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The main aim of this paper defined a new polynomial, say, pseudo Chebyshev matrix polynomials. We start from 

pseudo Hermite matrix polynomials to introduce families the definition of the pseudo Chebyshev matrix polynomials 

and to study their properties. Some formulas related to an explicit representation, a matrix differential recurrence 

relation are deduced. 
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1.  INTRODUCTION: 

 

This class of functions providing a fairly natural generalization of the ordinary exponential, hyperbolic and 

trigonometric functions [4], offers the possibility of exploring, from a more general and unifying point of view, the 

theory of special functions including generalized cases. The concepts and Ricci [12] have opened a wider scenario on 

the possibility of employing larger classes of pseudo type functions and the initial effort has been made in [2,3], where 

families of pseudo Laguerre and pseudo Hermite polynomials have been introduced. The Hermite and Chebyshev 

matrix polynomials have been introduced and studied in [1, 6, 7, 8, 9, 10] for matrices in  
NN×

C   whose eigenvalues 

are all situated in the right open half-plane. 

 

If  0D   is the complex plane cut along the negative real axis and  )log(z   denotes the principal logarithm of  z  . If  

A   is a matrix in  
NN×

C  , its two-norm denoted by  
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where for a vector  y   in  
N

C  ,  2

1

)(|||| 2 yyy
T=   denotes the usual Euclidean norm of  y  . The set of all the 

eigenvalues of  A   is denoted by  )(Aσ  . If )(zf   and  )(zg   are holomorphic functions of the complex variable z .  
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which are defined in an open set  Ω   of the complex plane, and  A   is a matrix in  
NN×

C   with  Ω⊂)(Aσ  , then 

from the properties of the matrix functional calculus [6], it follows that  
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 If  A   is a matrix with  0)( DA ⊂σ  , then  ))log(exp(
2
1 AA =   denotes the image by  

))log(exp(
2
12

1

zzz ==   of the matrix functional calculus acting on the matrix  A . If  A   is a positive stable 

matrix in  
NN×

C   [1, 6, 8]  
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The operator  
n

xD
−

  defines the inverse of the derivative and once acting on unity yields [2, 3, 11]  
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The following two identities are a fairly direct consequence of the previous considerations, it is indeed easily checked 

that  
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The definition of two variables pseudo Hermite matrix polynomials by introducing in the following a new family of 

functions [11]  
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are easily shown to satisfy the differential equation  
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In the forthcoming section of the paper, we will discuss the properties of these new families of polynomials and we will 

analyze possible developments and applications of the theory pseudo.  

 

 

2.  PSEUDO CHEBYSHEV MATRIX POLYNOMIALS: 

 
The pseudo Chebyshev matrix polynomials of the second kind are defined by the series  
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by means of the integral transform  
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where  A   is satisfying the condition (1.2). It is clear that  
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It has already been shown that most of the properties of the  )0,;,,( rAyxU n , linked to the ordinary case by  

            )0,;,()0,;,1,(and)0,;,()0,;,,( rAxUrAxUrA
y

x
UyrAyxU nn

r
n

n

n ==                               ( )2.3  

can be directly inferred from those of the pseudo Hermite matrix polynomials and from the integral representation 

given in (2.2). We obtain another representation for the pseudo Chebyshev matrix polynomials as follows by the series  
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Before getting into the main body of the paper, let us recall some important properties of pseudo Chebyshev matrix 

polynomials of the multiplication theorems, which will be used in the forthcoming papers.  

 

 Theorem 2.1:  Multiplication Theorem  
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 where  α   is constant. 

 

Proof: By using (2.1), we consider the series in the form  
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From (2.1) yields the Chebyshev matrix polynomials as given in the following  
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Therefore, the expressions (2.5) and (2.6) are established. The differential recurrence relations are carried out on the 

pseudo Chebyshev matrix polynomials in the following.  

 

 Corollary 2.1: The pseudo Chebyshev matrix polynomials satisfying the following partial differential equations  
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Proof: Differentiating the identity (2.1) with respect to x , y  yields  
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Multiply of (2.9) by  x   and multiply of (2.11) by r y , we obtain differential recurrence relation (2.7) follows 

directly. By using (2.1), (2.9), (2.10) and (2.12), we get directly the equation (2.8). In the following result, the pseudo 

Chebyshev matrix polynomials appear as finite series solutions of the r - th order matrix differential equation.  

 

Corollary 2.2: The pseudo Chebyshev matrix polynomials are easy to solution of the matrix differential equation of the  

r  -th order in the form  
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The above relations will be used, along with the generalized pseudo Chebyshev matrix polynomials can be shown to 

satisfy the property, to derive new properties of the family generated by (2.1) yields as given in the following paper. It 

goes by itself that we can introduce the Chebyshev matrix polynomials  
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which in terms of generalized pseudo Chebyshev matrix polynomials  
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where  ),,(, AyxU mn   are generalized Chebyshev matrix polynomials of two variables. We believe interesting to 

consider a further example relevant to the family of matrix polynomials  
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