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ABSTRACT 
In this paper we proved that if 𝑑𝑑 is a nonzero derivation of a prime ring 𝑅𝑅 and 𝑓𝑓 be a left generalized derivation, then  
𝑓𝑓 is a strong commutativity preserving. Using this we proved that 𝑅𝑅is commutative. 
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INTRODUCTION 
 
Bell and Martindale [2] studied centralizing mappings of semi prime rings and proved that if 𝑑𝑑 is a nonzero derivation 
of prime ring𝑅𝑅 such that [𝑑𝑑(𝑥𝑥), 𝑥𝑥] = 0 for all 𝑥𝑥 in a nonzero left ideals of 𝑅𝑅, then 𝑅𝑅 is commutative. Bell and Daif [3] 
investigated commutativity in prime and semiprime rings admitting a derivation or an endomorphism which is strong 
commutativity preserving on a nonzero right ideal. Ali and Shah [1] extended some results of Bell and Martindale [2] 
or generalized derivations. Throughout this paper, 𝑅𝑅 will denote a semiprime ring and 𝑍𝑍 its center.Recall that prime if 
𝑎𝑎𝑎𝑎𝑎𝑎 = (0) implise that 𝑎𝑎 = 0 or𝑏𝑏 = 0and semi prime if 𝑎𝑎𝑎𝑎𝑎𝑎 = (0) implies that 𝑎𝑎 = 0. As usual [𝑥𝑥,𝑦𝑦] will denote the 
commutator 𝑥𝑥𝑥𝑥 − 𝑦𝑦𝑦𝑦. An additive mapping𝑑𝑑:𝑅𝑅 → 𝑅𝑅 is called a derivation if 𝑑𝑑(𝑥𝑥𝑥𝑥) = 𝑑𝑑(𝑥𝑥)𝑦𝑦 + 𝑥𝑥𝑥𝑥(𝑦𝑦), holds for all 
𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.An additive mapping 𝐹𝐹:𝑅𝑅 → 𝑅𝑅 is called a generalized derivation if there exists a derivation 𝑑𝑑:𝑅𝑅 → 𝑅𝑅 such that 
𝐹𝐹(𝑥𝑥𝑥𝑥) = 𝐹𝐹(𝑥𝑥)𝑦𝑦 + 𝑥𝑥𝑥𝑥(𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅. An additive mapping 𝐹𝐹:𝑅𝑅 → 𝑅𝑅 is called a left generalized derivation if there 
exists a derivation 𝑑𝑑:𝑅𝑅 → 𝑅𝑅 Such that 𝐹𝐹(𝑥𝑥𝑥𝑥) = 𝑑𝑑(𝑥𝑥)𝑦𝑦 + 𝑥𝑥𝑥𝑥(𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅.A mapping 𝑓𝑓 is commuting on a right 
ideal 𝑈𝑈 of 𝑅𝑅 if [𝑓𝑓(𝑥𝑥), 𝑥𝑥] = 0, for all 𝑥𝑥 ∈ 𝑈𝑈 and 𝑓𝑓 is centralizing if[𝑓𝑓(𝑥𝑥), 𝑥𝑥] ∈ 𝑍𝑍, for all 𝑥𝑥 ∈ 𝑈𝑈. A mapping 𝑓𝑓:𝑅𝑅 → 𝑅𝑅 is 
called strong commutativity preserving if [𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)] = [𝑥𝑥,𝑦𝑦], for all 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅. 
 
Rmark1: For a nonzero elements 𝑎𝑎 ∈ 𝑍𝑍, if 𝑎𝑎𝑎𝑎 ∈ 𝑍𝑍, then 𝑏𝑏 ∈ 𝑍𝑍. 
 
To prove main result we require the following lemmas: 
 
Lemma 1: If 𝑓𝑓 is an additive mapping from 𝑅𝑅 to 𝑅𝑅 such that 𝑓𝑓 is centralizing on a right ideal 𝑈𝑈 of 𝑅𝑅, then 𝑓𝑓(𝑥𝑥) ∈ 𝑍𝑍, 
for all 𝑥𝑥 ∈ 𝑈𝑈 ∩ 𝑍𝑍. 
 
Proof: Since 𝑓𝑓 is centralizing on 𝑈𝑈, we have [𝑓𝑓(𝑥𝑥 + 𝑦𝑦), 𝑥𝑥 + 𝑦𝑦] ∈ 𝑍𝑍 
[𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦), 𝑥𝑥 + 𝑦𝑦] ∈ 𝑍𝑍 
[𝑓𝑓(𝑥𝑥), 𝑥𝑥] + [𝑓𝑓(𝑥𝑥),𝑦𝑦] + [𝑓𝑓(𝑦𝑦), 𝑥𝑥] + [𝑓𝑓(𝑦𝑦),𝑦𝑦] ∈ 𝑍𝑍 
[𝑓𝑓(𝑥𝑥),𝑦𝑦] + [𝑓𝑓(𝑦𝑦), 𝑥𝑥] ∈ 𝑍𝑍 
 
Now if 𝑥𝑥 ∈ 𝑍𝑍, then from above equation  we have  
⇒ [𝑓𝑓(𝑥𝑥),𝑦𝑦] ∈ 𝑍𝑍we replaced 𝑦𝑦 by 𝑓𝑓(𝑥𝑥)𝑦𝑦, then 
⇒ 𝑓𝑓(𝑥𝑥)[𝑓𝑓(𝑥𝑥),𝑦𝑦] ∈ 𝑍𝑍 
 
If [𝑓𝑓(𝑥𝑥),𝑦𝑦] = 0, then 𝑓𝑓(𝑥𝑥) ∈ 𝐶𝐶𝑅𝑅

(𝑈𝑈) , the centeralizer of 𝑈𝑈  in 𝑅𝑅  and by [1] belongs to 𝑍𝑍 . But on the other hand, if 
[𝑓𝑓(𝑥𝑥),𝑦𝑦] ≠ 0, it again follows from the remark 1 that 𝑓𝑓(𝑥𝑥) ∈ 𝑍𝑍 
 
Lemma 2: Let 𝑅𝑅 be a semiprime ring and 𝑈𝑈 a nonzero ideal of 𝑅𝑅. If 𝑍𝑍 in 𝑅𝑅 centralizes the set [𝑈𝑈,𝑈𝑈], then 𝑍𝑍 centralizes 
𝑈𝑈. 
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Now we prove the following result: 
 
Theorem 1: Let 𝑑𝑑:𝑅𝑅 → 𝑅𝑅 be a non zero derivation of prime ring 𝑅𝑅 and 𝑓𝑓 be a left generalized derivation on a nonzero 
right ideal 𝑈𝑈of 𝑅𝑅. If  𝑓𝑓 acts as a homomorphism on 𝑈𝑈, then𝑓𝑓is strong commutativity preserving on 𝑈𝑈. 
 
Proof: We assume that 𝑓𝑓acts as homomorphism on 𝑈𝑈 and 𝑓𝑓 be a left generalized derivation on 𝑈𝑈. Then  
𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦) = 𝑑𝑑(𝑥𝑥)𝑦𝑦 + 𝑥𝑥𝑥𝑥(𝑦𝑦)for all 𝑥𝑥,𝑦𝑦 in 𝑈𝑈.                                                                                                    (1) 
 
We replace𝑦𝑦 by 𝑧𝑧𝑧𝑧, 𝑧𝑧 ∈ 𝑈𝑈, the second equality of  (1) we have 
𝑓𝑓(𝑥𝑥𝑥𝑥𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑧𝑧𝑧𝑧) = 𝑑𝑑(𝑥𝑥)𝑧𝑧𝑧𝑧 + 𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧) = 𝑑𝑑(𝑥𝑥)𝑧𝑧𝑧𝑧 + 𝑥𝑥𝑥𝑥(𝑧𝑧)𝑓𝑓(𝑦𝑦).                                                                             (2) 
 
Since 𝑓𝑓 is a homomorphism. On the other hand we have  
𝑓𝑓(𝑥𝑥𝑥𝑥𝑥𝑥) = 𝑓𝑓(𝑥𝑥𝑥𝑥)𝑓𝑓(𝑦𝑦) = �𝑑𝑑(𝑥𝑥)𝑧𝑧 + 𝑥𝑥𝑥𝑥(𝑧𝑧)�𝑓𝑓(𝑦𝑦) 
𝑓𝑓(𝑥𝑥𝑥𝑥𝑥𝑥) = 𝑑𝑑(𝑥𝑥)𝑧𝑧𝑧𝑧(𝑦𝑦) + 𝑥𝑥𝑥𝑥(𝑧𝑧)𝑓𝑓(𝑦𝑦).                                                                                                                                (3) 
 
From equation (2) & (3), we get 
𝑑𝑑(𝑥𝑥)𝑧𝑧𝑧𝑧 + 𝑥𝑥𝑥𝑥(𝑧𝑧)𝑓𝑓(𝑦𝑦) = 𝑑𝑑(𝑥𝑥)𝑧𝑧𝑧𝑧(𝑦𝑦) + 𝑥𝑥𝑥𝑥(𝑧𝑧)𝑓𝑓(𝑦𝑦) 
𝑑𝑑(𝑥𝑥)𝑧𝑧(𝑓𝑓(𝑦𝑦) − 𝑦𝑦) = 0.                                                                                                                                                      (4) 
 
We replace 𝑦𝑦 by [𝑥𝑥,𝑦𝑦] in equation (4), then  
𝑑𝑑(𝑥𝑥)𝑧𝑧(𝑓𝑓[𝑥𝑥,𝑦𝑦] − [𝑥𝑥,𝑦𝑦]) = 0 
 
By replacing 𝑧𝑧 by 𝑧𝑧𝑧𝑧, 𝑟𝑟 ∈ 𝑅𝑅 in the above equation then  
𝑑𝑑(𝑥𝑥)𝑧𝑧 𝑅𝑅(𝑓𝑓[𝑥𝑥,𝑦𝑦] − [𝑥𝑥,𝑦𝑦]) = 0 
 
By the prime ness of 𝑅𝑅, we have either 𝑑𝑑(𝑥𝑥)𝑧𝑧 = 0 or 𝑓𝑓[𝑥𝑥,𝑦𝑦] − [𝑥𝑥,𝑦𝑦]=0 
 
Since 𝑑𝑑 ≠ 0,  then 𝑓𝑓[𝑥𝑥,𝑦𝑦] − [𝑥𝑥,𝑦𝑦] = 0. 
𝑓𝑓[𝑥𝑥,𝑦𝑦] = [𝑥𝑥,𝑦𝑦] 
[𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)] = [𝑥𝑥,𝑦𝑦]. 
 
Hence 𝑓𝑓 is strong commutativity preserving on 𝑈𝑈 
 
Theorem 2: Let 𝑈𝑈 be right ideal of a semiprime 𝑅𝑅 such that 𝑈𝑈 ∩ 𝑍𝑍 ≠ 0. Let 𝑑𝑑 be a non zero derivation and 𝑓𝑓 be a left 
generalized derivation on 𝑅𝑅 such that 𝑓𝑓 is centralizing on 𝑈𝑈. Then 𝑅𝑅 is commutative. 
 
Proof: We assume that 𝑍𝑍 ≠ 0 because  𝑓𝑓 is commuting on 𝑈𝑈 and there nothing to prove. 
 
Since 𝑓𝑓 is centeralizing on 𝑈𝑈, we have  
[𝑓𝑓(𝑥𝑥), 𝑥𝑥] ∈ 𝑍𝑍for all 𝑥𝑥,𝑦𝑦 ∈ 𝑈𝑈 
 
Linearizing the above equation we have  
[𝑓𝑓(𝑥𝑥 + 𝑦𝑦), 𝑥𝑥 + 𝑦𝑦] ∈ 𝑍𝑍for all 𝑥𝑥,𝑦𝑦 ∈ 𝑈𝑈 
[𝑓𝑓(𝑥𝑥), 𝑥𝑥] + [𝑓𝑓(𝑥𝑥),𝑦𝑦] + [𝑓𝑓(𝑦𝑦), 𝑥𝑥] + [𝑓𝑓(𝑦𝑦),𝑦𝑦] ∈ 𝑍𝑍 
[𝑓𝑓(𝑥𝑥),𝑦𝑦] + [𝑓𝑓(𝑦𝑦), 𝑥𝑥] ∈ 𝑍𝑍   for all 𝑥𝑥,𝑦𝑦 ∈ 𝑈𝑈.                                                                                                                      (5) 
 
We replaced 𝑥𝑥 𝑏𝑏𝑏𝑏 𝑦𝑦𝑦𝑦 in equation (5), we get 
[𝑓𝑓(𝑦𝑦𝑦𝑦),𝑦𝑦] + [𝑓𝑓(𝑦𝑦),𝑦𝑦𝑦𝑦] ∈ 𝑍𝑍 
��𝑑𝑑(𝑦𝑦)𝑧𝑧 + 𝑦𝑦𝑦𝑦(𝑧𝑧)�,𝑦𝑦� + [𝑓𝑓(𝑦𝑦),𝑦𝑦]𝑧𝑧 + 𝑦𝑦[𝑓𝑓(𝑦𝑦), 𝑧𝑧] ∈ 𝑍𝑍 
[𝑑𝑑(𝑦𝑦),𝑦𝑦]𝑧𝑧 + 𝑑𝑑(𝑦𝑦)[𝑧𝑧,𝑦𝑦] + 𝑦𝑦[𝑓𝑓(𝑧𝑧),𝑦𝑦] + [𝑓𝑓(𝑦𝑦),𝑦𝑦]𝑧𝑧 + 𝑦𝑦[𝑓𝑓(𝑦𝑦), 𝑧𝑧] ∈ 𝑍𝑍, then 
[𝑑𝑑(𝑦𝑦),𝑦𝑦]𝑧𝑧 + 𝑦𝑦[𝑓𝑓(𝑧𝑧),𝑦𝑦] + [𝑓𝑓(𝑦𝑦),𝑦𝑦]𝑧𝑧 ∈ 𝑍𝑍. 
 
Now by lemma 1,𝑓𝑓(𝑧𝑧) ∈ 𝑍𝑍 and there fore [𝑑𝑑(𝑦𝑦),𝑦𝑦]𝑧𝑧 + [𝑓𝑓(𝑦𝑦),𝑦𝑦]𝑧𝑧 ∈ 𝑍𝑍 
 
But 𝑓𝑓 is centralizing on 𝑈𝑈. We have [𝑓𝑓(𝑦𝑦),𝑦𝑦]𝑧𝑧 ∈ 𝑍𝑍 and consequently[𝑑𝑑(𝑦𝑦),𝑦𝑦]𝑧𝑧 ∈ 𝑍𝑍 . 
 
Since 𝑧𝑧 is non zero, it follows from remark1 that [𝑑𝑑(𝑦𝑦),𝑦𝑦] ∈ 𝑍𝑍. This implies that𝑑𝑑is centralizing on 𝑈𝑈 and hence we 
conclude that R is commutative. 
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