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ABSTRACT 
Let 𝒢𝒢 be the set of all 2×2 non-singular matrices�𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑�, when a, b, c, d are integers modulo p. Then 𝒢𝒢 is a group 
under matrix multiplication modulo p, of order 𝑝𝑝(𝑝𝑝2 − 1 ) ( 𝑝𝑝 − 1) . Let G be the subgroup of 𝒢𝒢  defined by                             
G = ��𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� 𝜖𝜖𝜖𝜖; 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = 1�. Then G is of order p(𝑝𝑝2 − 1). Let L(G) be the lattice formed by all subgroups of G. In 
this paper we give the structure of L(G) in the case when p = 5. 
 
 
On lattice of subgroups of a group 
 
Let L(G) be the lattice formed by all subgroups of a group G. Study on Lattices of subgroups of groups began in the 
thirties of the 20th century. 
 
A celebrated theorem of O. Ore[12] in 1938 states that “If L(G) is a distributive lattice, any finite set of elements from 
G generates a cyclic subgroup and vice-versa.” Thereafter, subgroup lattice theory has witnessed many contributions 
namely O. Ore[12], R. Baer[1], K. Iwasawa[8], A. W. Jones[9], Michio Suzuki[11], [2], [15] etc., 
 
In 1992 Karen M. Gragg and P. S. Kung [6] have attempted to characterize the finite groups with a consistent lattice of 
subgroups. In that endeavour, they discovered that the lattice of subnormal subgroups of a finite group is consistent and 
dually semimodular (lower semimodular). A. Vethamanickam has cited from their theorem and has given a counter 
example in his thesis [16]. Suzuki’s [11] results are mainly concerning L-isomorphic groups. i.e, groups whose lattices 
of subgroups are isomorphic. 
 
Our original attempt was to study some lattice theoretic properties of L(G) where G is the group of 2×2 matrices whose 
determinant is 1 modulo p, where p is a prime. In this paper we give the structure of L(G) when p = 5. In section 1, we 
give the preliminary definitions needed for the development of the paper and a lemma for finding the order  
of G. 
 
1. PRELIMINARIES 
 
Definition 1.1[13]: A partial order on a non-empty set P is a binary relation ≤ on P that is reflexive, antisymmetric and 
transitive. The pair (P, ≤) is called a partially ordered set or poset. Poset (P, ≤) is totally ordered if every x, y ∈ P are 
comparable, that is x ≤ y or y ≤ x. A non – empty subset S of P is a chain in P if S is totally ordered by ≤. 
 
Definition 1.2 [13]: Let (P, ≤) be aposet and let S ⊆ P. An upper bound for S is an element x ∈ P for which s ≤ x∀ s ∈ 
S. The least upper bound of S is called the supremum or join of S. A lower bound of S is an element x∈ P for which x ≤ 
s ∀  s ∈ S. The greatest lower bound of S is called the infimum or meet of S. Poset (P, ≤) is called a lattice if every pair 
x, y ∈ P has a supremum and an infimum. 
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Definition 1.3[10]: Semimodular lattice A lattice L is called semimodular if whenever a covers a ∧ b, then a∨ b 
covers b, for all a, b∈L. 

 
Definition 1.4 [4]: Interval For a, b ∈ L, a≤ b, we define the intervals: 
 
The closed interval [a, b] = {x: a ≤ x≤ b}. 
 
The half – open intervals 
(a, b] = {x: a < x≤ b} 
[a, b) = {x: a ≤ x< b} 
 
The open interval 
(a, b) = {x: a < x < b} 
 
Definition 1.5: Join – irreducible element An element ‘a’ of a lattice L is called join-irreducible if x ∨ y = a implies     
x = a or y = a. 
 
Definition 1.6: Consistent Lattice A lattice L is said to be consistent if whenever j is a join – irreducible element in L, 
then for every x ∈ L, x ∨ j is join – irreducible in the upper interval [x, 1]. 
 
Theorem 1.7 [7]: (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then order of H is a divisor 
of order of G. 
 
Theorem 1.8 [7]: If G is a finite group and a ∈ G, then order of a is divisor of order of G. 
 
Theorem 1.9 [7]: (Sylow’s theorem) If p is a prime number and 𝑝𝑝𝛼𝛼  / o(G), then G has a subgroup of order 𝑝𝑝𝛼𝛼 . If  
𝑝𝑝𝑚𝑚  / o(G), 𝑝𝑝𝑚𝑚+1 ∤ o(G), then G has a subgroup of order 𝑝𝑝𝑚𝑚 . 
 
Definition 1.10 [7]: A subgroup of G of order 𝑝𝑝𝑚𝑚 , where 𝑝𝑝𝑚𝑚 / o(G) but 𝑝𝑝𝑚𝑚+1 ∤ o(G), is called a p-sylow subgroup of G. 
 
Theorem 1.11 [7] (Sylow’s Theorem) 
 
The number of p-sylow subgroups in G, for a given prime, is of the form 1+kp. In particular, this number is a divisor of 
o(G), that is 1+kp / o(G). 
 
Result 1.12 [3]: Let p and q be two primes such that p > q. Then if p ≡ 1(mod q), there exists a group of order             
pq whose centre is {e}. When 1(mod ),p q≡ a group of order pq if it exists is cyclic. 
 
Definition 1.13 [7]: A subgroup N of G is said to be a normal subgroup of G if for every g ∈ G and n ∈ N, g ng-1∈ N. 
 
Result 1.14: If H is the only subgroup of order o(H) in the finite group G, then H is a normal subgroup of G. 
 
Theorem 1.15 [5]: Let G be a group of order pq, where p and q are distinct primes and p < q. Then G has only one 
subgroup of order q. This subgroup of order q is normal in G. 
 
Result 1.16 [7]: If N is a normal subgroup of G and H is any subgroup of G, then NH is a subgroup of G. 
 
Result 1.17[7]: If N and M are two normal subgrops of G, then NM is also a normal subgroup of G. 
 
We first prove the following: 
 
Lemma 1.18: Let 𝒢𝒢 =  {�𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� : 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑍𝑍𝑝𝑝 ,𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 ≠ 0}. 𝒢𝒢 forms a group under matrix multiplication modulo p. 

Let 𝐺𝐺 =  ��𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ∈ 𝒢𝒢 ∶ 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = 1�. Then o(G) = p(p2 – 1). 

 
Proof: We first prove that o(𝒢𝒢) = p(p2 – 1)(p – 1). 
 
For that, we first count the number of ways in which ad – bc = 0. 
 
We separate this counting into two cases. 
 
In first case we count the ways when ad = bc = 0. 
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In second case, we will count the number of ways in which ad = bc ≠ 0.  
 
Case-1: ad = bc = 0. 
 
When a = 0, we can choose d in p ways; and when d = 0, we can choose a in p ways. But in this a = d = 0 has been 
counted twice. Therefore there are 2p – 1 ways in which ad = 0. 
 
Similarly bc = 0 in 2p–1 ways. Thus there are (2p–1)2 ways in which ad = bc = 0. 
 
Case-2: ad = bc ≠ 0 
 
Since ad ≠ 0, therefore a ≠ 0 and d ≠ 0.  Similarly, b ≠ 0 and c ≠ 0. We can choose some value of a ≠ 0 in p -1 ways; 
some value of d ≠ 0 in p – 1 ways; some value of b ≠ 0 in p – 1 ways; then find the value of c with those chosen values 
of a, d, b. Since ad = bc(mod p) has unique solution in c for non-zero values of a, d, b thus we get unique value of c. 
Thus ad = bc ≠ 0 can be chosen in (p – 1)3 ways. 
 
Finally, the number of ways of choosing a, b, c, d with ad – bc ≠ 0 equals number of ways of choosing a, b, c, d without 
any restriction minus the number of ways of choosing a, b, c, d with ad – bc = 0. Thus the number of ways of choosing 
a, b, c, d with ad – bc ≠ 0 is p4 – (2p – 1)2 – (p – 1)3. 
 
On simplification, we get  
O(𝒢𝒢) = p4 – 4p2 + 4p – 1 – p3 + 3p2 – 3p + 1 
         = p4 – p3 – p2 + p 
         = p2(p2 – p) – 1(p2 – p) 
         = (p2 – p)(p2 – 1) 
         = p(p – 1)(p2 – 1) 
  
Next we claim that o(G) = p(p2 – 1) 
 
We separate our counting of a, b, c, d for which ad – bc = 1 in three separate cases.  
 
Case 1: ad = 0: This restrict bc = -1. The number of ways of choosing a, d for which ad = 0 is: 2p – 1. On the other 
hand, the number of ways choosing b, c for which bc = -1 is: p – 1. Thus when ad = 0, we can choose a, b, c, d in      
(2p – 1) (p – 1) ways. 
 
Case 2: bc = 0: Analogous to previous case, we get number of ways of choosing a, b, c, d as (2p – 1) (p – 1). 
 
Case 3: ad ≠ 0 and bc ≠ 0: In this case we get number of ways of choosing a, b, c, d as (p – 1) (p – 1). Thus total 
number of ways of choosing a, b, c, d for which ad – bc = 1 is 2(2p – 1) (p – 1) + (p – 2) times (p – 1)2. On simplifying, 
we get 
O(G) = (p – 1)[2(2p – 1) + (p – 1)(p – 2)] 
          = (p – 1) [4p – 2 + p2 – 3p + 2] 
          = (p – 1) (p2 + p) 
          = p(p + 1)(p – 1) 
          = p(p2 – 1) 
 
Thus we have proved o(G) = p(p2 – 1). 
 
2. In this section, we arrange the elements of G according to their orders. 
 
Let 𝒢𝒢 be the set of all 2 × 2 non-singular matrices over Z5. Then 𝒢𝒢 is a group under matrix multiplication modulo 5 and 
o(𝒢𝒢) = p(p2 – 1)(p – 1)  
        = 5(52 – 1) (5 – 1) 
        = 5 × 24 × 4 
        = 480. 
 
Let G be the subgroup of 𝒢𝒢 defined by G = ��𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� 𝜖𝜖𝜖𝜖; 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = 1�.  
 
Then o(G) = p(p2 – 1) = 5× 24 = 120. 
 
The elements of G according to their orders are as follows. 
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2.1Element of order 1(one element) 

�1 0
0 1� 

2.2. Element of order 2 (one element) 
�4 0

0 4� 
2.3. Elements of order 3 (20 elements) 
�2 4

2 2� , �2 1
3 2� ; �2 3

1 2� , �2 2
4 2� ; �3 1

2 1� , �1 4
3 3� ; �3 2

1 1� , �1 3
4 3� ; 

�1 1
2 3� , �3 4

3 1� ; �1 2
1 3� , �3 3

4 1� ; �0 2
2 4�,�4 3

3 0� ; �4 2
2 0� , �0 3

3 4� ; 

�0 1
4 4� , �4 4

1 0� ; �4 1
4 0� , �0 4

1 4�. 
 
2.4. Elements of order 4: (30 elements) 
�0 2

2 0� , �0 3
3 0� ; �0 1

4 0� , �0 4
1 0� ; �2 0

0 3� , �3 0
0 2� ; �2 2

0 3� , �3 3
0 2� ; 

�2 0
2 3� , �3 0

3 2� ; �3 0
2 2� , �2 0

3 3� ; �3 2
0 2� , �2 3

0 3� ; �2 0
1 3� , �3 0

4 2� ; 

�2 1
0 3� , �3 4

0 2� ; �3 1
0 2� , �2 4

0 3� ; �3 0
1 2� , �2 0

4 3� ; �1 1
3 4� , �4 4

2 1� ; 

�1 3
1 4� , �4 2

4 1� ; �4 3
1 1� , �1 2

4 4� ; �4 1
3 1� , �1 4

2 4�. 
 
2.5 Elements of order 5: (24 elements) 
�1 0

1 1� , �1 0
4 1� ; �1 0

3 1� , �1 0
2 1� ; �1 1

0 1� , �1 4
0 1� ; �1 3

0 1� , �1 2
0 1� ; 

�2 3
3 0� , �0 2

2 2� ; �3 1
1 4� , �4 4

4 3� ; �0 3
3 2� , �2 2

2 0� ; �4 1
1 3� , �3 4

4 4� ; 

�3 3
2 4� , �4 2

3 3� ; �0 1
4 2� , �2 4

1 0� ; �3 2
3 4� , �4 3

2 3� ; �0 4
1 2� , �2 1

4 0�. 
 
2.6. Elements of order 6 : (20 elements) 
�3 1

3 3� , �3 4
2 3� ; �3 3

1 3� , �3 2
4 3� ; �4 1

2 2� , �2 4
3 4� ; �4 2

1 2� , �2 3
4 4� ; 

�2 1
2 4� , �4 4

3 2� ; �2 2
1 4� , �4 3

4 2� ; �1 2
2 0� , �0 3

3 1� ; �0 2
2 1� , �1 3

3 0� ; 

�0 4
1 1� , �1 1

4 0� ; �0 1
4 1� , �1 4

1 0�. 
 
2.7. Elements of order 10: (24 elements) 
�4 0

1 4� , �4 0
4 4� ; �4 0

2 4� , �4 0
3 4� ; �4 1

0 4� , �4 4
0 4� ; �4 2

0 4� , �4 3
0 4� ; 

�3 2
2 0� , �0 3

3 3� ; �1 1
1 2� , �2 4

4 1� ; �0 2
2 3� , �3 3

3 0� ; �2 1
1 1� , �1 4

4 2� 

�2 2
3 1� , �1 3

2 2� ; �3 1
4 0� , �0 4

1 3� ; �2 3
2 1� , �1 2

3 2� ; �3 4
1 0� , �0 1

4 3�. 
 
3. In this section, we find all the subgroups of G of different orders. 
 
According to Lagrange’s theorem, we need to check only among the divisors of 120 for the orders of the subgroups. 
 
3.1. Subgroups of order 2 
Let H be an arbitrary subgroup of G of order 2. Since �4 0

0 4� is the only element of G of order 2,  

H1 = ��1 0
0 1� , �4 0

0 4�� is the only subgroup of order 2. 
 

3.2. Subgroups of order 3 
Since 3 is a prime number, then any subgroup of order 3 is cyclic and hence it is generated by an element of order 3. 
Thus all the subgroups of order 3 are obtained: 
𝐾𝐾1 = ��2 4

2 2� , �2 1
3 2� , 𝑒𝑒� ;𝐾𝐾2 = ��2 3

1 2� , �2 2
4 2� , 𝑒𝑒� ;𝐾𝐾3 = ��3 1

2 1� , �1 4
3 3� , 𝑒𝑒� ; 

𝐾𝐾4 = ��3 2
1 1� , �1 3

4 3� , 𝑒𝑒� ;𝐾𝐾5 = ��1 1
2 3� , �3 4

3 1� , 𝑒𝑒� ;𝐾𝐾6 = ��1 2
1 3� , �3 3

4 1� , 𝑒𝑒� ; 

𝐾𝐾7 = ��0 2
2 4� , �4 3

3 0� , 𝑒𝑒� ;𝐾𝐾8 = ��4 2
2 0� , �0 3

3 4� , 𝑒𝑒�; 𝐾𝐾9 = ��0 1
4 4� , �4 4

1 0� , 𝑒𝑒�; 

𝐾𝐾10 = ��4 1
4 0� , �0 4

1 4� , 𝑒𝑒�. 
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Since 3 ∕o(G), 32∤ o(G) , G has a 3-sylow subgroup of order 3.  
 
The number of 3-sylow subgroups is of the form 1 + 3k and 1 + 3k ∕o(G). That is, 1 + 3k ∕ 23 × 3 × 5. 
 
Therefore, 1+3k ∕ 23 × 5. The possible values for k are 0, 1, 3. 
 
Therefore, the maximum number of 3-sylow subgroups of order 3 is 10 when k = 3.  
 
So, these are the only subgroups of order 3. 
 
3.3. Subgroups of order 4 
Let L be an arbitrary subgroup of G of order 4. Then the elements of L must have order 1, 2 or 4. If L contains an 
element of order 4, then L is generated by an element of order 4. 
 
Thus all the subgroups of G of order 4 are obtained: 
𝐿𝐿1 = ��0 2

2 0� , �0 3
3 0� , �4 0

0 4� , 𝑒𝑒�; 𝐿𝐿2 = ��0 1
4 0� , �0 4

1 0� , �4 0
0 4� , 𝑒𝑒� 

𝐿𝐿3 = ��2 0
0 3� , �3 0

0 2� , �4 0
0 4� , 𝑒𝑒�; 𝐿𝐿4 = ��2 2

0 3�  , �3 3
0 2� , �4 0

0 4� , 𝑒𝑒� 

𝐿𝐿5 = ��2 0
1 3�  , �3 0

4 2� , �4 0
0 4� , 𝑒𝑒�; 𝐿𝐿6 = ��1 1

3 4� , �4 4
2 1� , �4 0

0 4� , 𝑒𝑒� 

𝐿𝐿7 = ��2 0
2 3�  , �3 0

3 2� , �4 0
0 4� , 𝑒𝑒� ; 𝐿𝐿8 = ��2 1

0 3� , �3 4
0 2� , �4 0

0 4� , 𝑒𝑒� 

𝐿𝐿9 = ��1 3
1 4�  , �4 2

4 1� , �4 0
0 4� , 𝑒𝑒� ; 𝐿𝐿10 = ��3 2

0 2� , �2 3
0 3� , �4 0

0 4� , 𝑒𝑒� 

𝐿𝐿11 = ��3 0
1 2�  , �2 0

4 3� , �4 0
0 4� , 𝑒𝑒� ;𝐿𝐿12 = ��4 1

3 1� , �1 4
2 4� , �4 0

0 4� , 𝑒𝑒� 

𝐿𝐿13 = ��3 0
2 2� , �2 0

3 3� , �4 0
0 4� , 𝑒𝑒� ; 𝐿𝐿14 = ��3 1

0 2� , �2 4
0 3� , �4 0

0 4� , 𝑒𝑒� 

𝐿𝐿15 = ��4 3
1 1�  , �1 2

4 4� , �4 0
0 4� , 𝑒𝑒�. 

 
Since the cube of an element of order 4 is another element of order 4, and we have 30 elements of order 4 and only one 
element of order 2, the fifteen pairs of elements of order 4 give the fifteen 4 – element subgroups.  
 
Here H1⊂ Li for all i. 

 
3.4. Subgroups of order 5: 
Since |G| = 23 × 3 × 5, 5 / o(G) but 52∤ o(G). Therefore, G has a 5-sylow subgroup of order 5. The number of 5-sylow 
subgroups of G of order 5 is of the form 1 + 5k and 1 + 5k / o(G). That is, 1 + 5k / 24, hence the possible values of        
k are 0, 1. 
 
Therefore the maximum number of 5-sylow subgroups of order 5 is 6 when k = 1 and the following are the only 
subgroups of G of order 5. 
 
The subgroups are 
𝑀𝑀1 = ��1 0

1 1� , �1 0
4 1� , �1 0

3 1� , �1 0
2 1� , 𝑒𝑒� 

𝑀𝑀2 = ��1 1
0 1� , �1 4

0 1� , �1 3
0 1� , �1 2

0 1� , 𝑒𝑒� 

𝑀𝑀3 = ��2 3
3 0� , �0 2

2 2� , �3 1
1 4� , �4 4

4 3� , 𝑒𝑒� 

𝑀𝑀4 = ��0 3
3 2� , �2 2

2 0� , �4 1
1 3� , �3 4

4 4� , 𝑒𝑒� 

𝑀𝑀5 = ��3 3
2 4� , �4 2

3 3� , �0 1
4 2� , �2 4

1 0� , 𝑒𝑒� 

𝑀𝑀6 = ��3 2
3 4� , �4 3

2 3� , �0 4
1 2� , �2 1

4 0� , 𝑒𝑒� 
 
3.5. Subgroups of order 6 
Let N be an arbitrary subgroup of G of order 6. Since |N| = 2 × 3, by theorem 1.15 N has exactly one subgroup of order 
3. Also, if N contains an element of order 6, then N is generated by an element of order 6. The subgroup of order 6 are 
𝑁𝑁1 = ��2 4

2 2� , �2 1
3 2� , �3 1

3 3� , �3 4
2 3� , �4 0

0 4� , 𝑒𝑒� 

𝑁𝑁2 = ��2 3
1 2� , �2 2

4 2� , �3 3
1 3� , �3 2

4 3� , �4 0
0 4� , 𝑒𝑒� 

𝑁𝑁3 = ��3 1
2 1� , �1 4

3 3� , �4 1
2 2� , �2 4

3 4� , �4 0
0 4� , 𝑒𝑒� 
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𝑁𝑁4 = ��3 2

1 1� , �1 3
4 3� , �4 2

1 2� , �2 3
4 4� , �4 0

0 4� , 𝑒𝑒� 

𝑁𝑁5 = ��1 1
2 3� , �3 4

3 1� , �2 1
2 4� , �4 4

3 2� , �4 0
0 4� , 𝑒𝑒� 

𝑁𝑁6 = ��1 2
1 3� , �3 3

4 1� , �2 2
1 4� , �4 3

4 2� , �4 0
0 4� , 𝑒𝑒� 

𝑁𝑁7 = ��0 2
2 4� , �4 3

3 0� , �1 2
2 0� , �0 3

3 1� , �4 0
0 4� , 𝑒𝑒� 

𝑁𝑁8 = ��4 2
2 0� , �0 3

3 4� , �0 2
2 1� , �1 3

3 0� , �4 0
0 4� , 𝑒𝑒� 

𝑁𝑁9 = ��0 1
4 4� , �4 4

1 0� , �0 4
1 1� , �1 1

4 0� , �4 0
0 4� , 𝑒𝑒� 

𝑁𝑁10 = ��4 1
4 0� , �0 4

1 4� , �1 4
1 0� , �0 1

4 1� , �4 0
0 4� , 𝑒𝑒� 

 
Since each subgroup of order 6 contains two elements of order 6 and we have only 20 elements of order 6 and ten 
subgroups of order 3, there will be no other subgroups of order 6 except the above ten. 
Here Ki⊂ Ni for all i. 

 
3.6. Subgroups of order 8 
Since |G| = 23 × 3 × 5, 23 / o(G) but 24∤ o(G).Therefore G has a 2-sylow subgroup of order 8. The number of 2-sylow 
subgroups is of the form 1 + 2k and 1 + 2k / o(G). 
 
That is, 1+2k / 23 × 3 × 5. Therefore 1+2k / 15. The possible values of k are 0, 1, 2. 
 
Hence the maximum number of subgroups of order 8 is 5 when k = 2. 
 
Since G has no element of order 8, the elements of subgroups of order 8 must have order 1, 2 or 4. 
 
The five subgroups of order 8 are 
𝑃𝑃1 = ��0 2

2 0� , �0 3
3 0� , �0 1

4 0� , �0 4
1 0� , �2 0

0 3� , �3 0
0 2� , �4 0

0 4� , 𝑒𝑒� 

𝑃𝑃2 = ��2 2
0 3� , �3 3

0 2� , �2 0
1 3� , �3 0

4 2� , �1 1
3 4� , �4 4

2 1� , �4 0
0 4� , 𝑒𝑒� 

𝑃𝑃3 = ��2 0
2 3� , �3 0

3 2� , �2 1
0 3� , �3 4

0 2� , �1 3
1 4� , �4 2

4 1� , �4 0
0 4� , 𝑒𝑒� 

𝑃𝑃4 = ��3 2
0 2� , �2 3

0 3� , �3 0
1 2� , �2 0

4 3� , �4 1
3 1� , �1 4

2 4� , �4 0
0 4� , 𝑒𝑒� 

𝑃𝑃5 = ��3 0
2 2� , �2 0

3 3� , �3 1
0 2� , �2 4

0 3� , �4 3
1 1� , �1 2

4 4� , �4 0
0 4� , 𝑒𝑒� 

 
Here L1, L2, L3⊂ P1 ; L4, L5, L6⊂ P2 ; L7, L8, L9⊂ P3; L10, L11, L12⊂ P4 ; L13, L14, L15⊂ P5 

 
3, 7. Subgroups of order 10 
Let Q be an arbitrary subgroup of order 10. Since |Q| = 2 × 5, by theorem 1.15Q has exactly one subgroup of order 5. 
Also, if Q contains an element of order 10, then Q is generated by an element of order 10. 
 
The subgroups of order 10 are 
𝑄𝑄1 = ��1 0

1 1� , �1 0
4 1� , �1 0

3 1� , �1 0
2 1� , �4 0

1 4� , �4 0
4 4� , �4 0

2 4� , �4 0
3 4� , �4 0

0 4� , 𝑒𝑒� 

𝑄𝑄2 = ��1 1
0 1� , �1 4

0 1� , �1 3
0 1� , �1 2

0 1� , �4 1
0 4� , �4 4

0 4� , �4 2
0 4� , �4 3

0 4� , �4 0
0 4� , 𝑒𝑒� 

𝑄𝑄3 = ��2 3
3 0� , �0 2

2 2� , �3 1
1 4� , �4 4

4 3� , �3 2
2 0� , �0 3

3 3� , �1 1
1 2� , �2 4

4 1� , �4 0
0 4� , 𝑒𝑒� 

𝑄𝑄4 = ��0 3
3 2� , �2 2

2 0� , �4 1
1 3� , �3 4

4 4� , �0 2
2 3� , �3 3

3 0� , �2 1
1 1� , �1 4

4 2� , �4 0
0 4� , 𝑒𝑒� 

𝑄𝑄5 = ��3 3
2 4� , �4 2

3 3� , �0 1
4 2� , �2 4

1 0� , �2 2
3 1� , �1 3

2 2� , �3 1
4 0� , �0 4

1 3� , �4 0
0 4� , 𝑒𝑒� 

𝑄𝑄6 = ��3 2
3 4� , �4 3

2 3� , �0 4
1 2� , �2 1

4 0� , �2 3
2 1� , �1 2

3 2� , �3 4
1 0� , �0 1

4 3� , �4 0
0 4� , 𝑒𝑒� 

 
Since each subgroup of order 10 contains exactly four elements of order 10 and we have only 24 elements of order 10 
and six subgroups of order 5, there will be no other subgroups of order 10 except the above six.  Here Mi⊂ Qi for all i. 
 
3.8. Subgroups of order 12 
Let R be an arbitrary subgroup of order 12. Since |R| = 22 × 3, the number of subgroups of R of order 4 is 1 + 2k and 1 
+ 2k / 3. Therefore, the possible values of k are 0, 1. 
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Hence the number of subgroups of R of order 4 is either 1 or 3. Similarly, the number of subgroups of R of order 3 is     
1 + 3k and 1 + 3k / 4. Therefore, the possible values of k are 0, 1. 
 
Hence the number of subgroups of R of order 3 is either 1 or 4.There are four possibilities. 

(i) The number of subgroups of order 4 is 3 and of order 3 is 4. 
(ii) The number of subgroups of order 4 is 1 and of order 3 is 1. 
(iii) The number of subgroups of order 4 is 1 and of order 3 is 4. 
(iv) The number of subgroups of order 4 is 3 and of order 3 is 1. 

 
Case-(i): cannot occur, because three subgroups of order 4 and four subgroups of order 3 contain more than 12 
elements. 
 
Case-(ii): Let the one subgroup of order 4 be L and the one subgroup of order 3 be K. Then L and K are normal in R. 
Hence R = KL must be abelian which is not true by checking all possibilities of K and L. Thus we get a conclusion that 
this case can not occur. 
 
Case-(iii): Let 𝒜𝒜 be a collection of four subgroups of order 3 and let L be a subgroup of order 4. Since L is the only 
subgroup in R of order 4, L is normal in R. Therefore, r-1lr ∈ L for all r∈ R, l ∈ L. By taking a subgroup of order 4 at a 
time, combining this with four subgroups of order 3, we conclude this condition is not held. This means that this case 
can not occur. 
 
Case-(iv) Taking a subgroup of order 3 at a time, combining this with three subgroups of order 4, we are able to 
determine the following ten subgroups of order 12 by trial. 

𝑅𝑅1 = �
�2 4

2 2� , �2 1
3 2� , �2 0

0 3� , �3 0
0 2� , �1 3

1 4� , �4 2
4 1�

�4 3
1 1� , �1 2

4 4� , �3 1
3 3� , �3 4

2 3� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅2 = �
�2 2

4 2� , �2 3
1 2� , �2 0

0 3� , �3 0
0 2� , �1 1

3 4� , �4 4
2 1� ,

�4 1
3 1� , �1 4

2 4� , �3 3
1 3� , �3 2

4 3� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅3 = �
�3 1

2 1� , �1 4
3 3� , �2 0

1 3� , �3 0
4 2� , �3 2

0 2� , �2 3
0 3� ,

�4 3
1 1� , �1 2

4 4� , �4 1
2 2� , �2 4

3 4� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅4 = �
�3 2

1 1� , �1 3
4 3� , �2 1

0 3� , �3 4
0 2� , �3 0

2 2� , �2 0
3 3� ,

�4 1
3 1� , �1 4

2 4� , �4 2
1 2� , �2 3

4 4� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅5 = �
�1 1

2 3� , �3 4
3 1� , �3 0

1 2� , �2 0
4 3� , �2 2

0 3� , �3 3
0 2� ,

�1 3
1 4� , �4 2

4 1� , �2 1
2 4� , �4 4

3 2� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅6 = �
�1 2

1 3� , �3 3
4 1� , �3 1

0 2� , �2 4
0 3� , �2 0

2 3� , �3 0
3 2� ,

�1 1
3 4� , �4 4

2 1� , �2 2
1 4� , �4 3

4 2� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅7 = �
�0 2

2 4� , �4 3
3 0� , �0 1

4 0� , �0 4
1 0� , �3 0

1 2� , �2 0
4 3� ,

�2 4
0 3� , �3 1

0 2� , �1 2
2 0� , �0 3

3 1� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅8 = �
�4 2

2 0� , �0 3
3 4� , �0 4

1 0� , �0 1
4 0� , �2 1

0 3� , �3 4
0 2� ,

�3 0
4 2� , �2 0

1 3� , �0 2
2 1� , �1 3

3 0� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅9 = �
�0 1

4 4� , �4 4
1 0� , �0 2

2 0� , �0 3
3 0� , �2 2

0 3� , �3 3
0 2� ,

�3 0
2 2� , �2 0

3 3� , �0 4
1 1� , �1 1

4 0� , �4 0
0 4� , 𝑒𝑒

� 

𝑅𝑅10 = �
�0 4

1 4� , �4 1
4 0� , �0 2

2 0� , �0 3
3 0� , �2 0

2 3� , �3 0
3 2� ,

�3 2
0 2� , �2 3

0 3� , �0 1
4 1� , �1 4

1 0� , �4 0
0 4� , 𝑒𝑒

� 

 
Here, L3, L9, L15, N1⊂ R1; L3, L6, L12, N2⊂ R2; L5, L10, L15, N3⊂ R3; L8, L13, L12, N4⊂ R4; 
          L4, L9, L11, N5⊂ R5; L6, L7, L14, N6⊂ R6; L2, L11, L14, N7⊂ R7; L2, L5, L8, N8⊂ R8; 
          L1, L4, L13, N9⊂R9; L1, L7, L10, N10⊂ R10; 
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3.8. Subgroups of order 15 
Since 15 = 3 × 5 and 5 ≢ 1 mod 3, a group of order 15 is cyclic [3]. Therefore, it must be generated by an element of 
order 15. But in G there is no element of order 15. Hence a subgroup of G of order 15 does not exist. 

 
3.10. Subgroups of order 20 
Let T be an arbitrary subgroup of order 20. Since |T| = 22 × 3, the number of subgroups of order 4 in T is 1 + 2k and      
1 + 2k / 5. The possible values of k are 0, 2. Hence the number of subgroups of T of order 4 is either 1 or 5. 
 
Similarly, the number of subgroups of T of order 5 is 1 + 5k and   1 + 5k / 4. The possible value of k is 0 only. Hence 
the number of subgroups of T of order 5 is 1. There are two possibilities. 

(i) The number of subgroups of order 4 is 1 and of order 5 is 1. 
(ii) The number of subgroups of order 4 is 5 and of order 5 is 1. 

 
Case-(i): Let the one subgroup of order 4 in T be L and the one subgroup of order 5 in T be M. Then L and M are 
normal in T. Hence T = LM must be abelian, but it is not true by checking all possibilities of L and M. Thus we get a 
conclusion that this case cannot occur. 
 
Case-(ii): Taking a subgroup of order 5 at a time, combining this with five subgroups of order 4, we are able to 
determine the following six subgroups of order 20 by trial. 
 
Clearly since each subgroup of order 20 contains a subgroup of order 5, each contains a subgroup of order 10. 

𝑇𝑇1 =

⎩
⎪
⎨

⎪
⎧�

2 0
0 3� , �3 0

0 2� , �2 0
1 3� , �3 0

4 2� , �2 0
2 3� , �3 0

3 2� , �2 0
4 3� ,

�3 0
1 2� , �2 0

3 3� , �3 0
2 2� , �1 0

1 1� , �1 0
4 1� , �1 0

3 1� , �1 0
2 1� ,

�4 0
1 4� , �4 0

4 4� , �4 0
2 4� , �4 0

3 4� , �4 0
0 4� , 𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

 

𝑇𝑇2 =

⎩
⎪
⎨

⎪
⎧�

2 0
0 3� , �3 0

0 2� , �2 1
0 3� , �3 4

0 2� , �2 2
0 3� , �3 3

0 2� , �2 4
0 3� ,

�3 1
0 2� , �2 3

0 3� , �3 2
0 2� , �1 1

0 1� , �1 4
0 1� , �1 3

0 1� , �1 2
0 1� ,

�4 1
0 4� , �4 4

0 4� , �4 2
0 4� , �4 3

0 4� , �4 0
0 4� , 𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

 

𝑇𝑇3 =

⎩
⎪
⎨

⎪
⎧�

0 1
4 0� , �0 4

1 0� , �2 0
2 3� , �3 0

3 2� , �2 2
0 3� , �3 3

0 2� , �4 1
3 1� ,

�1 4
2 4� , �4 3

1 1� , �1 2
4 4� , �2 3

3 0� , �0 2
2 2� , �3 1

1 4� , �4 4
4 3� ,

�3 2
2 0� , �0 3

3 3� , �2 4
4 1� , �1 1

1 2� , �4 0
0 4� , 𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

 

𝑇𝑇4 =

⎩
⎪
⎨

⎪
⎧�

0 1
4 0� , �0 4

1 0� , �3 2
0 2� , �2 3

0 3� , �3 0
2 2� , �2 0

3 3� , �1 3
1 4� ,

�4 2
4 1� , �1 1

3 4� , �4 4
2 1� , �0 3

3 2� , �2 2
2 0� , �4 1

1 3� , �3 4
4 4� ,

�0 2
2 3� , �3 3

3 0� , �1 4
4 2� , �2 1

1 1� , �4 0
0 4� , 𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

 

𝑇𝑇5 =

⎩
⎪
⎨

⎪
⎧�

0 2
2 0� , �0 3

3 0� , �3 4
0 2� , �2 1

0 3� , �3 0
1 2� , �2 0

4 3� , �1 1
3 4� ,

�4 4
2 1� , �4 3

1 1� , �1 2
4 4� , �3 3

2 4� , �4 2
3 3� , �0 1

4 2� , �2 4
1 0� ,

�2 2
3 1� , �1 3

2 2� , �3 1
4 0� , �0 4

1 3� , �4 0
0 4� , 𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

 

𝑇𝑇6 =

⎩
⎪
⎨

⎪
⎧�

0 2
2 0� , �0 3

3 0� , �3 0
4 2� , �2 0

1 3� , �3 1
0 2� , �2 4

0 3� , �1 3
1 4� ,

�4 2
4 1� , �4 1

3 1� , �1 4
2 4� , �3 2

3 4� , �4 3
2 3� , �0 4

1 2� , �2 1
4 0� ,

�2 3
2 1� , �1 2

3 2� , �3 4
1 0� , �0 1

4 3� , �4 0
0 4� , 𝑒𝑒 ⎭

⎪
⎬

⎪
⎫

 

 
Here, L3, L5, L7, L11, L13, Q1⊂T1; L3, L8, L4, L14, L10, Q2⊂ T2; 
          L2, L7, L4, L12, L15, Q3⊂T3; L2, L10, L13, L9, L6, Q4⊂ T4; 
          L1, L8, L11, L6, L15, Q5⊂T5; L1, L5, L14, L9, L12, Q6⊂ T6; 
 
3.11.  Subgroups of order 24 
 
Let S be an arbitrary subgroup of order 24. Since |S| = 23 × 3, the number of 2-sylow subgroups of order 8 in S is 1 + 2k 
and 1 + 2k / 3. The possible values for k are 0, 1. Hence, the number of subgroups of S of order 8 is either 1 or 3. 
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Similarly, the number of subgroups of order 3 in S is 1+3k and 1+3k / 23. The possible values of k are 0, 1. Hence, the 
number of subgroups of order 3 in S is either 1 or 4. 
 
There are four possibilities. 

(i) The number of subgroups of order 8 is 1 and of order 3 is 1. 
(ii) The number of subgroups of order 8 is 3 and of order 3 is 1. 
(iii) The number of subgroups of order 8 is 3 and of order 3 is 4. 
(iv) The number of subgroups of order 8 is 1 and of order 3 is 4. 

 
Case-(i): Let the one subgroup of order 8 in S be P and the one subgroup of order 3 in S be K. Then K and P are 
normal in S. Hence S = KP must be abelian; but we find that it is not true by checking all possibilities of K and P. Thus 
we get a conclusion that this case can not occur. 
 
Case-(ii): Let𝒜𝒜 be a collection of all the three subgroups of order 8. Let K be a subgroup of order 3. Then K is normal 
in S since K is the only subgroup in S of order 3. Therefore, sks-1∈ K for all s ∈S and k ∈ K. By taking a subgroup of 
order 3 at a time, combining this with three subgroups of order 8, we conclude this condition is not held. This means 
that this case cannot occur. 
 
Case-(iii): cannot occur, because three subgroups of order 8 and four subgroups of order 3 contain more than 24 
elements. 
 
Case-(iv): Taking a subgroup of order 8 at a time, combining this with four subgroups order 3, we are able to determine 
the following five subgroups of order 24 by trial. Clearly since each subgroup contains four subgroups of order 3, each 
contains four subgroups of order 6. 

𝑆𝑆1 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧�

3 1
2 1� , �1 4

3 3� , �3 2
1 1� , �1 3

4 3� , �1 1
2 3� , �3 4

3 1� , �1 2
1 3� ,

�3 3
4 1� , �0 2

2 0� , �0 3
3 0� , �0 1

4 0� , �0 4
1 0� , �2 0

0 3� , �3 0
0 2� ,

�4 0
0 4� , 𝑒𝑒,            �4 1

2 2� , �2 4
3 4� , �4 2

1 2� , �2 3
4 4� , �2 1

2 4� ,

�4 4
3 2� , �2 2

1 4� , �4 3
4 2�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝑆𝑆2 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧�

3 2
1 1� , �1 3

4 3� , �2 4
2 2� , �2 1

3 2� , �0 2
2 4� , �4 3

3 0� , �4 1
4 0� ,

�0 4
1 4� , �2 2

0 3� , �3 3
0 2� , �2 0

1 3� , �3 0
4 2� , �1 1

3 4� , �4 4
2 1� ,

�4 0
0 4� , 𝑒𝑒,            �3 1

3 3� , �3 4
2 3� , �4 2

1 2� , �2 3
4 4� , �1 2

2 0� ,

�0 3
3 1� , �1 4

1 0� , �0 1
4 1�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝑆𝑆3 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧�

2 2
4 2� , �2 3

1 2� , �3 1
2 1� , �1 4

3 3� , �0 2
2 4� , �4 3

3 0� , �4 4
1 0� ,

�0 1
4 4� , �2 0

2 3� , �3 0
3 2� , �2 1

0 3� , �3 4
0 2� , �1 3

1 4� , �4 2
4 1� ,

�4 0
0 4� , 𝑒𝑒,            �3 3

1 3� , �3 2
4 3� , �4 1

2 2� , �2 4
3 4� , �1 2

2 0� ,

�0 3
3 1� , �0 4

1 1� , �1 1
4 0�

⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝑆𝑆4 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧�

2 4
2 2� , �2 1

3 2� , �1 2
1 3� , �3 3

4 1� , �4 2
2 0� , �0 3

3 4� , �0 1
4 4� ,

�4 4
1 0� , �3 2

0 2� , �2 3
0 3� , �3 0

1 2� , �2 0
4 3� , �4 1

3 1� , �1 4
2 4� ,

�4 0
0 4� , 𝑒𝑒,            �3 1

3 3� , �3 4
2 3� , �2 2

1 4� , �4 3
4 2� , �0 2

2 1� ,

�1 3
3 0� , �1 1

4 0� , �0 4
1 1�

⎭
⎪
⎪
⎬

⎪
⎪
⎫
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𝑆𝑆5 =

⎩
⎪⎪
⎨

⎪⎪
⎧�

2 2
4 2� , �2 3

1 2� , �1 1
2 3� , �3 4

3 1� , �4 2
2 0� , �0 3

3 4� , �0 4
1 4� ,

�4 1
4 0� , �3 0

2 2� , �2 0
3 3� , �3 1

0 2� , �2 4
0 3� , �4 3

1 1� , �1 2
4 4� ,

�4 0
0 4� , 𝑒𝑒,            �3 3

1 3� , �3 2
4 3� , �2 1

2 4� , �4 4
3 2� , �0 2

2 1� ,

�1 3
3 0� , �1 4

1 0� , �0 1
4 1� ⎭

⎪⎪
⎬

⎪⎪
⎫

 

 
Here, N3, N4, N5, N6, P1⊂ S1; N1, N4, N7, N10, P2⊂ S2 
          N2, N3, N7, N9, P3⊂ S3; N1, N6, N8, N9, P4⊂ S4 
          N2, N5, N8, N10, P5⊂ S5. 
 
3.12.  Subgroups of order 30: 
Let U be an arbitrary subgroup of order 30. Since |U| = 2 × 3 × 5, by multiplying a subgroup of order 3 and a subgroup 
of order 10 or by multiplying a subgroup of order 5 and a subgroup of order 6, that is by finding KiQj or MiNj for all i, j, 
we get in each case an element of order 4 which can not exist in a subgroup of order 30. Hence, a subgroup of order 30 
can not exist. 
 
3.13. Subgroups of order 40: 
Let V be an arbitrary subgroup of order 40. Since |V| = 23×5 = 8 ×5= 4 ×10, by multiplying a subgroup of order 5 and a 
subgroup of order 8, that is, by finding MiPj for all i,j, We get in each case elements of order 3 or 6 which cannot exist 
in a subgroup of order 40. 
 
Also, by multiplying a subgroup of order 4 and a subgroup of order 10, that is by finding LiQj for all i, j, we get in each 
element of order 3 or 6 which cannot exist in a subgroup of order 40. 
 
Hence a subgroup of order 40 can not exist. 
 
3.14.  Subgroups of order 60 
 
Let W be an arbitrary subgroup of order 60. Since |W| = 22 × 3 × 5, by multiplying a subgroup of order 3 and a 
subgroup of order 20, that is, by finding KiTj for all i, j, We get a subset of more than 60 elements. 
 
Similarly by multiplying a subgroup of order 5 and a subgroup of order 12, that is, by finding MiRj for all i, j, we get a 
subset of more than 60 elements. 

 
4. THE STRUCTURE OF L(G) 
 
According to the above results, We have the diagram of the lattice of subgroups of M2(Z5) whose elements have 
determinant value 1 
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