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ABSTRACT 

 
In this paper, sufficient conditions for controllability of nonlinear system in  uniformly convex Banach spaces are 
established. The results are obtained by using strongly continuous semigroup theory and some techniques of nonlinear 
functional  analysis, such as, Kirk fixed point theorem. Moreover example is provided to illustrate the theory.                                                  
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1. INTRODUCTION 
 
The theory of semigroup of linear operators lends a convenient setting and offers many advantages for applications. 
Control theory in infinite-dimensional spaces is a relatively new field and started blooming only after well-developed 
semigroup theory was at hand. Many scientific and engineering problems can be modeled by partial differential 
equations, integral equations, or coupled ordinary and partial differential equations, that can be described as differential 
equations in infinite-dimensional spaces using semigroup. Nonlinear equations, with and without delays, serve as an 
abstract formulation for many partial equations which arise in problems connected with heat flow in materials with 
memory, viscoelasticity, and other physical phenomena. So, the study of controllability results for such system in 
infinite-dimensional spaces is important. For the motivation of abstract system and controllability of linear system, one 
can refer to the [1,2]. In this paper we discuss the controllability of mild solution of the following nonlinear control 
problem in arbitrary uniformly convex Banach spaces.  
 
ż(t) + Az(t) = (Bu)(t) + f (t,z(t)) + Q(t,K(t,z(t))), almost everywhere (a.e.) in  J =[0,b], z(0) = z0,                               (1.1) 
 
where the state z(.) takes values in the uniformly convex Banach space S=LP(J,X), for 1 < 𝑝𝑝 < ∞ with X a Banach 
space, and the control function u(.) is given in 𝐿𝐿2(J,U), a uniformly convex Banach space of admissible control 
functions, with U a Banach space. Here, the linear operator –A generates a strongly continuous semigroup                 
(C0–semigroup) T(t), t > 0, on a uniformly convex Banach space  S  with  norm ║ . ║ p,  and B is a  bounded  linear  
operator  from  U  into  S. The  nonlinear  operators  f ∈ 𝐶𝐶 (𝐽𝐽 × 𝑆𝑆, 𝑆𝑆 ),𝐾𝐾 ∈ 𝐶𝐶(𝐽𝐽 × 𝑆𝑆, 𝑆𝑆) and Q∈ 𝐶𝐶(𝐽𝐽 × 𝑆𝑆, 𝑆𝑆) are all satisfy 
Lipschitz  condition  on the  seconed  argument. 
           
Controllability of the above system in any Banach space, with different conditions has been studied by several authors. 
The case where Q ≡ 0 in (1.1), Yamamoto [3], studied the controllability for parabolic functions with uniformly 
bounded nonlinear terms. Al-Moosawy [4] discussed the controllability of the mild solution for the system (1.1) by 
using Banach fixed point theorem, where f ≡ 0, A generates C0–semigroup on a Banach space and the operators K, Q 
are satisfying Lipschitz condition on the second argument. The work in [4] extended to study the controllability in 
quasi-Banach spaces of kind Lp, 0 < 𝑝𝑝 < 1, in [5] by using a quasi-Banach contraction principle theorem. In [6] The 
controllability of the system (1.1), where f ≡ 0, in any quasi-Banach space by using quasi-Banach contraction principle 
theorem is presented. The case where the operator Q in (1.1) is an integral operator is established in [7] by using 
Schauder fixed point. The controllability of the system (1.1), where T(t), t > 0 is a compact semigroup on a Banach 
space and the operators f, K and Q are all uniformly bounded continuous in (1.1) is studied in [8] by using Schauder 
fixed point theorem. From all the above and since every uniformly convex Banach space is a Banach space but the 
converse, in general, not true. And since a nonexpansive mapping on a nonempty, closed, bounded and convex subset 
of a Banach space has no fixed point in general (see, Example 2.2), we find a reasonable justification to accomplish the 
study of this paper. The purpose of this paper is to study the controllability of nonlinear system (1.1) in uniformly 
convex Banach spaces by using Kirk fixed point theorem . 
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2. FIXED POINT  THEOREMS AND SEMIGROUP THEORY 
 
Fixed point throrems are the basic mathematical tools used in solving nonlinear equations. In this section we present 
the basic fixed point results and some definitions of one - parameter semigroup of operators. 
 
Definition 2.1[9]: let ( X, ║ . ║) be a normed space . A map T: X → X  is said to be Lipschitz continuous if there is         
λ ≥ 0  such that                       
                 ║T(x1) −T(x2)║≤ λ ║x1 – x2║, for all x1, x2 ∈ 𝑋𝑋.   
 
The smallest λ for which the above inequality holds is the Lipschitz constant of T. If λ ≤ 1, T is said to be  
nonexpansive, if  λ < 1, T  is said to be a contraction . 
 
Note that each contraction  is  nonexpansive, while an  isometry is nonexpansive  but  not  contractive. 
 
Theorem 2.1[9]  (Banach Theorem): Eevry  contraction  mapping  of a Banach  space  into itself  has a unique  fixed  
point . 
 
Theorem 2.2[9] (Schauder Theorem): Every  continuous  operator that maps a nonempty convex subset of a Banach  
space into a compact  subset of  itself  has at least one fixed  point . 
 
Definition 2.2[10]: A normed  space X is said to be uniformly convex if for every 𝜖𝜖 > 0, there exists some  𝛿𝛿 > 0 such 
that for all x  and  y in X  with  ║x║≤ 1, ║y║≤ 1, and ║x − y║≥  𝜖𝜖, we have ║x + y║≤ 2(1 − 𝛿𝛿). 
 
Definition 2.3[10]: Let  0 < 𝑝𝑝 < ∞, then the collection of all measurable function f for which |𝑓𝑓|p is integrable will be 
denoted by Lp(𝜇𝜇). for each 𝑓𝑓 ∈ Lp(𝜇𝜇), let ‖f‖p = ( ∫ |𝑓𝑓|p d𝜇𝜇 )1/p, the number ‖f‖p is called the LP-norm of f . 
 
Examle 2.1[10]: Every  Hilbert  space  is uniformly convex. The  spaces ℓ𝑝𝑝   of p – summable  scalar  seqences and the 
space Lp of p- integrable functions are  uniformly convex  for  1< 𝑝𝑝 < ∞. For properties of uniformly convex Banach 
space, every uniformly convex Banach space is reflexive . 
 
To have an extension of the Banach theorem to nonexpansive maps, we need to impose some geometric conditions on 
the domain of the nonexpansive  map. See the following   
 
Let  X  be a Banach space, C ⊂ 𝑋𝑋  nonempty, closed, bounded and convex, and let  T : C → C be a nonexpansive  map. 
The problem  is  whether  T  admits a fixed  point in C. The answer, in general, is false .  
 
Example 2.2[10]: Let  X = c0 ( the space of all sequences  of  scalars converging to zero ) with  the  supremum norm. 
Setting  C = {y ∈ X : ║y║≤ 1}, the map T : C → C defined by  f(x) = (1, x0, x1, …), for  x = (x0, x1, x2, …) ∈ C is 
nonexpansive  but  clearly  admits  no fixed  point  in C . 
 
Things are  quite  different  in  uniformly  convex  Banah  spaces. 
 
Theorem 2.3[9]( Kirk Fixed Point Theorem ): Let X be a uniformly convex Banach space and C ⊆ X be a nonempty, 
closed, bounded and convex. If T:C → C is a nonexpansive  mapping, then T has a fixed point . 
 
Definition 2.4[11]: A family T(t), 0 ≤ 𝑡𝑡 < ∞   of bounded linear operators on a Banach space X is called a                 
(one – parameter)  semigroup on X if it is satisfies the  following conditions:  
 
T(t+s) = T(t)T(s), t,s ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇(0) = 𝐼𝐼.  ( I is the identity operator on X ) 
 
Definition 2.5[11]: The infinitesimal generator A  of the  semigroup T(t) on  Banach space X   is defined by                   
Ax =  𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡→0+

𝑇𝑇(𝑡𝑡)𝑥𝑥−𝑥𝑥
𝑡𝑡

, where the limit exists and the domain of A is    D(A)={x∈ 𝑋𝑋: 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡→0+
𝑇𝑇(𝑡𝑡)𝑥𝑥−𝑥𝑥

𝑡𝑡
, exists}.  

 
Definition 2.6[11]: A semigroup T(t), 0 ≤ 𝑡𝑡 < ∞ of boubded linear operators on Banach  space  X is said to be strongly 
continuous semigroup ( or Co-semigroup) if: ║T(t)x−x║X→0   as t → 0+  for all  x ∈ 𝑋𝑋. 
 
3. CONTROLLABILITY OF  NONLINEAR  CONTROL  PROBLEMS 
 
In this section we will study the controllability of mild solution to the problem (1.1) in uniformly convex Banach space 
by using C0 – semigroup and ''Kirk Fixed Point Theorem'' . 
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3.1 Problem Formulation (I) 
 
Let S=LP(J,X), for 1 < p < ∞ with X a Banach space, be uniformly convex Banach space and U be a Banach space, with 
norms  ║.║p and | . |, respectively. Consider the following nonlinear control problem in infinite dimensional state space 
: 
 ż(t) + Az(t) = (Bu)(t) + f(t,z(t)) + Q(t,K(t,z(t))), (a.e.) in J=[0,b],  z(0)=z0,                                                                 (3.1)  
     
where B: U → S   is a linear bounded operator, ║B║p ≤ c, where c is a constant, and the control function u ∈ L2(J,U) a 
uniformly convex Banach space of admissible  control functions. Let A: D(A) ⊂ S → S be a linear operator, and let                         
  S0 = { z : z ∈ C(J,X) ⊂ S, z(0)=z0 , ║z(t)║P≤ r, for t ∈ J }, where r is a positive constant, be a subset of S . 
 
In order that problem (3.1) makes sense throughout the paper we shall assume the following basic hypothesis: 
(H1) The linear operator –A generates a C0-semigroup T(t), t ≥ 0, such that ║T(t)║P≤  M, where M > 0 is a constant.  
 
(H2) The nonlinear operators  f : J×S →S, and K: J×S → S are continuous and satisfy lipshitz condition on the seconed 
argument:  
║f(t,z1) – f(t,z2)║P ≤  M1║z1 – z2║P and ║K(t,z1) – K(t,z2)║P≤ M4║z1 – z2║P,  
where M1, M4 are positive constant, and z1, z2 ∈ S0. Also let 
M3 =  max

𝑡𝑡  ∈ 𝐽𝐽
║𝑓𝑓(𝑡𝑡, 0)║P, and  k1 = max

𝑡𝑡  ∈ 𝐽𝐽
║z(t)║P . 

 
(H3) The nonlinear operator Q: J×S → S is continuous and there exist a constants  M2, M5, such that  for  all  z1 , z2 ∈ S0, 
we have : 
║Q(t, K(t,z1)) – Q(t,K(t,z2))║p≤ M2║K(t,z1) – K(t,z2)║p≤ M2 M4║z1 – z2║p, and let M5 = max

𝑡𝑡  ∈ 𝐽𝐽
║Q(t,K(t,0))║p . 

 
(H4) The linear operator W  from L2(J,U) into  S, defined by  

Wu = ∫ 𝑇𝑇(𝑡𝑡 − 𝑠𝑠)𝐵𝐵𝐵𝐵(𝑠𝑠)𝑑𝑑𝑑𝑑,𝑏𝑏
0  

induces a bounded inverse operator 𝑊𝑊� -1 defined on L2(J,U)∕ker(W), and there exist positive constant k2 > 0 such that 
║𝑊𝑊� -1║P≤ k2. 
 
The construction of 𝑊𝑊� -1 is outlined as follows [12,13] .     
 
Let Y = L2[J,U]∕ker(W). Since ker(W) is closed, Y is Banach space under the norm 
 ║[u]║Y =inf𝑢𝑢∈[𝑢𝑢] ║𝑢𝑢║L

2
[J,U] = inf𝑊𝑊û=0 ║𝑢𝑢 +  û║L

2
[J,U],  

where [u] are the equivalence classes of u.       
 
Define 𝑊𝑊� : Y → X  by  𝑊𝑊� [u] = Wu,  u ∈ [u].   
 
Then, 𝑊𝑊�  is one-to-one and ║𝑊𝑊� [u]║x ≤ ║W║║[u]║Y.   
 
Also, V = Range(W) is a Banach space with the norm  ║v║v = ║𝑊𝑊� -1v║Y. 
 
To see this, note that this norm is equivalent to the graph norm on D(𝑊𝑊� -1)=Range(𝑊𝑊� ). 𝑊𝑊�  is bounded, and since      
D(𝑊𝑊� ) = Y is closed, 𝑊𝑊� -1 is closed. So, the above norm makes Range (W) = V, a Banach space. Moreover, 
║Wu║v = ║𝑊𝑊� -1Wu║Y =║𝑊𝑊� -1W[u]║= ║[u]║= inf𝑢𝑢∈[𝑢𝑢] ║𝑢𝑢║ ≤  ║𝑢𝑢║;  
 
So, W ∈ ℒ (L2[J,U], V). 
 
Since L2[J,U] is reflexive and ker(W) is weakly closed, the infimum is actually attained. Therefore, for any v ∈ V, a 
control u ∈ L2[J,U] can be chosen such that u = 𝑊𝑊� -1v. 
 
3.1.1 Controllability Result of the Problem Formulation (I): 
 
Now we want to define and find the mild solution of problem (3.1). By condition (H1), T(t), t >0 is the C0-semigroup 
generated by the linear operator −A, let z(.) ∈S, be the solution of (3.1), then we have T(t)z is differentiable [11], that 
implies the S-value function H(s) = T(t−s)z(s) is differentiable for 0 < s < t ; and 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = T(t−s) d
ds

 z(s) + z(s) 𝑑𝑑
𝑑𝑑𝑑𝑑

 T(t−s) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = T(t−s)[−Az(s)+(Bu)(s)+f(s,z(s))+Q(s,K(s,z(s)))] + z(s)[AT(t−s)] 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = T(t−s)(Bu)(s) + T(t−s) f(s,(z(s)) +T(t−s)Q(s,K(s,z(s)))                                                                                        (3.2) 
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Integrating (3.2) from 0 to t, yields 
H(t)–H(0)=∫ 𝑇𝑇𝑡𝑡0 (t–s)(Bu)(s)ds + ∫ 𝑇𝑇𝑡𝑡0 (t–s) f(s,z(s))ds + ∫ 𝑇𝑇𝑡𝑡0 (t–s) Q(s,K(s,z(s)))ds 
 
Since  H(s) = T(t–s)z(s), then  
T(t–t)z(t) – T(t–0)z(0)=∫ 𝑇𝑇𝑡𝑡0 (t–s)(Bu)(s)ds+∫ 𝑇𝑇𝑡𝑡0 (t–s)f(s,z(s))ds+∫ 𝑇𝑇𝑡𝑡0 (t–s)Q(s,K(s,z(s)))ds. Then 
 
z(t) = T(t)z0 + ∫ 𝑇𝑇𝑡𝑡0 (t–s) (Bu)(s)ds + ∫ 𝑇𝑇𝑡𝑡0 (t–s) f(s,z(s))ds +∫ 𝑇𝑇𝑡𝑡0 (t–s) Q(s,K(s,z(s)))ds                                                  (3.3) 
 
So according to the results above, the following definition has been presented. 
 
Definition 3.1: A continuous function z ∈ 𝑆𝑆 given by (3.3) will be called a mild solution to the problem (3.1). 
 
Definition 3.2: The system (3.1) is said to be controllable on the interval J if, for every  z0 , z1 ∈ 𝑆𝑆, there exists a control  
u ∈ L2(J,U) such that the mild solution  z(t) of (3.3) satisfying  z(b) = z1. 
 
Theorem 3.1: Let the hypothesis (H1) – (H4) are satisfied for the nonlinear control problem (3.1). 
ż(t) + Az(t) = (Bu)(t) + f(t,z(t)) + Q(t,K(t,z(t))), a.e. in J =[0,b], with  z(0)= z0. Assume further that 
 
(H5) ( M║z0║p+ h1+h2+h3+h4+bMck2[║z1║p+M║z0║p+h1+h2+h3+h4]) ≤ r 
where h1=bMM1k1, h2=bMM3, h3=bMM2M4k1, h4=bMM5 . 
 
(H6) λ = bMM1+bMM2M4+b2M2M1ck2+b2M2M2M4ck2,  be such that 0 ≤ λ ≤ 1. Then the problem (3.1) is controllable 
on J . 
 
Proof:  By using definition (3.2) and equation (3.3) we get that   
            z1 = z(b) = T(b)z0 +∫ 𝑇𝑇𝑏𝑏0 (b−s)(Bu)(s)ds + ∫ 𝑇𝑇𝑏𝑏0 (b−𝑠𝑠) f(s,z(s))ds+∫ 𝑇𝑇𝑏𝑏0 (b−s)Q(s,K(s,z(s)))ds. 
 
Condition (H4) leads to 
z1 = T(b)z0 + Wu+∫ 𝑇𝑇𝑏𝑏0 (b−s) f(s,z(s))ds+∫ 𝑇𝑇𝑏𝑏0 (b−s) Q(s,K(s,z(s)))ds.  
 
Therefore, 
Wu = z1 − T(b)z0−∫ 𝑇𝑇𝑏𝑏0 (b−s)f(s,z(s))ds−∫ 𝑇𝑇𝑏𝑏0 (b−s)Q(s,K(s,z(s)))ds. 
 
From constraction of   𝑊𝑊� -1 in (H4), we have that  u(t) = 𝑊𝑊� -1 (Wu(t)), then 
u(t) = 𝑊𝑊� -1(z1−T(b)z0−∫ 𝑇𝑇𝑏𝑏0 (b−s) f(s,z(s))ds −∫ 𝑇𝑇𝑏𝑏0 (b−s) Q(s,K(s,z(s)))ds)(t))                                                            (3.4) 
 
we  shall now show  that, when using  this control the operator defined by 
(Фz)(t) = T(t)z0+∫ 𝑇𝑇𝑡𝑡0 (t−s)(Bu)(s)ds+∫ 𝑇𝑇𝑡𝑡0 (t−s)f(s,z(s))ds+∫ 𝑇𝑇𝑡𝑡0 (t–s)Q(s,K(s,z(s)))ds has a  fixed point. This fixed point 
is then a solution of equation (3.3).  
 
Clearly, (Фz)(b)= z1, which means that the control u steers the nonlinear control system from the initial z0 to z1 in time 
b, provided we can obtain a fixed point of the nonlinear operator Ф. 
 
Let  S=Lp(J,X), for 1 < 𝑝𝑝 < ∞ with X a Banach space and  S0={z : z∈C(J,X)⊂ S,  z(0)= z0,  ║z(t)║P≤ r, for t ∈ J }, 
where r  is a positive constant. Then S0 is clearly a bounded, closed, convex subset of S [10]. Now we define a mapping, 
Ф : S → S0  by, 
(Фz)(t) = T(t)z0 + ∫ 𝑇𝑇𝑡𝑡0 (t−s) f(s,z(s))ds +∫ 𝑇𝑇𝑡𝑡0 (t−s)Q(s,K(s,z(s)))ds + ∫ 𝑇𝑇𝑡𝑡0 (t-𝜂𝜂)B𝑊𝑊� -1[z1 −T(b)z0 

                         −∫ 𝑇𝑇𝑏𝑏0 (b−s)f(s,z(s))ds−∫ 𝑇𝑇𝑏𝑏0 (b−s)Q(s,K(s,z(s)))ds](𝜂𝜂)d𝜂𝜂                                                                   (3.5) 
  

Taking the norm of both sides of  (3.5) 
║(Фz)(t)║p = ║T(t)z0 +∫ 𝑇𝑇𝑡𝑡0 (t−s)f(s,z(s))ds+ ∫ 𝑇𝑇𝑡𝑡0 (t−s)Q(s,K(s,z(s)))ds+ ∫ 𝑇𝑇𝑡𝑡0 (t−η)B𝑊𝑊� -1 [z1−T(b)z0 

                                                      −  ∫ 𝑇𝑇𝑏𝑏0 (b−s)f(s,z(s))ds− ∫ 𝑇𝑇𝑏𝑏𝑜𝑜 (b−s) Q(s,K(s,z(s))) ds] (η)dη║p 

 

║(Фz)(t)║p ≤║T(t)z0║p+║∫ 𝑇𝑇𝑡𝑡0 (t−s)f(s,z(s))ds║p+║∫ 𝑇𝑇𝑡𝑡0 (t−s)Q(s,K(s,z(s)))ds║p+║∫ 𝑇𝑇𝑡𝑡0 (t−η)B𝑊𝑊� -1[z1−T(b)z0  

                                     −∫ 𝑇𝑇𝑏𝑏0 (b−s)f(s,z(s))d−∫ 𝑇𝑇𝑏𝑏0 (b−s) Q(s,K(s,z(s))) ds] (η)dη║p 
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║(Фz)(t)║p≤║T(t)z0║p+║∫ 𝑇𝑇𝑡𝑡0 (t−s)[f(s,z(s))−f(s,0)+f(s,0)]ds║p 

                                                       +║∫ 𝑇𝑇𝑡𝑡0 (t−s)  [Q(s,K(s,z(s)))−Q(s,K(s,0))+Q(s,K(s,0))]ds║p 

                                    +║∫ 𝑇𝑇𝑡𝑡0 (t−η)B𝑊𝑊� 1[║z1║p+║T(b)z0║p+║∫ 𝑇𝑇𝑏𝑏𝑜𝑜 (b−s)[f(s,z(s))                       
                                    − f(s,0)+f(s,0)]ds║p+║∫ 𝑇𝑇𝑏𝑏0 (b−s)[Q(s,K(s,z(s)))−Q(s,K(s,0))+Q(s,K(s,0))]ds ║p](η)dη ║p 

 
║(Фz)(t)║p≤║T(t)║p║z0║p+∫ ║𝑇𝑇𝑡𝑡

0 (t−s)║p[║f(s,z(s))−f(s,0)║p+║f(s,0)║p]ds 
                   +∫ ║𝑇𝑇𝑡𝑡

0 (t−s)║p[║Q(s,K(s,z(s)))−Q(s,K(s,0))║p+║Q(s,K(s,0))║p]ds+∫ ║𝑇𝑇𝑡𝑡
𝑜𝑜 (t−η)║p║B║p║𝑊𝑊� -1║p[║z1║p 

                             +║T(b)║p║z0║p+∫ ║𝑇𝑇𝑏𝑏
0 (b−s)║p[║f(s,z(s))−f(s,0)║p +║f(s,0)║p]ds 

                   +∫ ║𝑇𝑇𝑏𝑏
0 (b−s)║p[║Q(s,K(s,z(s)))−Q(s,K(s,0))║p  +║Q(s,K(s,0))║pds]](η)dη  

 
By conditions from  (H1) − (H4), and since  ║B║p≤ c then we get that   
║(Фz)(t)║p≤M║zo║p+∫ 𝑀𝑀𝑡𝑡0 [M1║z(s)║p+M3]ds+∫ 𝑀𝑀𝑡𝑡0 [M2M4║z(s)║p+M5]ds+∫ 𝑀𝑀𝑡𝑡0 ck[║z1║p 

                                 +M║z0║p+bM[M1║z(s)║p+M3]+bM[M2M4║z(s)║p+M5]](𝜂𝜂)𝑑𝑑𝑑𝑑  
 
Since  z ∈ S, then ║z(s)║p≤k1, and  then : 
║(Фz)(t)║p ≤ M║z0║p+bMM1k1+bMM3+bMM2M4k1+bMM5+bMck2 
                        [║z1║p+M║zo║p+bMM1k1+bMM3+bMM2M4k1+bMM5]  
 
By  condition  (H5), we have 
║(Фz)(t)║p ≤ M║z0║p+h1+h2+h3+h4+bMck2[║z1║p+M║z0║p+h1+h2+h3+h4]≤ 𝑟𝑟 
 
Since f,K and Q are continuous and ║(Фz)(t)║p ≤ r, it follows that Ф is also  continuous  and  maps  S0 into  itself . 
 
Seconed, we have  to show that Ф is nonexpansive mapping from S0 into S0. For z1(t), z2(t) ∈ S0  and from the definition 
of (Фz)(t)  in equation (3.5), we have 
║Фz1(t)−Фz2(t)║p=║T(t)z0+∫ 𝑇𝑇t

0 (t−s)f(s,z1(s))ds+∫ 𝑇𝑇t
0 (t–s)Q(s,K(s,z1(s)))ds+∫ 𝑇𝑇t

0 (t−η)B𝑊𝑊� -b)z0−∫ 𝑇𝑇b
0 (b−s)f(s,z1(s))ds 

                             −∫ Tb
0 (b−s)Q(s,K(s,z1(s)))ds](η)dη−T(t)z0−∫ 𝑇𝑇t

0 (t−s)f(s,z2(s))ds −∫ 𝑇𝑇t
0 (t−s) Q(s,K(s,z2(s)))ds  

                             −∫ 𝑇𝑇t
0 (t−η)B𝑊𝑊� -1[z1−T(b)z0−∫ 𝑇𝑇b

0 (b−s)f(s,z2(s))ds −∫ 𝑇𝑇b
0 (b−s)Q(s,K(s,z2(s)))ds](η)dη║p 

 
║Фz1(t)−Фz2(t)║p=║∫ 𝑇𝑇t

0 (t−s)[f(s,z1(s)) – f(s,z2(s))]ds+∫ 𝑇𝑇t
0 (t–s)[Q(s,K(s,z1(s))) −Q(s,K(s,z2(s)))]ds 

                                +∫ 𝑇𝑇t
0 (t−η)B𝑊𝑊� -1[∫ 𝑇𝑇b

0 (b−s) [f(s,z1(s))–f(s,z2(s))]ds 

                                + ∫ 𝑇𝑇b
0 (b−s)[Q(s,K(s,z1(s))) − Q(s,K(s,z2(s))ds)]](η)dη║p 

 
║Фz1(t)−Фz2(t)║p≤ ∫ ║𝑇𝑇t

0 (t−s)║p║f(s,z1(s))–f(s,z2(s))║pds+∫ ║𝑇𝑇t
o (t−s)║p              

                                      ║Q(s,K(s,z1(s)))−Q(s,K(s,z2(s)))║pds+║∫ 𝑇𝑇t
0 (t−η)B𝑊𝑊� -1[∫ 𝑇𝑇b

0 (b−s)[f(s,z1(s))−f(s,z2(s))]ds 

                                      +∫ 𝑇𝑇b
o (b−s)[Q(s,K(s,z1(s))) −Q(s,K(s,z2(s))ds)]] (η)dη║p 

 

║Фz1(t)−Фz2(t)║p≤ ∫ ║𝑇𝑇t
0 (t−s)║p║f(s,z1(s))–f(s,z2(s))║pds+∫ ║𝑇𝑇t

0 (t–s)║p                               
                                     ║Q(s,K(s,z1(s)))−Q(s,K(s,z2(s)))║pds+∫ ║𝑇𝑇t

0 (t−η)║p║B║p║𝑊𝑊� -1║p  

                                      [∫ ║𝑇𝑇b
0 (b−s)║p║f(s,z1(s))–f(s,z2(s))║pds+∫ ║𝑇𝑇b

0 (b−s)║p  
                                     ║Q(s,K(s,z1(s)))– Q(s,K(s,z2(s))ds)║p](η)dη 
 
By using conditions  (H1) − (H4), we have  that 
║Фz1(t)−Фz2(t)║p≤ ∫ 𝑀𝑀𝑡𝑡𝑜𝑜 M1║z1(s)−z2(s)║pds+∫ 𝑀𝑀𝑡𝑡0 M2M4║z1(s)−z2(s)║pds                           
                                       +∫ 𝑀𝑀𝑡𝑡0 ck2[bMM1║z1(s)−z2(s)║p+bMM2M4║z1(s)−𝑧𝑧2(s)║p] (𝜂𝜂)d𝜂𝜂 
 
║Фz1(t)−Фz2(t)║p ≤ bMM1║z1(t)−z2(t)║p+bMM2M4║z1(t)−z2(t)║p+bMck2                                 

                                                                  [bMM1║z1(𝑡𝑡)−z2(𝑡𝑡)║p+bMM2M4║z1(𝑡𝑡)−𝑧𝑧2(𝑡𝑡)║p] 
 
║Фz1(t)−Фz2(t)║p ≤ [bMM1+bMM2M4]║z1(t)−z2(t)║p+[b2M2M1ck2+b2M2 M2M4ck2]║z1(𝑡𝑡)−z2(𝑡𝑡)║p 
 
║Фz1(t)−Фz2(t)║p ≤ [bMM1+bMM2M4+b2M2M1ck2+b2M2M2M4ck2]║z1(t)−z2(t)║p 
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By  condition  (H6), we get that  
║Фz1(t)−Фz2(t)║p≤ λ║z1(t)−z2(t)║p≤ ║z1(t)−z2(t)║p 
 
Therefore Ф is nonexpansive mapping, and hence by Theorem 2.3, there  exists a fixed point z ∈ S0, such that         
Фz(t) = z(t), thus  any  fixed  point of  Ф is a mild  solution  of system  (3.1) on J, which satisfies  z(b) = z1, and hence 
the system is controllable on  J.      
 
3.2 Problem Formulation (II) 
 
Let the uniformly convex  Banach space S and a Banach space U are defined as in section 3.1, and consider the optimal 
control problem in infinite dimensional state space : 
𝑑𝑑
𝑑𝑑𝑑𝑑

(z(t)+G(t,z(t))) = Az(t) + Bu(t) + f(t,z(t)) + Q(t,K(t,z(t))), a.e. in 𝐽𝐽 = [0, 𝑏𝑏],  z(0) = z0,                                             (3.6) 
where the linear operators A, B are defined as in problem (3.1), and the control u(.) ∈ 𝐿𝐿1(J,U) a Banach space of 
admissible control function. We assume with hypothesis (H1) − (H3) the following condition 
 
(P1) The nonlinear operator G: J×S → S is continuous and satisfies Lipschitz condition on the second argument, thus 
for all z1, z2 ∈S0, L1, L2 > 0, we have: 
║G(t, z1) − G(t, z2) ║P≤ L1║z1 − z2║p,  and L2 =  max

𝑡𝑡  ∈ 𝐽𝐽
║G(t,0))║p . 

 
Now by using the same technique in subsection 3.1.1, it is easy to define the mild solution of problem (3.6) as follows: 
 
Definition 3.3: A continuous function  z: [0,b] → S defined by  
z(t) = T(t)z0 + T(t)G(0,z0)−G(t,z(t)) +∫ 𝑇𝑇𝑡𝑡0 (t–s) (Bu)(s)ds+∫ 𝑇𝑇𝑡𝑡0 (t–s) f(s,z(s))ds  
                   +∫ 𝑇𝑇𝑡𝑡0 (t–s) Q(s,K(s,z(s)))ds −∫ 𝐺𝐺𝑡𝑡0 (s,z(s)AT(t−s)ds                                                                                    (3.7)  
will be called a mild solution to the problem (3.6).    
 
Definition 3.4 : The system (3.6) is said to be controllable on the interval J if, for every  z0, z1 ∈ 𝑆𝑆, there exists a control  
u ∈ L2(J,U) such that the mild solution  z(t) of (3.7) satisfying  z(b) = z1 . 
 
Theorem 3.2: Consider the optimal control problem (3.6) with hypothesis (H1)−(H4) and (P1). Assume further  
 
(P2) There exists a positive function v0 ∈ L1(0,b), such that: ║AT(t)║p ≤ v0(t)  
        a.e., t ∈ (0,b). And There exist a constant k3 > 0, such that:  ∫ 𝑣𝑣𝑏𝑏0 0(t) dt ≤ k3 
 
(P3)  M║z0║p+ Mh1 + h2 + h3 + h4 + h2k3+ bMck2[║z1║p+M║z0║p+ Mh1 + ( L1║z1║p+L2) + h3 + h4 +  h2k3] ≤ 𝑟𝑟 
 
         h1= (L1║z0║p+ L2),  h2 = ( L1k1+L2),  h3 = bM(M1k1+ M3), h4 = bM(M2M4k1 + M5)  
 
(P4)  q = L1 + bMM1 + bMM2M4 + L1k3 + b2M2M1ck2 + b2M2M2M4ck2 + bMck2L1k3,  be such that 0 ≤ q ≤ 1. Then the 
problem (3.6) is controllable on J . 
 
Proof:  By using definition 3.4, and equation (3.7) we get that   
z1 = z(b) = T(b)z0 +T(b)G(0,z0) − G(b,z(b)) + ∫ 𝑇𝑇𝑏𝑏0 (b–s) (Bu)(s)ds + ∫ 𝑇𝑇𝑏𝑏0 (b–s)f(s,z(s))ds  
                            +∫ 𝑇𝑇𝑏𝑏0 (b–s) Q(s,K(s,z(s)))ds −∫ 𝐺𝐺𝑏𝑏0 (s,z(s)AT(b−s)ds   
 
Condition (H4)  leads to  
z1 = T(b)z0  +T(b)G(0,z0) − G(b,z(b)) + Wu + ∫ 𝑇𝑇𝑏𝑏0 (b–s) f(s,z(s))ds + ∫ 𝑇𝑇𝑏𝑏0 (b–s) Q(s,K(s,z(s)))ds −∫ 𝐺𝐺𝑏𝑏0 (s,z(s)AT(b−s)ds.  
 
Therefore, 
Wu = z1 − T(b)z0  −T(b)G(0,z0) + G(b,z(b)) −  ∫ 𝑇𝑇𝑏𝑏0 (b–s) f(s,z(s))ds  
                             −  ∫ 𝑇𝑇𝑏𝑏0 (b–s) Q(s,K(s,z(s)))ds + ∫ 𝐺𝐺𝑏𝑏0 (s,z(s)AT(b−s)ds 
 
From constraction of   𝑊𝑊� -1 in (H4), we have that  u(t) = 𝑊𝑊� -1 (Wu(t)), then  
u(t) = 𝑊𝑊� -1 (z1− T(b)z0 −T(b)G(0,z0) + G(b,z(b)) −∫ 𝑇𝑇𝑏𝑏0 (b–s) f(s,z(s))ds  

                     −  ∫ 𝑇𝑇𝑏𝑏0 (b–s) Q(s,K(s,z(s)))ds + ∫ 𝐺𝐺𝑏𝑏0 (s,z(s)AT(b−s)ds(t))                                                                        (3.8) 
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Now, by  using  this control we will define  the following  operator  
(Фz)(t) = T(t)z0 + T(t)G(0,z0) − G(t,z(t)) + ∫ 𝑇𝑇𝑡𝑡0 (t–s) (Bu)(s)ds + ∫ 𝑇𝑇𝑡𝑡0 (t–s) f(s,z(s))ds  
                          +∫ 𝑇𝑇𝑡𝑡0 (t–s) Q(s,K(s,z(s)))ds −∫ 𝐺𝐺𝑡𝑡0 (s,z(s)AT(t−s)ds                                                                             (3.9) 
 
By using the same manner used in the proof of Theorem 3.1, it is not difficiult to see that the operator Ф is 
nonexpansive mapping from S0 into S0, and has a fixed point z(t) which is a solution of system (3.6) and satisfies       
z(b) = z1. Hence the system (3.6) is controllable on J. 
 
Remark 3.1: For study the controllability of the nonlinear control problem (3.1) and (3.6) in any Banach space             
𝕊𝕊 = C(J,X), the space of continuous functions f(t) in the interval J=[0,b] with ║f║ = max𝑜𝑜≤𝑡𝑡≤𝑏𝑏 |𝑓𝑓(𝑡𝑡)|. 
 
(T1) Since the set S0, which is defined in section 3.1, is closed subset of a Banach space 𝕊𝕊, then S0 is a Banach space. 
Thus, if we assuming that 0 ≤ λ < 1 in condition (H6), then we can prove that the operator Ф defined from S0 into S0 by 
equation (3.5) is a contraction mapping from a Banach space into a Banach space. Hence by Theorem 2.1, Ф  has a 
unique fixed point z(t) which is a mild solution to the problem (3.1) on J and satisfies z(b) = z1. Therefore the system 
(3.1) is controllable on J .  
 
By using similar way, when take 0 ≤ q < 1 in condition (P4) we can prove that the system (3.6) is controllable on J by 
using Banach Theorem 2.1. 
 
(T2) If we assume that in section 3.1, the semigroup T(t), t > 0 is compact on a Banach space 𝕊𝕊 (see condition (H1)), 
and the nonlinear operators f, K and Q are all uniformly bounded continuous operators, then the operator Ф which is 
defined from S0 into S0 by equation (3.5) satisfies the Schauder Theorem 2.2, and hence Ф has a fixed point z(t) which 
is a solution to the system (3.1) and satisfies z(b) = z1. Thus the system (3.1) is controllable on J. For more details see 
[8] . 
 
If in (T2) we also assume that the nonlinear operator G in (P1) is uniformly bounded continuous and using the similary 
way above, we can prove that the system (3.6) is controllable on J by using Schauder Theorem 2.2. 
 
(T3) For initial value problem (3.1), if we assume that the operators f, K and Q are also satisfy Lipchitz condition on the 
first argument, and since S=LP(J,X), 1 < 𝑝𝑝 < ∞ is reflexive  Banach space [see example 2.1], then for every z0 ∈ D(A) 
the problem (3.1) has a unique strong solution z(.) on [0,b] given by (3.3) (for more details see [11, Ch.6, Theorem     
1.6 ]) . 
 
4. APPLICATION  

                                                                                    
Consider the partial integrodifferential equation of the form 
 yt(t,x)=yxx(t,x)+(Bu)(t)+𝜎𝜎1(t,yxx(t,x))+∫ 𝜎𝜎𝑡𝑡𝑜𝑜 3(t,s,yxx(s,x),∫ 𝜎𝜎𝑡𝑡0 2(s,𝜏𝜏,yxx(𝜏𝜏,x))d𝜏𝜏)ds,       
x ∈ I = (0,1), t ∈ 𝐽𝐽 = [0, 𝑏𝑏],                                                                                                                                          (3.10)  
And given initial and boundary conditions 
 y(0,1) = y(1,t) = 0,                                                                                                                                                     (3.11a) 
  
 y(x,0) = y0(x), x ∈ 𝐼𝐼,                                                                                                                                                  (3.11b)                          
where B:U→ X, with U ⊂J and X=L2[I,R], is a linear operator such that there exists an invertibled operator W-1 on 
L2[J,U]/kerW , where W is defined by,  
Wu = ∫ 𝑇𝑇𝑏𝑏0 (b – s)Bu(s)ds . 
T(t) is a C0 - semigroup, and 
𝜎𝜎1 : J×X → X                                                                                             
𝜎𝜎2 :J× J×X → X                                                                                                        
𝜎𝜎3 : J×J×X×X → X,  are all continuously differentiable function  by positive constants, 
 
The problem (3.10)-(3.11) can brought to the form (3.1), as given in [14], by making suitable choices of A,B,f, K, Q as 
follows.       
Let  X= L2[I, R],  Az = zxx, B: U → X  , and D(A) = {z ∈ 𝑋𝑋, zxx ∈ 𝑋𝑋; z(0) = z(1) = 0} be such that the condition in 
hypothesis (H4) is satisfied, and let f(t,z)(x)= 𝜎𝜎1(t,zxx(x)), (t,z) ∈ J×X, 
K(t,z)(x)= ∫ 𝜎𝜎𝑡𝑡0 2(s,𝜏𝜏,zxx(x))d𝜏𝜏,  Q(t,z,𝜇𝜇)(x)= ∫ 𝜎𝜎𝑡𝑡𝑜𝑜 3(t,s,zxx(x),𝜇𝜇(x))dt,  x∈ 𝐼𝐼.  
 
Then the system (3.10) - (3.11) becomes an abstract formulation of (3.1). Also by [14, theorem 3] the solutions are all 
bounded. Further, all the conditions stated in the above theorem 3.1 is satisfied. Hence the system (3.10)-(3.11) is 
controllable on J. 
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 5. CONCLUSIONS 
 

1. Generalize nonlinear control problem by taking f, K, Q and G in systems (3.1) and (3.6) any nonlinear 
operators which are satisfy Lipschitz condition on the seconed argument, and study the controllability of these 
systems by using C0 – semigroup and Kirk fixed point theorem.  

2. The idea of studing the controllability of problems (3.1) and (3.6) by using Banach fixed point theorem and 
Schauder fixed point theorem are introduced. 
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