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ABSTRACT 
The triply diffusive instability problem for fluid completely confined in an arbitrary region with rigid bounding 
surfaces is considered. A sufficient condition for the validity of the principle of the exchange of stabilities is derived, 
which to the best of our knowledge do not appear to have been derived in the literature on triply diffusive convection 
with the same degree of generality. 
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1. INTRODUCTION 
 
Convective motions can occur in a stably stratified fluid when there are two components contributing to the density 
which diffuse at different rates. This phenomenon is called double-diffusive convection. To determine the conditions 
under which these convective motions will occur, the linear stability of two superposed concentration (or one of them 
may be temperature gradient) gradients has been studied by Stern [1], Veronis [2], Nield [3], Baines and Gill [4] and 
Turner [5]. 
 
The case of two component system has been considered only. However, it has been recognized later (Griffiths [6], 
Turner [7]) that there are many situations wherein more than two components are present. Examples of such multiple 
diffusive convection fluid systems include the solidification of molten alloys, geothermally heated lakes, magmas and 
their laboratory models and sea water. For the detailed overview of the work done on triply/ multiple diffusive 
convection one may refer to Griffiths [6], Pearlstein et al. [8], Lopez et al. [9], Ryzhkov and Shevtsova  [10,11], 
Rionero [12,13], Prakash et al. [14,15]. These researchers found that small concentrations of a third component with a 
smaller diffusivity can have a significant effect upon the nature of diffusive instabilities and direct salt finger and 
oscillatory modes are simultaneously unstable under a wide range of conditions, when the density gradients due to 
components with the greatest and smallest diffusivity are of same signs. 
 
All these researchers have confined themselves to horizontal layer geometry, perhaps, due to the complexity involved 
in the analysis of the hydrodynamic problems with arbitrary geometries. However, there are a few researchers 
(Sherman and Ostrach [16], Gupta et al. [17], Gupta and Dhiman [18], Gupta et al. [19]) who have extended the 
classical work to more general hydrodynamic stability problems with arbitrary boundaries. In the present 
communication, which is motivated by the desire to extend the works of Sherman and Ostrach [16], Gupta et al. [17] to 
more complex problems, namely, triply diffusive convection problems for completely confined fluids, a sufficient 
condition for the validity of the exchange principle is derived. The results of Sherman and Ostrach [16] for Rayleigh-
Benard problem, Gupta et al. [17] for double-diffusive convection problem (both for completely confined fluids) are 
obtained as a consequence.   
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2. MATHEMATICAL FORMULATION AND ANALYSIS 
 
Consider a Boussinesq fluid  statically confined in an arbitrary completely enclosed region (as shown in Fig.1) which is 
maintained at a uniform temperature and concentration gradient parallel to the body force acting on a fluid by applying 
certain prescribed thermal and concentration boundary conditions on the bounding walls. The problem under 
investigation is to examine the stability of this physical configuration when the heat and the two concentrations make 
opposing contributions to the vertical density gradient. It is further assumed that the cross diffusion effects can been 
neglected. 
 

 
 

The governing linearized perturbation equations in non dimensional form for the problem with time dependence of the 
form exp(𝑝𝑝𝑝𝑝) (𝑝𝑝 = 𝑝𝑝𝑟𝑟 + 𝑖𝑖𝑝𝑝𝑖𝑖) being complex in general) are given by [17] 
𝑝𝑝
𝜎𝜎
𝑈𝑈��⃗ = ∇2𝑈𝑈��⃗ − grad(𝑃𝑃) + 𝑅𝑅𝑅𝑅𝑘𝑘� − 𝑅𝑅1𝜑𝜑1𝑘𝑘� − 𝑅𝑅2𝜑𝜑2𝑘𝑘,�                           (1) 

 
∇2𝜃𝜃 − 𝑝𝑝𝑝𝑝 = −𝑈𝑈��⃗ . 𝑘𝑘� ,                                                                                                                                                           (2) 
 
τ1∇2𝜑𝜑1 − 𝑝𝑝𝜑𝜑1 = −𝑈𝑈��⃗ . 𝑘𝑘� ,                                                                                                                                                    (3) 
 
τ2∇2𝜑𝜑2 − 𝑝𝑝𝜑𝜑2 = −𝑈𝑈��⃗ . 𝑘𝑘� ,                                                                                                                                                    (4) 
 
div𝑈𝑈��⃗ = 0,                                                                                                                                                                           (5) 
 
where 𝑈𝑈��⃗ ,𝑃𝑃,𝜃𝜃,𝜑𝜑1 and 𝜑𝜑2 denote respectively the perturbed velocity, pressure, temperature, concentration of the first 
component and concentration of the second component. 𝑅𝑅 is the thermal Rayleigh number, 𝑅𝑅1 and 𝑅𝑅2 are the the 
concentration Rayleigh numbers for two concentration components respectively. 𝜎𝜎 is the Prandtl number, τ1 and τ2 are 
the Lewis numbers for two concentration components respectively and 𝑘𝑘�  is a unit vector in the vertical direction. The 
equations have been written in dimensionless forms by using the scale factors 𝑑𝑑

2

𝜅𝜅
, 𝜅𝜅
𝑑𝑑

, 𝜌𝜌𝜌𝜌𝜌𝜌
𝑑𝑑2 ,𝛽𝛽𝛽𝛽,𝛽𝛽1𝑑𝑑 and 𝛽𝛽2𝑑𝑑 for time, 

velocity, pressure, temperature, and the two concentrations respectively, where 𝑑𝑑 a characteristic length, 𝜅𝜅 the thermal 
diffusivity, 𝜌𝜌 the density, 𝜈𝜈 the kinematic viscosity, 𝛽𝛽 the constant temperature gradient, 𝛽𝛽1 and 𝛽𝛽2 are the constant 
concentration gradients for two concentration components. 
 
Eqs. (1) – (5) are to be solved in a simply connected subset 𝑉𝑉 of 𝑅𝑅3 with boundary 𝑆𝑆 subject to the following 
homogeneous time independent boundary conditions: 
 
𝑈𝑈��⃗ = 0 = 𝜃𝜃 = 𝜑𝜑1 = 𝜑𝜑2 on 𝑆𝑆 (rigid bounding surface with fixed temperature and mass concentrations).                       (6) 
 
Eqs. (1) – (5) together with boundary conditions (6) describe an eigenvalue problem for 𝑝𝑝 for prescribed values of the 
other parameters and the system is stable, neutral or unstable according as 𝑝𝑝𝑟𝑟  is negative, zero or positive. Further if 
𝑝𝑝𝑟𝑟 = 0 implies 𝑝𝑝𝑖𝑖 = 0, then the principle of the exchange of stabilities (PES) is valid otherwise we will have 
overstability.  
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Now we prove the following theorem: 
 
Theorem: If �𝑝𝑝,𝑈𝑈��⃗ ,𝜃𝜃,𝜑𝜑1,𝜑𝜑2�, 𝑝𝑝 = 𝑝𝑝𝑟𝑟 + 𝑖𝑖𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑟𝑟 ≥ 0, is a solution of Eqs. (1) - (6) with 𝑅𝑅 > 0,𝑅𝑅1 > 0,𝑅𝑅2 > 0  and 
𝑅𝑅1𝜎𝜎𝑙𝑙4

𝜏𝜏1
2Λ2 + 𝑅𝑅2𝜎𝜎𝑙𝑙4

𝜏𝜏2
2Λ2 ≤ 1, then 𝑝𝑝𝑖𝑖 = 0, where 𝑙𝑙 is the smallest distance between two parallel planes that just contain 𝑉𝑉 and 

Λ(> 2) is a constant. In particular PES is valid if  
𝑅𝑅1𝜎𝜎𝑙𝑙4

𝜏𝜏1
2Λ2 + 𝑅𝑅2𝜎𝜎𝑙𝑙4

𝜏𝜏2
2Λ2 ≤ 1.  

 
Proof: We rewrite system of Eqs. (1) – (4) in the following alternate forms: 
𝑝𝑝
𝜎𝜎
𝑈𝑈��⃗ + grad(𝑃𝑃) − ∇2𝑈𝑈��⃗ − 𝑅𝑅𝑅𝑅𝑘𝑘� + 𝑅𝑅1𝜑𝜑1𝑘𝑘� + 𝑅𝑅2𝜑𝜑2𝑘𝑘� = 0,                         (7) 

 
−𝑅𝑅�∇2𝜃𝜃 − 𝑝𝑝𝑝𝑝 + 𝑈𝑈��⃗ . 𝑘𝑘�� = 0,                                                                                                                                               (8) 
 
𝑅𝑅1�τ1∇2𝜑𝜑1 − 𝑝𝑝𝜑𝜑1 + 𝑈𝑈��⃗ . 𝑘𝑘�� = 0,                                                                                                                                         (9) 
 
𝑅𝑅2�τ2∇2𝜑𝜑2 − 𝑝𝑝𝜑𝜑2 + 𝑈𝑈��⃗ .𝑘𝑘�� = 0,                                                                                                                                       (10) 
 
Forming the dot product of Eq. (7) with 𝑈𝑈��⃗ ∗ (∗ denotes complex conjugation) and integrating over the domain 𝑉𝑉, we 
obtain 
𝑝𝑝
𝜎𝜎 ∫ �𝑈𝑈

��⃗ .𝑈𝑈��⃗ ∗�𝑑𝑑𝑑𝑑 + ∫ �(grad𝑃𝑃).𝑈𝑈��⃗ ∗�𝑑𝑑𝑑𝑑 −𝑉𝑉𝑉𝑉 ∫ �𝑈𝑈��⃗ ∗.∇2𝑈𝑈��⃗ �𝑉𝑉 𝑑𝑑𝑑𝑑 − 𝑅𝑅 ∫ ��𝜃𝜃𝑘𝑘��.𝑈𝑈��⃗ ∗�𝑑𝑑𝑑𝑑 + 𝑅𝑅1 ∫ ��𝜑𝜑1𝑘𝑘��.𝑈𝑈��⃗ ∗�𝑉𝑉𝑉𝑉 𝑑𝑑𝑑𝑑 +
𝑅𝑅2 ∫ ��𝜑𝜑2𝑘𝑘��.𝑈𝑈��⃗ ∗�𝑉𝑉 𝑑𝑑𝑑𝑑 = 0.                                                                                                                                                (11) 
 
Subsequently, for convenience in writing, we omit 𝑉𝑉 and the infinitesimal 𝑑𝑑𝑑𝑑  volume from the integral sign and the 
integrand, respectively. 
 
Multiplying Eqs. (8) - (10) by 𝜃𝜃∗,𝜑𝜑1

∗,𝜑𝜑2
∗ ,  respectively, integrating over the domain 𝑉𝑉, we get 

−𝑅𝑅 ∫𝜃𝜃∗�∇2𝜃𝜃 − 𝑝𝑝𝑝𝑝 + 𝑈𝑈��⃗ . 𝑘𝑘�� = 0,                                                                                                                                     (12) 
 
𝑅𝑅1 ∫𝜑𝜑1

∗�τ1∇2𝜑𝜑1 − 𝑝𝑝𝜑𝜑1 + 𝑈𝑈��⃗ . 𝑘𝑘�� = 0,                                                                                                                               (13) 
 
𝑅𝑅2 ∫𝜑𝜑2

∗�τ2∇2𝜑𝜑2 − 𝑝𝑝𝜑𝜑2 + 𝑈𝑈��⃗ . 𝑘𝑘�� = 0.                                                                                                                              (14) 
 
Now, adding Eqs. (12) – (14) to Eq. (11), we have 
𝑝𝑝
𝜎𝜎 ∫�𝑈𝑈

��⃗ .𝑈𝑈��⃗ ∗� + ∫(grad𝑃𝑃).𝑈𝑈��⃗ ∗ − ∫�𝑈𝑈��⃗ ∗.∇2𝑈𝑈��⃗ � − 𝑅𝑅 ∫𝜃𝜃∗(∇2 − 𝑝𝑝) 𝜃𝜃 + 𝑅𝑅1 ∫𝜑𝜑1
∗(τ1∇2 − 𝑝𝑝)𝜑𝜑1 + 𝑅𝑅2 ∫𝜑𝜑2

∗(τ2∇2 − 𝑝𝑝)𝜑𝜑2 −
𝑅𝑅𝑅𝑅 + 𝑅𝑅1𝐼𝐼1 + 𝑅𝑅2𝐼𝐼2 = 0,                                                                                                                                                    (15) 
where 𝐼𝐼 = 2𝑅𝑅𝑅𝑅�∫�𝜃𝜃𝑘𝑘� .𝑈𝑈��⃗ ∗��, 𝐼𝐼1 = 2𝑅𝑅𝑅𝑅�∫�𝜑𝜑1𝑘𝑘� .𝑈𝑈��⃗ ∗��, 𝐼𝐼2 = 2𝑅𝑅𝑅𝑅�∫�𝜑𝜑2𝑘𝑘� .𝑈𝑈��⃗ ∗��, and Re denotes the real part.  
 
Using Gauss’ theorem and boundary conditions (6), we have 
∫(grad𝑃𝑃).𝑈𝑈��⃗ ∗ = ∫ 𝑃𝑃𝑆𝑆 𝑈𝑈��⃗ ∗.𝑛𝑛�𝑑𝑑𝑑𝑑 − ∫𝑃𝑃div𝑈𝑈��⃗ ∗ = 0,                                                                                                             (16) 
 
∫�𝑈𝑈��⃗ ∗.∇2𝑈𝑈��⃗ � = −∫�curlcurl𝑈𝑈��⃗ .𝑈𝑈��⃗ ∗� = −∫ curl𝑈𝑈��⃗ . curl𝑈𝑈��⃗ ∗ − ∫ �curl𝑈𝑈��⃗ �𝑆𝑆 × 𝑈𝑈��⃗ ∗.𝑛𝑛�𝑑𝑑𝑑𝑑 = −∫ curl𝑈𝑈��⃗ . curl𝑈𝑈��⃗ ∗,                      (17) 
 
∫(𝜃𝜃∗∇2𝜃𝜃) = ∫ (𝜃𝜃∗∇𝜃𝜃)𝑆𝑆 .𝑛𝑛�𝑑𝑑𝑑𝑑 − ∫∇𝜃𝜃.∇𝜃𝜃∗ = −∫∇𝜃𝜃.∇𝜃𝜃∗,                                                                                              (18) 
 
∫(𝜑𝜑1

∗∇2𝜑𝜑1) = ∫ (𝜑𝜑1
∗∇𝜑𝜑1)𝑆𝑆 .𝑛𝑛�𝑑𝑑𝑑𝑑 − ∫∇𝜑𝜑1.∇𝜑𝜑1

∗ = −∫∇𝜑𝜑1.∇𝜑𝜑1
∗,                                                                                    (19) 

 
∫(𝜑𝜑2

∗∇2𝜑𝜑2) = ∫ (𝜑𝜑2
∗∇𝜑𝜑2)𝑆𝑆 .𝑛𝑛�𝑑𝑑𝑑𝑑 − ∫∇𝜑𝜑2.∇𝜑𝜑2

∗ = −∫∇𝜑𝜑2.∇𝜑𝜑2
∗ ,                                                                                   (20) 

where 𝑛𝑛� is a unit outward drawn normal at any point on 𝑆𝑆. Using integral relations (16) – (20) in Eq. (15), we have 
𝑝𝑝
𝜎𝜎 ∫�𝑈𝑈

��⃗ .𝑈𝑈��⃗ ∗� + ∫ curl𝑈𝑈��⃗ . curl𝑈𝑈��⃗ ∗ + 𝑅𝑅 ∫(∇𝜃𝜃.∇𝜃𝜃∗ + 𝑝𝑝|𝜃𝜃|2) − 𝑅𝑅1 ∫(τ1∇𝜑𝜑1.∇𝜑𝜑1
∗ + 𝑝𝑝|𝜑𝜑1|2) − 𝑅𝑅2 ∫(τ2∇𝜑𝜑2.∇𝜑𝜑2

∗ + 𝑝𝑝|𝜑𝜑2|2) −
𝑅𝑅𝑅𝑅 + 𝑅𝑅1𝐼𝐼1 + 𝑅𝑅2𝐼𝐼2 = 0.                                                                                                                                                    (21) 
 
Equating the imaginary part of Eq. (21) to zero and since 𝑝𝑝𝑖𝑖 ≠ 0, we have 
1
𝜎𝜎 ∫�𝑈𝑈

��⃗ .𝑈𝑈��⃗ ∗� + 𝑅𝑅 ∫|𝜃𝜃|2 = 𝑅𝑅1 ∫|𝜑𝜑1|2 + 𝑅𝑅2 ∫|𝜑𝜑2|2.                                                                                                            (22) 
 
 
 



J. Prakash*1, S. Manan2, V. Singh3 / On The Principle of The Exchange of Stabilities for The Triply Diffusive Convection Problem in 
Completely Confined Fluids / IJMA- 6(10), Oct.-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                       180   

 
Multiplying Eq. (3) by 𝜑𝜑1

∗ , integrating over 𝑉𝑉, utilizing the relation (19), and then equating the real parts of the 
resulting equation, we obtain 

𝜏𝜏1 ∫∇𝜑𝜑1.∇𝜑𝜑1
∗ + 𝑝𝑝𝑟𝑟 ∫|𝜑𝜑1|2 = 𝑅𝑅𝑅𝑅�∫�𝑈𝑈��⃗ . 𝑘𝑘��𝜑𝜑1

∗� ≤ ∫�𝑈𝑈��⃗ . 𝑘𝑘��|𝜑𝜑1| ≤ �∫�𝑈𝑈��⃗ . 𝑘𝑘��
2
�

1
2� {∫|𝜑𝜑1|2}1

2� .                                          (23) 
 
Since 𝑝𝑝𝑟𝑟 ≥ 0 we have from inequality (23) that  

𝜏𝜏1 ∫∇𝜑𝜑1.∇𝜑𝜑1
∗ < �∫�𝑈𝑈��⃗ . 𝑘𝑘��

2
�

1
2� {∫|𝜑𝜑1|2}1

2� ,  
 
which upon utilizing Poincare inequality (Joseph [20]) viz. 
∫∇𝜑𝜑1.∇𝜑𝜑1

∗ ≥ Λ
𝑙𝑙2 ∫|𝜑𝜑1|2,                                                                                                                                                  (24) 

yields 
∫|𝜑𝜑1|2 ≤ 𝑙𝑙4

𝜏𝜏1
2Λ2 ∫�𝑈𝑈��⃗ . 𝑘𝑘��

2
≤ 𝑙𝑙4

𝜏𝜏1
2Λ2 ∫𝑈𝑈��⃗ .𝑈𝑈��⃗ ∗.                                                                                                                           (25) 

 
Using the same procedure, it follows from Eq. (4) that 
∫|𝜑𝜑2|2 ≤ 𝑙𝑙4

𝜏𝜏2
2Λ2 ∫𝑈𝑈��⃗ .𝑈𝑈��⃗ ∗.                                                                                                                                                     (26) 

 
Utilizing inequalities (25) and (26) in Eq. (22), we have 
�1
𝜎𝜎
− 𝑅𝑅1𝑙𝑙4

𝜏𝜏1
2Λ2 −

𝑅𝑅2𝑙𝑙4

𝜏𝜏2
2Λ2� ∫𝑈𝑈��⃗ .𝑈𝑈��⃗ ∗ + 𝑅𝑅 ∫|𝜃𝜃|2 < 0,                                                                                                                       (27) 

 
which clearly implies that 𝑅𝑅1𝜎𝜎𝑙𝑙4

𝜏𝜏1
2Λ2 + 𝑅𝑅2𝜎𝜎𝑙𝑙4

𝜏𝜏2
2Λ2 > 1. 

 
Hence, if  𝑅𝑅1𝜎𝜎𝑙𝑙4

𝜏𝜏1
2Λ2 + 𝑅𝑅2𝜎𝜎𝑙𝑙4

𝜏𝜏2
2Λ2 ≤ 1, then we must have 𝑝𝑝𝑖𝑖 = 0. 

 
This proves the theorem. 
 
The above theorem states from the physical point of view that for the problem of Triply diffusive convection for the 
completely confined fluids, an arbitrary neutral or unstable mode of the system is definitely nonoscillatory in character 
and in particular the principle of the exchange of stabilities is valid if  𝑅𝑅1𝜎𝜎𝑙𝑙4

𝜏𝜏1
2Λ2 + 𝑅𝑅2𝜎𝜎𝑙𝑙4

𝜏𝜏2
2Λ2 ≤ 1. 

 
SPECIAL CASES 
 
It follows from theorem that an arbitrary neutral or unstable mode is nonoscillatory in character and in particular PES is 
valid for: 

1. Rayleigh - Benard convection problem in completely confined fluids (𝑅𝑅1 = 𝑅𝑅2 = 0) (Sherman and Ostrach 
[16]) 

2. Thermohaline convection (𝑅𝑅2 = 0)  if  𝑅𝑅1𝜎𝜎𝑙𝑙4

𝜏𝜏1
2Λ2 ≤ 1. (Gupta et al. [17]) 

3. Thermohaline convection of Stern [1] type  if (𝑅𝑅 < 0,𝑅𝑅1 < 0,𝑅𝑅2 = 0) if |𝑅𝑅|𝜎𝜎𝑙𝑙4

Λ2 ≤ 1. (Gupta et al. [17]) 

4. Triply  diffusive convection analogous to Stern [1] type (𝑅𝑅 < 0,𝑅𝑅1 < 0,𝑅𝑅2 < 0) if |𝑅𝑅|𝜎𝜎𝑙𝑙4

Λ2 ≤ 1.  
 
Proof: Putting 𝑅𝑅 = −|𝑅𝑅|, 𝑅𝑅1 = −|𝑅𝑅1|,𝑅𝑅2 = −|𝑅𝑅2| in Eq. (1) and adopting the procedure exactly similar to the one 
used in proving theorem we obtain the desired result.  
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