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ABSTRACT

The aim of this paper is to introduce and study the new classes of generalized closed set namely g”'p -closed sets.
Furthermore the relations with other notions connected with the forms of closed sets are investigated. Also we define
the space namely Tp~ space using this definition.
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1. INTRODUCTION

The study of generalized closed sets in topological space was initiated by Levine [10] in 1970 and concept of
T1/2 -space was introduced. Manoj Garg and Shikha Agarwal, C.K.Goel [14] introduced the concept of g™ -closed sets
in topological space.

In this paper we first introduce a new class of closed sets namely g~ p —closed sets which is placed in between the class
of closed sets and the class of g-closed sets and then investigate some of its properties . We also introduce new class of
spaces namely Tp~ space, ™ Tp space, Tp™" space, a Tp~ space.

2. PRELIMINARIES

Throughout this paper (X, 1) (or X) represents topological spaces on which no separation axioms are assumed unless
otherwise mentioned. For a subset A of a space (X, 1), cl(A), int(A) and A° denote the closure of A, interior of A and
complement of A respectively in X.

We recall the following definitions which are useful in the sequel.

Definition 2.1: A subset A of a topological space (X, 1) is called
(1) apre-open set [15] if A < int(cl(A)) € A.
(2) asemi-open set [9] if A < cl(int(A)).
(3) ana-open setif [16] A < int(cl(int(A))).
(4) asemi-preopen set [1] (= B -open) if A < cl(int(cl(A))).

The class of all closed subsets of a space (X, t) is denoted by C(X, t). The intersection of all semi closed (resp. pre-
closed, semi-preclosed, a-closed) sets containing a subset A of (X, 1) is called the semi-closure (resp. pre-closure, semi-
pre-closure and a-closure) of A and is denoted by scl(A)(resp. pcl(A), spcl(A) and acl(A)).
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Definition 2.2: A subset A of a space (X, 1) is called

(1) ag-closed set [10] if cl(A) < U whenever A < U and U is open in (X, 7).

(2) ag'-closed set [19] if ¢l (A) € U whenever A € U and U is g-open in (X, 1).

(3) a semi-generalized closed set [4] (briefly sg-closed) if scl (A) € U whenever A € U and U is semi-open in
X, 7).

(4) ageneralized semi-closed set [2] (briefly gs-closed) if scl (A) € U whenever A < U and U is open in (X, 7).

(5) ageneralized a-closed set [11] (briefly g a-closed) if acl(A) € U whenever A € U and U is a-open in (X, 7).

(6) an a-generalized closed set [12] (briefly ag-closed) if acl(A) € U whenever A € U and U is open in (X, 1).

(7) a generalized semi-preclosed set [5] (briefly gsp-closed) if spcl (A) € U whenever A < U and U is open in
X, 1) .

(8) a gene ralized pre closed set [13] (gp-closed) if pcl (A) € U whenever A € U and U is open in (X, 7).

(9) a generalized preregular closed set [8] (briefly gpr-closed) if pcl (A) € U whenever A € U and U is regular
openin (X, 1).

(10)g" p -closed set [21] if pcl (A) € U whenever A € U and U is open in (X, 1).

(11) g" -closed set [20] if cl (A) € U whenever A € U and U is ag-open in (X, 1).

(12)g" s -closed set [17] if scl (A) € U whenever A € U and U is gs-open in (X, 1).

(13)g™"-closed set [14] if cl(A) € U whenever A € U and U is sg-open in (X, 1).

Definition 2.3: A subset A of a space (X, 1) is called
(1) locally closed (briefly Ic) set [7] if A= U N F, where U is open and F is closed in (X, 1).
(2) generalized locally closed (briefly glc) set [3] if U = F NF, where U is g-open and F is g-closed in (X, 1).
(3) g  -locally closed (briefly g'lc) set [22] if A= U N F, where U is g" -open and F is g*-closed in (X, 7).
(4) g" -locally closed (briefly g* Ic) set [23] if A=U N F, where U is g" -open and F is g" -closed in (X, 7).
(5) g _ -locally closed (briefly g _Ic) set[24] if A=U N F, where Uisg _-openand Fisg _ -closed in (X, 1).
(6) g s -locally closed (briefly g” slc) set [18] if A= U NF, where U isg s—openand Fis g s -closed in (X, 7).
Definition 2.4: A topological space (X, 7) is called
(1) Sub maximal space [6] if every dense subset of (X, t) is open in (X, ).
(2) Semi-pre-T 1/2 space [4] if every gsp-closed set is semi-preclosed.
Proposition 2.5:
(1) [14] Every open set is g™ -open.
(2) [14] Every g™ -open set is g -open.
3. BASIC PROPERTIES OF g~ p -CLOSED SET
In this section we introduce the following definition.

Definition 3.1: A subset A of (X, t) is called a g""p -closed set if pcl(A) € U whenever A € U and U is g™~ -open in
X, 1)

Theorem 3.2: Every closed set is ""gp -closed.

Proof: Let A be a closed set. Then cl(A) = A. Let U be any g™~ -open set containing A.
Since pcl(A) € cl(A)=Ac U.Then Aisg™ p -closed.

Remark 3.3: The following example supports that a g™~ p -closed set need not be closed.

Example 3.4: Let X = {a, b, c} and = = {0, {a}, X}. g~ pC(X) = {0, {b}, {c}, {a, b}, {b, c}, {a, c}, X}. Here {a, b} is
g™ p -closed but not a closed set of (X, 7).

Theorem 3.5: Every g -closed set is g™ p -closed set.

Proof: Let Abe ag -closed set. Let U be an g™ -open set containing A. Since pcl(A) S cl(A) € U, Ais “gp -closed.
Remark 3.6: The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let X = {a, b, c} with t = {o, {c}, {b, c}, X}. g pC(X) = {o, {a}, {b}, {a, b}, {a, c}, X}.

Here B = {b} is g™ p -closed but not a g~ -closed set.
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Theorem 3.8: Every g* p -closed set is g~ p -closed set.
Proof: Since every g™~ -open set is g -open, the theorem follows.
Remark 3.9: The converse of the above theorem need not be true as seen from the following example.
Example 3.10: Let (X, t) be as in example 3.4, the set {a, b} is g~ p —closed but nota g" p -closed set.
Theorem 3.11: Every go-closed set is g~ p -closed set in (X, 1).
Proof: Let A be a ga-closed set. Let U be an g™ -open set containing A. Since pcl(A) S acl(A) € U, Aisg™ p -closed.

Remark 3.12: The following example shows that the converse of the above theorem is not necessarily true as seen
from the following example.

Example 3.13: Let X = {a, b, c} with Tt = {o, {2}, {a, b}, X}. Then g*" pC(X) = {0, {b}, {c}, {b, c}, {a, c}, X}. The set
{a, c} is g™~ p -closed set but not a ga-closed set.

Theorem 3.14: Every g™ p -closed set is gsp-closed set in (X, 1).

Proof: It follows from the fact that every open is ~°g -open and spcl(A) € pcl(A) € cl(A) < U for any subset A of
X 1).

Remark 3.15: The converse of the above theorem need not be true as seen from the following example.

Example 3.16: Let X = {a, b, c} with T = {o, {2}, {b}, {a, b}, X}. Then g™~ pC(X) = {0, {c}, {b, c}, {a, c}, X}. The set
{a} is gsp-closed but not a g™~ p -closed set.

Theorem 3.17: Every g™ -closed set is g™~ p -closed in (X, 7).

Proof: Let Abeag™ -closed set. Let U be an g™ -open set containing A. Since pcl(A) € cl(A) € U, Aisg™ p -closed
set.

Example 3.18: Let X and t be as in example 3.13, the set {a, c} is g™ p —closed but not a g™~ -closed set in (X, 7).
Theorem 3.19: Every pre-closed set is g™ p -closed.

Proof: Obvious

Remark 3.20: The converse need not be true as seen from the following example.

Example 3.21: Let X = {a, b, ¢} with t = {¢, {c}, {a, ¢}, X}. Then g*" pC(X) = {0, {a}, {b}, {a, b}, {b, c}, X}. The
set {b, c} isg™" p -closed but not a pre-closed in (X, t) .

Theorem 3.22: Every g# -closed set is g™~ p -closed set in (X, 7).

Proof: Let A be g" -closed set . Let U be an g™ -open set containing A. Since pcl(A) € cl(A) € U, Ais g~ p -closed.
Remark 3.23: The converse need not be true as seen from the following example.

Example 3.24: Let X and t be as in example 3.13, the set {a, c} is g™ p —closed but not a g# -closed set.

Theorem 3.25: Every g™ p -closed set is gpr-closed.

Proof: Since every g™"-open set is regular open, the theorem follows.

Remark 3.26: The converse need not be true as seen from the following example.

Example 3.27: Let (X, 1) be as in example 3.16, the set {a, b} is gpr-closed but not a g™ p -closed.

Remark 3.28: Thus the class of g™ p -closed sets properly contains the closed sets, g* -closed sets, g* p -closed sets,
g o-closed sets, g~ -closed sets, g# -closed sets and is properly contained in the classes of gsp-closed sets and
gpr-closed sets.
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Remark 3.29: g™ p -closed sets are independent of semi-closed set, semi-preclosed set, g s -closed set, gs-closed set,
sg-closed set as it can be seen from the following examples.

Example 3.30: Let (X, 1) be as in example 3.4, the set {a, b} is g~ p —closed but neither semi-closed nor semi-
preclosed. In example 3.16, the set {b} is both semi-closed and semi-preclosed but not a g™~ p -closed.

Example 3.31: Let X = {a, b, c} and t = {o, {b, c}, X}. Then the set {c} is g™ p -closed but it is neither sg-closed set
nor gs-closed in (X, 1).

Example 3.32: In example 3.16, the set {b} is both gs-closed and sg-closed but not a g™~ p -closed set.
Example 3.33: Let X and t be as in example 3.31, the set {c} is g"* p —closed but not g" s -closed set in (X, 1).
Example 3.34: In example 3.16, the set {a} is g" s -closed set but not a g™ p -closed in (X, 7).

Remark 3.35: Union of two g™ p -closed sets need not be g~ p -closed set as can be verified from the following
example.

Example 3.36: Let X and t be as in example 3.31, g™ pC(X) = {9, {a}, {b}, {c}, {a, b}, {a, c}, X}.
Here A ={b}, B={c}are g~ p -closed set but AUB = {b, c} is not g™~ p -closed.

Remark 3.37: Intersection of two g™~ p -closed sets need not be g™ p -closed set as can be verified from the following
example.

Example 3.38: In example 3.4, the sets {a, b} and {a, c} are g™~ p -closed sets but {a, b} N {a, c} ={a}isnotg™ p -
closed set in (X, 7).

Theorem 3.39: Alisa g™ p -closed set of (X, t). Then pcl(A)SA does not contain any non-empty g™~ -closed set.

Proof: Let F be g™ -closed set of (X, t) such that F < pcl(A) € A. Then ASX-F. Since X —Fisg™ -open, ASX - F
and Ais g™ p -closed, pcl(A) € X—F,andthusF < X —pcl(A) . This implies that
F c (X—pcl(A)) N (pcl(A) — A) < (X —pcl(A)) N pcl(A) = ¢ and hence F = ¢.

Theorem 3.40: If Alisa g™ p -closed set of (X, 1) such that A € B < pcl(A), then B is also a g™~ p —closed set of
(X, 7).

Proof: Let U be a g~ -open set of (X, 1) such that B €U. Then A < U. Since A < U and A is g~ p -closed set,
pcl(A)CU. Then pcl(B) < pcl(pcl(A)) = pcl(A), since B € pcl(A). Thus pcl(B) € pcl(A) € U.HenceBisalsog™ p -
closed set.

Remark 3.41: From the above discussions we have the following implications where A — B (resp. A = B) represents
A implies B but not conversely (resp. A and B are independent of each other).

£ wcloszd clo=d Clos=d pra<losd Zzp <losad
£ clos=d // sz -closad
=ﬁ_'ITI.— lozad
semipre—C lﬂﬂd/
—clossd g -clozad

2 s—<losad g7 <losed gz -closad
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4.97 p-LOCALLY CLOSED SETS

Definition 4.1: A subset A of (X, 1) is called g™ p -locally closed (briefly g™ plc) if A= U N F, where U is g™ p -open
and Fis g™ p -closed in (X, 7). The class of all g™"p -locally closed sets in X is denoted by G~ PLC(X).

Example 4.2: Let X = {a, b, c} and t = {o, {a}, X}. Then g™ p -lc set = P(X).
Theorem 4.3: Every locally closed set is ““gp -lc set.

Proof: Let A be Ic set in (X, t). Then there exist an open set U and closed set F such that A = U N F. Since every
closed set is g™~ p -closed and, its complement is g™"p —open, A'is g""p - Ic set.

Remark 4.4: The converse need not be true as it can be seen from the following example.

Example 4.5: In example 4.2 g”"p -lc = P(X). Here the set {a, b} is g™"p - locally closed set but not locally closed set in
(X, 1).

Theorem 4.6: Every "g -Ic setis g™"p -Ic set in (X, 1).

Proof: Let A be g™-lc set. Then there exist an g -open set U and g~ -closed set F such that A = U N F. Since every
g -closed set is g™"p -closed set, its complement is g~"p —open, Aisg™"p - Ic set.

Remark 4.7: The converse need not be true as seen from the following example.

Example 4.8: Let (X, 1) be in example 3.13, g™"p -Ic = P(X) . Here the set {b} is g""p -locally closed but not g" -locally
closed set.

Theorem 4.9: Every g-lc set is g™p -lc set.

Proof: Let A be g'-Ic set. Then there exist an g” -open set U and g -closed set F such that A = U N F. Since every
g -closed set is g™~"p —closed, and its complement is g -open, Ais g™ p - Ic set.

Remark 4.10: The converse need not be true as seen from the following example.
Example 4.11: In example 4.2, g™°p -lc = P(X). Here the set {c} is g""p - locally closed set but not g*-lc set in (X, 7).
Theorem 4.12: Every g” -Ic set is g™p -Ic set.

Proof: Let A be g - Ic set. Then there exist an g# -open set U and g# -closed set F such that A = U N F. Since every
g" -closed set is g™°p -closed and its complement is g~"p -open. Then A is g~p - Ic set.

Remark 4.13: The converse need not be true as seen from the following example.
Example 4.14: Let X = {a, b, ¢} with t = {o, {a}, {b, ¢}, X}. Then the set {a, b} is g™plc but not g* - Ic set.
Definition 4.15: A subset A of a space (X, 1) is called

(i) g7p-lc setif A=SN G, whereSisg™p-openin (X, ) and G is closed in(X, 7).

(i) g~p-Ic” setif A=S N G, where S isopenin (X, t)and G is g™°p —closed in (X, 1).

The class of all g™'p -lc _ (resp. g~'p -Ic™) sets in a topological space (X, t ) is denoted by G PLC™ (X)
(resp.” GPLC™ (X)).

Theorem 4.16: Every locally closed set is g™p -Ic” set in (X, 7).

Proof: Let A be Ic set. Then there exist U and closed set F such that A = U N F. Since every open set is g~ 'p -open, A
isg™p - lc_ set.

Remark 4.17: The converse need not be true as seen from the following example.

Example 4.18: Let X = {a, b, c} with the topology t = {o, {a}, X}. Then the set {a, c} is g™ plc” set is not locally
closed set.
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Theorem 4.19: Every locally closed setis g™ p —Ic™ in (X, 7).

Proof: Let A be locally closed set. Then there exist an open set U and closed set F such that A = U N F. Since every
closed set is g™ p -closed, Ais g~ p-Ic”".

Remark 4.20: The converse of the above theorem need not be true as seen from the following example.
Example 4.21: In example 4.18, the set {a, ¢} is g™ plc” set but not locally closed set.

Theorem 4.22: Let A and B be any two subsets of (X, 7). If Ain G™ PLC(X) and B is g"" p -open, then
AN B e G PLC(X).

Proof: Let A in G™ PLC(X). Then there exist an g™~ p -open set U and g™~ p —closed set F such that A=U N F. So, A
NB=(UNFNB=(UNB)NFinG™” PLC(X).

Theorem 4.23: Let A and B be any two subsets of (X, 7). If A in G™ PLC™ (X) and B in G PLC" (X), then AN B in
G™ PLC(X).

Proof: Let A=S N G, where Sisopenand G is g™ p -closed and B =P N Q, where P is g~ p -open and Q is closed.
ThenANB=(SNG)NFPNQ)=(SNP)N(GNQ) where SN Pisg™ p-openand GNQ is g~ p -closed. Therefore,
AN BinG™ PLC(X).

Theorem 4.24: Let A and B be any two subsets of (X, 7). If A€ G~ PLC™ (X) and B is open or closed, then
ANBEG"PLC™ (X,1).

Proof: If A'in G™ PLC™ (X, 1). Then there exist an open set U and g™ p —closed set F such that A = U NF. If B is
open, then ANB = (U NF)NB = (U NB)NFin G PLC (X, t).IfBis closed, then
ANB=UNFHNB=UNBNF)InG"PLC (X,1).

Theorem 4.25: Let A and B be any two subsets of (X, 7). If A€ G~ PLC(X) and B is g™ p -open or g”~ p -closed, then
ANBEeG”PLC(X, 7).

Proof: Let A in G PLC(X, 7). Then there exist an g™~ p -open set U and g™~ p -closed set F such that A=U NB. If B
is g™ p -open, then ANB = (U NF)NB = (U N B) NFin G™PLC(X, t). If Bis g™ p -closed, then
ANB=(UNFNB=UN(BNF)inG” PLC(X, 7).

Theorem 4.26: For a subset A of (X, 1) the following are equivalent:
(1) AeG”PLC (X, 1)
(2) A=PNcl(A) for some g™ p -open set P
(3) cl(A)—Aisg™ p-closed
(4) Au(X—cl(A))isg™ p-open

Proof:

(1) = (2): Let AeG™ PLC” (X, 1). Then there exist an g™ p -open set P and a closed set F in (X, t) such that A = P NF.
Since A € P and Accl(A), we have A € P Ncl(A). Conversely, since cl(A) € F, P < cl(A) € P NF = A, we have that
A=PNclA).

(2) = (1): Since P is g™"p -open and cl(A) is closed, we have P N cl(A) € G™PLC” (X, 1).

(3) = (4): Let F =cl(A) — A. By assumption Fis g™ p -closed. X —F =X N F =X N (cl(A) — A)° = AN (X —cl(A)).
Since X —Fis g™ p -open, we have that A U (X —cl(A)) isg"™" p -open.

(4) = (3): Let U =AU (X —cl(A)). By assumption U is g~ p -open. Then X — U is g™ p -closed.
X=U=X-(AUX-cl(A) =cl(A) N (X—-A) =cl(A) — A, cl(A) — Aisg™ p -closed.

(4)=(2): LetU=AU (X —cl(A)) . By assumption, U is g~" p -open. Now

Uncl(A)=AuU (X-cl(A) Nncl(A) = (cl(A) N A) U (cl(A) N (X —cl(A))) = AU ¢ = A. Therefore A= U N cl(A) for
the g™ p -open set U.

(2) = (4): Let A=P N cl(A) for some g™~ p -open set P.

Now A U (X — cl(A)) =P Ncl(A)u(X—cl(A)) =P N(cl(A)u(X—cl(A))) =P NX =P is g™ p -open.
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Remark 4.27: From the above discussions and known results, we have the following implications where A — B (resp.
A = B) represents A implies B but not conversely (resp. A and B are independent of each other).

lo-zat
Tele et —e 2 peloost -l =t
£ =k =t g -lc st

5. APPLICATIONS OF g™ p -CLOSED SET

Now we introduce new type of spaces namely Tp~ spaces, Tp™ spaces, ~ Tp spaces, aTp~ spaces oTp”~ spaces, sTp~
spaces .

Definition 5.1: A space (X, 1) is called

Tp "~ space if every g™~ p -closed set is closed.

“Tp space if every g a-closed set is g™~ p -closed.
Tp™ space if g™ p -closed set is gp-closed.

a Tp™ space if every g™~ p -closed set is a-closed.
p Tp™" space if every g™ p -closed set is pre-closed.
s Tp™" space if every gsp-closed set is g™~ p -closed.

ok~ wbdE

Theorem 5.2:
1. Every Tp ~space is Tp~ space.
2. Every Tp™ spaceis o Tp™" space.
3. Everyp Tp™ space is Tp™~ space.

1. Follows from the fact that every closed set is gp -closed and pre-closed set.
2. Follows from the fact that every closed set is a-closed.
3. Since every pre-closed set is gp -closed.

Remark 5.3: The converses of the above theorem need not be true as seen from the following examples.
Example 5.4: Let X ={a, b, c} and © = {o, {c}, {a, ¢}, X}. Here (X, 1) is Tp"" space but not Tp"~ space.
Example 5.5: In example 5.4, (X, 1) is aTp~" space but not Tp~ space.
Example 5.6: Let X ={a, b, c} and © = {o, {a}, {a, b}, X}. So (X, 1) is Tp™" space but not p Tp™" space.
Theorem 5.7:

1. EverysTp™ space is “Tp space.

2. Everya Tp™ spaceisp Tp™ space.
Proof:

1. Since every go-closed set is gsp -closed.

2. Since pcl(A) < cl(A) (2) follows.
Remark 5.8: The class of Tp~ space is properly contained in the class of a Tp™ space and class of p Tp™" space. The

class of s Tp™ is properly contained in the class of "Tp space. The class of p Tp™ space is properly contains in the class
of o Tp™ space.
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Theorem 5.9: Every semi-pre-T 1/2 space is "Tp and Tp~" space.
Proof. Every ga-closed set is gsp -closed and also g™ p -closed set is gsp —closed in (X, 1).

Remark 5.10: s Tp™ is independent from Tp~, Tp" ", a Tp" ", p Tp™" and semipre- T 1/2. Also Tp" is independent from
semi-pre-T 1/2 as it can be from the following examples.

Example 5.11: Let X = {a, b, ¢} with © ={¢, {a},{a, b},X}. Then (X, 1) is a s Tp"™" space but it is not Tp", Tp" ",
aTp™ ", pTp™, semi-pre-T 1/2.

Example 5.12: Let X = {a, b, c} with t ={¢,{a},{b}.{a, b}, X}. Then (X, t) isaTp~, Tp" ", a Tp~ ", p Tp" ", semi-pre-
T1/2butitisnots Tp™".

Example 5.13: Let X ={a, b, c} and t ={o, {a}.{b, c}, X}. Then (X, 1) is semi-pre-T 1/2 space but it is not Tp~ space.
Example 5.14: Let X ={a, b, c} with t ={¢,{a}.{a, ¢}, X}. Then (X, 1) is Tp~ space but it is not semi-pre-T 1/2 space.
Definition 5.15: A subset A of a space (X, 1) is called g™ p -dense if g™~ p -cl (A) = X.

Example 5.16: In example 5.4, the set {a, b} is g”" p -dense in (X, 1).

Theorem 5.17: Every g p -dense set is dense.

Proof: Let Abeang™ p -dense in (X, t). Then g™ p -cl(A)= X. Since g p - cl(A) < cl(A) , we have X < cl(A). Also
cl(A) € X. So cl(A) = X. Thus A is dense.

Remark 5.18: The converse need not be true as it can be from the following example.
Example 5.19: In example 5.4, D(X, 1) = {0, {a}, {a, b}, {a, c}, X}.
Here the set {a} is not g™~ p -dense in (X, 1).

Definition 5.20: A topological space (X, 1) is called g”"p -submaximal if every dense subset in it is g ~"p -open in
(X, 1).

Example 5.21: Let X and t be in example 5.4, g~ p -open= {o, {a}, {b}, {a, b}, {a, c}, X}. We have every dense
subset is g ~"p -open and hence (X, 1) is g~ p -submaximal.

Theorem 5.22: Every Submaximal space is g™~ p -submaximal.

Proof: Let (X, t) be a submaximal space and A be a dense subset. Then A is open. But every open set is g~ p -open
and so Ais g”" p -open. Therefore, (X, t) is g™ p -submaximal.

Remark 5.23: The converse need not be true from the following example.

Example 5.24: Let X = {a, b, c} and = = {¢, {a}, {b}, {a, b}, X}. Then g™ p -submaximal= {¢, {a}, {b}, {a, b}, X}.
Here the set {a} is not submaximal.

Theorem 5.25: A space (X, 1) is g p -submaximal if and only if P(X) = G PLC" (X, 1).

Proof: Necessity. Let AeP(X) and let V = A U (cI(A))°. This implies that cl(V) = cl(A) U (cl(A))° = X. Hence
cl(V) = X. Therefore V is a dense subset of X. Since (X, 1) is g™ p -submaximal, V is g™~ p -open.

Thus A U (cl(A))¢is g~ p -open and by Theorem 4.26, we have A€ G~ PLC” (X, 1).
Sufficiency. Let A be a dense subset of (X, t). This implies AU (cl(A))°=AU X°=Au ¢ = A.
Now A € G~ PLC” (X) implies that A = a U (cl(A))° is g~ p -open by Theorem 4.26.

Hence (X, 1) is g~ p -submaximal.
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