7) 
 
Also, 𝑇𝑇 is continuous and  𝑥𝑥𝑛𝑛(𝑘𝑘) → 𝑢𝑢, therefore 

 lim
𝑘𝑘→∞

𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘) = 𝑇𝑇𝑢𝑢                                                                          (3.8) 
 
Note that {𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)} is a subsequence of {𝑇𝑇𝑥𝑥𝑛𝑛 }, so 𝑇𝑇𝑢𝑢 = 𝑣𝑣.                                                                        (3.9) 
 
Now we will show that 𝑢𝑢 ∈ 𝑋𝑋 is a fixed point of 𝑓𝑓. Indeed, we have  
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹�𝐺𝐺�𝑇𝑇𝑢𝑢,𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘),𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)� + 𝐺𝐺�𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘),𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢��, 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹�𝐺𝐺�𝑇𝑇𝑢𝑢,𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘),𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)� + 𝐺𝐺�𝑇𝑇𝑓𝑓𝑛𝑛(𝑘𝑘)𝑥𝑥0,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢�� , 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹[𝐺𝐺�𝑇𝑇𝑢𝑢,𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘),𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)� + 𝐺𝐺(𝑇𝑇𝑓𝑓𝑛𝑛(𝑘𝑘)𝑥𝑥0,𝑇𝑇𝑓𝑓𝑛𝑛(𝑘𝑘)+1𝑥𝑥0,𝑇𝑇𝑓𝑓𝑛𝑛(𝑘𝑘)+1𝑥𝑥0)  + 𝐺𝐺(𝑇𝑇𝑓𝑓𝑛𝑛(𝑘𝑘)+1𝑥𝑥0,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)], 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹[𝐺𝐺�𝑇𝑇𝑢𝑢,𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘),𝑇𝑇𝑥𝑥𝑛𝑛(𝑘𝑘)� + 𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛(𝑘𝑘)−1,𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛(𝑘𝑘)+1,𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛(𝑘𝑘)+1) + 𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥𝑛𝑛(𝑘𝑘),𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)],                                                                                                
                                                                                                                                                                                      (3.10) 
Letting 𝑘𝑘 → ∞ in (3.10), we have 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹[𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢) + 𝐺𝐺(𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢) + 𝐺𝐺(𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)], 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹[0 + 0 + 0], 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 𝐹𝐹(0), 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢)� ≤ 0                             (3.11) 
 
Last inequality (3.11) is contradiction unless  𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢) = 0. 
 
Thus, we obtained 𝑇𝑇𝑢𝑢 = 𝑇𝑇𝑓𝑓𝑢𝑢. Also, 𝑇𝑇 is one to one, we obtain 𝑢𝑢 = 𝑓𝑓𝑢𝑢.                                                                    (3.12) 
 
Thus, we provide 𝑢𝑢 ∈ 𝑋𝑋 is a fixed point of 𝑓𝑓. 
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Now, we show that the fixed point is unique. 
 
Assume 𝑢𝑢′ is another fixed point of 𝑓𝑓, then we have 𝑓𝑓𝑢𝑢′ = 𝑢𝑢′.                                                                     (3.13) 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢′,𝑇𝑇𝑢𝑢′)� = 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑢𝑢,𝑇𝑇𝑓𝑓𝑢𝑢′,𝑇𝑇𝑓𝑓𝑢𝑢′)�. 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢′,𝑇𝑇𝑢𝑢′)� ≤ 𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢′,𝑇𝑇𝑢𝑢′)� 

(1 − 𝛼𝛼) 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢′,𝑇𝑇𝑢𝑢′)� ≤ 0. 
 
This implies 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢′,𝑇𝑇𝑢𝑢′)� ≤ 0. 
 
This is a contradiction unless 𝐺𝐺(𝑇𝑇𝑢𝑢,𝑇𝑇𝑢𝑢′,𝑇𝑇𝑢𝑢′) = 0, 
 
Therefore 𝑇𝑇𝑢𝑢 = 𝑇𝑇𝑢𝑢′ and 𝑇𝑇 is one to one, so we obtain 𝑢𝑢 = 𝑢𝑢′. 
 
Therefore 𝑢𝑢 is a unique fixed point of 𝑓𝑓. 
 
Also, if we take 𝑇𝑇 is sequentially convergent, by replacing {𝑛𝑛} with {𝑛𝑛(𝑘𝑘)} in (3.7), we obtain 

 lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛 = 𝑢𝑢                                                                                                   (3.14) 
 
Thus the equation (3.14) shows that {𝑥𝑥𝑛𝑛 } converges to the fixed point of 𝑓𝑓. 
 
Thus 𝑥𝑥𝑛𝑛 = 𝑓𝑓𝑛𝑛𝑥𝑥0   converges the fixed point of 𝑓𝑓 [From (3.2)]. 
 
If 𝑇𝑇 is sequentially convergent then for every 𝑥𝑥0 ∈ 𝑋𝑋 the sequence of iterates {𝑓𝑓𝑛𝑛𝑥𝑥0} converges to the fixed point.  
 
Thus the proof is completed. 
 
Example (1): Let 𝑋𝑋 = [0,∞) and 𝑑𝑑(𝑥𝑥,𝑦𝑦) = |𝑥𝑥 − 𝑦𝑦|.  
 
Define  𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑥𝑥 − 𝑦𝑦| + |𝑦𝑦 − 𝑧𝑧| + |𝑧𝑧 − 𝑥𝑥|,                                                         (3.15) 
then (𝑋𝑋,𝐺𝐺) is a complete 𝐺𝐺-metric space.                
 
Consider two mappings 𝑇𝑇, 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 by 𝑇𝑇𝑥𝑥 = 1

𝑥𝑥
+ 1                                                         (3.16) 

        and 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥.                                                                               (3.17) 
Where 𝑇𝑇 is one to one, subsequentially convergent and continuous.  
 
Define 𝐹𝐹: [0,∞) → [0,∞),𝐹𝐹(𝑥𝑥) = 𝑥𝑥, then 𝐹𝐹(𝑥𝑥) is nondecreasing and continuous from the right and 𝐹𝐹−1(0) = 0.  
 
Now, 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� = 𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧), since (𝐹𝐹(𝑥𝑥) = 𝑥𝑥) 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� = 𝐺𝐺�𝑇𝑇(2𝑥𝑥),𝑇𝑇(2𝑦𝑦),𝑇𝑇(2𝑧𝑧)�,       [From (3.16)] 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� = 𝐺𝐺 � 1

2𝑥𝑥
+ 1 , 1

2𝑦𝑦
+ 1, 1

2𝑧𝑧
+ 1�,       [From (3.17)] 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� = � 1
2𝑥𝑥

+ 1 − 1
2𝑦𝑦
− 1� + � 1

2𝑦𝑦
+ 1 − 1

2𝑧𝑧
− 1� + � 1

2𝑧𝑧
+ 1 − 1

2𝑥𝑥
− 1�, [From (3.15)] 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� = �
1

2𝑥𝑥
−

1
2𝑦𝑦
� + �

1
2𝑦𝑦

−
1

2𝑧𝑧
� + �

1
2𝑧𝑧

−
1

2𝑥𝑥
�, 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� = 1
2
��1
𝑥𝑥
− 1

𝑦𝑦
� + �1

𝑦𝑦
− 1

𝑧𝑧
� + �1

𝑧𝑧
− 1

𝑥𝑥
��,                                                       (3.18) 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)� = 𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧), (Since (𝐹𝐹(𝑥𝑥) = 𝑥𝑥) 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)� = 𝐺𝐺 �1

𝑥𝑥
+ 1, 1

𝑦𝑦
+ 1 , 1

𝑧𝑧
+ 1�, [From (3.16)] 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)� = �1
𝑥𝑥

+ 1 − 1
𝑦𝑦
− 1� + �1

𝑦𝑦
+ 1 − 1

𝑧𝑧
− 1� + �1

𝑧𝑧
+ 1 − 1

𝑥𝑥
− 1�, [From (3.17)] 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)� = �1
𝑥𝑥
− 1

𝑦𝑦
� + �1

𝑦𝑦
− 1

𝑧𝑧
� + �1

𝑧𝑧
− 1

𝑥𝑥
�                                                                       (3.19) 

 
Substitute (3.19) in (3.18) we obtain, 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� =
1
2 
𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)�, 
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Compare above equation with (3.1), there exist 𝛼𝛼 = 1

2
∈ [0,1) such that 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� ≤ 𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)�. 
 
So 𝑓𝑓 is 𝑇𝑇𝐹𝐹-contraction and the conditions of Theorem 3.1 hold. 
 
Therefore 𝑓𝑓 has a unique fixed point, that is 𝟎𝟎. 
 
Example 2: Let 𝑋𝑋 = {0} ∪ { 1

𝑛𝑛
 /𝑛𝑛 ∈ 𝑁𝑁} endowed with the Euclidian metric that is   

𝑑𝑑(𝑥𝑥,𝑦𝑦) = |𝑥𝑥 − 𝑦𝑦|. 
 
Define   𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑥𝑥 − 𝑦𝑦| + |𝑦𝑦 − 𝑧𝑧| + |𝑧𝑧 − 𝑥𝑥|,                                            (3.20) 
then (𝑋𝑋,𝐺𝐺) is a complete 𝐺𝐺-metric space. 
 
Consider two mappings 𝑇𝑇, 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 by 
𝑓𝑓(0) = 0 and 𝑓𝑓 �1

𝑛𝑛
� = 1

𝑛𝑛+1
 for all 𝑛𝑛 ≥ 1,                                                                                    (3.21) 

𝑇𝑇(0) = 0 and 𝑇𝑇 �1
𝑛𝑛
� = 1

𝑛𝑛𝑛𝑛
 for all 𝑛𝑛 ≥ 1.                                                                                    (3.22) 

Where 𝑇𝑇 is one to one, subsequentially convergent and continuous.  
 
Define 𝐹𝐹: [0,∞) → [0,∞),𝐹𝐹(𝑥𝑥) = 𝑥𝑥, then 𝐹𝐹(𝑥𝑥) is nondecreasing and continuous from the right and 𝐹𝐹−1(0) = 0. 
 
For 𝑙𝑙,𝑚𝑚,𝑛𝑛 ∈ 𝑁𝑁, 
 
Now, 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇𝑓𝑓 �1
𝑙𝑙
� ,𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �1

𝑛𝑛
��� = 𝐺𝐺 �𝑇𝑇𝑓𝑓 �1

𝑙𝑙
� ,𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �1

𝑛𝑛
��,  (Since (𝐹𝐹(𝑥𝑥) = 𝑥𝑥)). 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇𝑓𝑓 �1
𝑙𝑙
� ,𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �1

𝑛𝑛
��� = �𝑇𝑇𝑓𝑓 �1

𝑙𝑙
� − 𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
��+ �𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� − 𝑇𝑇𝑓𝑓 �1

𝑛𝑛
�� + �𝑇𝑇𝑓𝑓 �1

𝑛𝑛
� − 𝑇𝑇𝑓𝑓 �1

𝑙𝑙
�� [From (3.20)] 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇𝑓𝑓 �
1
𝑙𝑙
� ,𝑇𝑇𝑓𝑓 �

1
𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �

1
𝑛𝑛
��� = �

1
(𝑙𝑙 + 1)𝑙𝑙+1 −

1
(𝑚𝑚 + 1)𝑚𝑚+1� + �

1
(𝑚𝑚 + 1)𝑚𝑚+1 −

1
(𝑛𝑛 + 1)𝑛𝑛+1� 

                                                                                               + � 1
(𝑛𝑛+1)𝑛𝑛+1 −

1
(𝑙𝑙+1)𝑙𝑙+1�. [From (3.21 & 3.22)] 

                                  
We have 1

(𝑛𝑛+1)𝑛𝑛+1 ≤
1
3
� 1
𝑛𝑛𝑛𝑛
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑙𝑙𝑙𝑙 𝑛𝑛 ≥ 1.                                                                                                                  (3.23) 

 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇𝑓𝑓 �1
𝑙𝑙
� ,𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �1

𝑛𝑛
��� ≤ �1

3
�1
𝑙𝑙𝑙𝑙
� − 1

3
� 1
𝑚𝑚𝑚𝑚�� + �1

3
� 1
𝑚𝑚𝑚𝑚� −

1
3
� 1
𝑛𝑛𝑛𝑛
�� + �1

3
� 1
𝑛𝑛𝑛𝑛
� − 1

3
�1
𝑙𝑙𝑙𝑙
��, [From (3.23)] 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇𝑓𝑓 �1
𝑙𝑙
� ,𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �1

𝑛𝑛
��� ≤ 1

3
��1
𝑙𝑙𝑙𝑙
− 1

𝑚𝑚𝑚𝑚 � + � 1
𝑚𝑚𝑚𝑚 −

1
𝑛𝑛𝑛𝑛
� + � 1

𝑛𝑛𝑛𝑛
− 1

𝑙𝑙𝑙𝑙
��                                                      (3.24) 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇 �
1
𝑙𝑙
� ,𝑇𝑇 �

1
𝑚𝑚
� ,𝑇𝑇 �

1
𝑛𝑛
��� = 𝐺𝐺 �𝑇𝑇 �

1
𝑙𝑙
� ,𝑇𝑇 �

1
𝑚𝑚
� ,𝑇𝑇 �

1
𝑛𝑛
��, 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇 �
1
𝑙𝑙
� ,𝑇𝑇 �

1
𝑚𝑚
� ,𝑇𝑇 �

1
𝑛𝑛
��� = �𝑇𝑇 �

1
𝑙𝑙
� − 𝑇𝑇 �

1
𝑚𝑚
�� + �𝑇𝑇 �

1
𝑚𝑚
� − 𝑇𝑇 �

1
𝑛𝑛
�� + �𝑇𝑇 �

1
𝑛𝑛
� − 𝑇𝑇 �

1
𝑙𝑙
��, 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇 �1
𝑙𝑙
� ,𝑇𝑇 � 1

𝑚𝑚
� ,𝑇𝑇 �1

𝑛𝑛
��� = �1

𝑙𝑙𝑙𝑙
− 1

𝑚𝑚𝑚𝑚 � + � 1
𝑚𝑚𝑚𝑚 −

1
𝑛𝑛𝑛𝑛
� + � 1

𝑛𝑛𝑛𝑛
− 1

𝑙𝑙𝑙𝑙
�                                                      (3.25) 

 
Substitute (3.25) in (3.24), we obtain 

𝐹𝐹 �𝐺𝐺 �𝑇𝑇𝑓𝑓 �1
𝑙𝑙
� ,𝑇𝑇𝑓𝑓 � 1

𝑚𝑚
� ,𝑇𝑇𝑓𝑓 �1

𝑛𝑛
��� ≤ �1

3
�  𝐹𝐹 �𝐺𝐺 �𝑇𝑇 �1

𝑙𝑙
� ,𝑇𝑇 � 1

𝑚𝑚
� ,𝑇𝑇 �1

𝑛𝑛
���                                                                    (3.26) 

 
Compare (3.26) with (3.1), there exist 𝛼𝛼 = 1

3
∈ [0,1) such that 

𝐹𝐹�𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧)� ≤ 𝛼𝛼 𝐹𝐹�𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧)�. 
 
So 𝑓𝑓 is 𝑇𝑇𝐹𝐹-contraction and the conditions of Theorem 3.1 hold. 
 
Therefore 𝑓𝑓 has a unique fixed point, that is 𝟎𝟎. 
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Theorem 3.2: Let (𝑋𝑋,𝐺𝐺) be a complete 𝐺𝐺- metric space, let 𝑓𝑓,𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be two self mappings such that 𝑇𝑇 is one to one 
and graph closed (subseuentially convergent and continuous) and 𝑓𝑓 is 𝑇𝑇-contraction, that is there exist 𝛼𝛼 ∈ [0,1) such 
that for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋,  

𝐺𝐺(𝑇𝑇𝑓𝑓𝑥𝑥,𝑇𝑇𝑓𝑓𝑦𝑦,𝑇𝑇𝑓𝑓𝑧𝑧) ≤ 𝛼𝛼 𝐺𝐺(𝑇𝑇𝑥𝑥,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧).                                                       (3.27) 
 
Then 𝑓𝑓 has a unique fixed point in 𝑋𝑋, also for every 𝑥𝑥0 ∈ 𝑋𝑋, the sequence of iterates {𝑓𝑓𝑛𝑛𝑥𝑥0} converges to the fixed 
point. 
 
Proof: By taking 𝐹𝐹(𝑥𝑥) = 𝑥𝑥 in Theorem 3.1, the condition (3.1) reduces to the condition (3.27) and proof follows the 
Theorem 3.1 
 
Corollary: If 𝐹𝐹(𝑥𝑥) = 𝑇𝑇𝑥𝑥 = 𝑥𝑥 in Theorem 3.1 then we obtain Theorem 2.16.                                                  
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