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ABSTRACT 
A vertex labeling f: V(G)→{ -1, 1} of a graph G with induced edge labeling f*:E(G)→ {-1, 1} defined by                  
f*(uv) = f(u)f(v) is called a signed product cordial labeling if �𝑣𝑣𝑓𝑓  (−1) − 𝑣𝑣𝑓𝑓(1)� ≤ 1 and  �𝑒𝑒𝑓𝑓(−1) − 𝑒𝑒𝑓𝑓(1)� ≤ 1 where 
vf (-1) is the number of vertices labeled with ‘-1’ and vf (1) is the number of vertices labeled with ‘+1’, ef(-1) is the 
number of edges labeled with ‘-1’ and ef(1) is the number of edges labeled with ‘+1’.A graph with a signed product 
cordial labeling is called a signed product cordial graph. In this paper, we prove that splitting graphs of star K1,n and 
Bistar Bn,n are signed product cordial graphs. 
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1. INTRODUCTION 
 
Let G = (V(G), E(G)) be a simple, finite and connected graph. 
 
Now we give some useful terms such as labeling, cordial labeling (CL), Product cordial labeling (PCL), Total product 
cordial labeling(TPCL) , Signed product cordial labeling(SPCL) and total signed product cordial labeling (TSPCL). 
Also, We derive few theorems in signed product cordial labeling. 
 
Definition 1.1: A mapping f: V(G)→{0,  1} is called binary vertex labeling of G under f(v),called label of vertex v of G 
under f. The induced edge labeling f*: E(G) →{0,  1} is given by f*(e=uv) = |𝑓𝑓(𝑢𝑢) − 𝑓𝑓(𝑣𝑣)|.Let Vf(0), Vf(1) be the 
number of vertices labeled with 0 and 1 under f. Let ef(0), ef(1) be the number of edges of G having labels 0 and 1 
respectively under f*. A binary vertex labeling of graph G is called cordial labeling if �𝑣𝑣𝑓𝑓(0) − 𝑣𝑣𝑓𝑓(1)� ≤ 1  and 
�𝑒𝑒𝑓𝑓(0) − 𝑒𝑒𝑓𝑓(1)� ≤ 1. A graph G is cordial if it admits cordial labeling. 
 
Definition 1.2:A vertex labeling f:V(G) →{ -1, 1} of a graph G with induced edge labeling f* : E(G)→{-1, 1} defined 
by f*(uv) = f(u)f(v) is called signed product cordial labeling if �𝑣𝑣𝑓𝑓(−1) − 𝑣𝑣𝑓𝑓(1)� ≤ 1 and �𝑒𝑒𝑓𝑓(−1) − 𝑒𝑒𝑓𝑓(1)� ≤ 1 Where 
Vf(-1) is the number of vertices labeled with -1, Vf(1) is the number of vertices labeled with 1.ef(-1) is the number of 
edges labeled with -1 and ef(1) is the number of edges labeled with 1. A graph G is signed product cordial if it admits 
signed product cordial labeling. 
 
Definition 1.3: Let f be a function from V(G) to { 0,1,2….k-1} where k is an integer, 2 ≤  k ≤ |𝑉𝑉(𝐺𝐺)|. For each edge 
uv, assign the label f(u)f(v) (mod k). Then f is called a k-Total product cordial labeling of G if |𝑓𝑓(𝑖𝑖) − 𝑓𝑓(𝑗𝑗)|≤1,i,j ∈ 
{0,1,2……….k-1} where f(x) denotes the total number of vertices and edges labeled with x ( x=0,1,2,…k-1).A graph 
with a k-total product cordial labeling is called a k-Total product cordial labeling. 
 
Definition 1.4: Let f be a function from V(G) to {-1, 1} with induced edge labeling f*: E(G)→{ -1, 1} defined by     
f*(uv) =f(u)f(v). Then f is called a total signed product cordial labeling if |𝑓𝑓(𝑖𝑖) − 𝑓𝑓(𝑗𝑗)| ≤ 1 where i, j ∈{-1, 1} and     
f(x) denotes the total number of vertices and edges with x (x = -1, 1). A graph with a k-Total signed product cordial 
labeling is called a k-total signed product cordial graph. 
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Definition 1.5: For a graph G the splitting graph S’(G) of a graph G is obtained by adding a new vertex v’  
corresponding to each vertex v of G such that N(V) = N(V’). 
 
Definition 1.6: Let G= (V(G),E(G)) be a graph with V= S1∪S2∪…∪Si∪ 𝑇𝑇 where each Si is a set of vertices having  
atleast  two vertices of the same degree and T= V∖ ⋃𝑆𝑆𝑖𝑖 . The degree splitting graph of G denoted by DS(G) is obtained 
from G by adding  vertices  w1,w2,…,wi and joining to each vertex of Si for 1≤ 𝑖𝑖 ≤ 𝑛𝑛. 
 
Definition 1.7: The Shadow graph D2(G) of a connected graph G is constructed by taking two copies of G say G’ and 
G ‘’, join each vertex u’ in G’ to the neighbours of the corresponding vertex v’ in G’’. 
 
Definition 1.8: The graph G2 is a graph with the vertex set V as in G and two vertices are adjacent in G2 if they are at a 
distance 1 or 2 apart in G.   
 
2. MAIN RESULTS 
 
Theorem 2.1: S’(K1,n) is a signed product cordial graph. 
 
Proof: Let v1,v2,…,vn be pendant vertices and Let v be the apex vertex of K1,n and u,u1,u2 ,…,un are added vertices 
corresponding to v1, v2 ,…,vn to obtain S’(K1,n). 
 
Let G be the graph S’(K1,n) . Then |𝑉𝑉(𝐺𝐺)| = 2𝑛𝑛 + 2 and |𝐸𝐸(𝐺𝐺)| = 3𝑛𝑛. 
 
Define f: V(G) →{-1, 1} as follows, 
 
Case (i): When n is odd 
f(u) =1, f(v)=-1 
f(ui) =1  i ≡ 1, 3 (mod 4) 
f(ui) = -1  i ≡ 0, 2 (mod 4) 
f(vi) =1  i ≡ 0, 2 (mod 4) 
f(vi) =-1  i ≡ 1, 3 (mod 4) 
 
Case (ii): When n is even 
f(u) =1, f(v)=-1 
f(ui) =-1  i ≡ 1, 3 (mod 4) 
f(ui) =1  i ≡ 0, 2 (mod 4) 
f(vi) =-1  i ≡ 1, 3 (mod 4) 
f(vi) =1  i ≡ 0, 2 (mod 4) 
 
In view of the above labeling pattern, we have 
Vf(1) = Vf(-1) = n+1, ef(1) =ef(-1) = 3n / 2. Hence, S’(K1,n) is a SPCL. 
 
Example 2.2: S’(K1,3) is a signed product cordial graph. 

 
Fig.1 

 
Theorem 2.3: S’ (Bn,n) is a signed product cordial graph. 
 
Proof: Consider Bn,n  with vertex set {u, v, ui, vi; 1≤ i ≤ n} where ui, vi are pendant vertices. In order to obtain S’(Bn,n) 
add the vertices u’, v’ ui’, vi’ corresponding to u, v, ui, vi for 1≤ i ≤ n. 
 
If G= S’ (Bn,n) then |𝑉𝑉(𝐺𝐺)|= 4(n+1) and  |𝐸𝐸(𝐺𝐺)|= 6n+3. 
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Define vertex labeling f: v (G) →{-1, 1} as follows, 
 
Case (i): When n is odd 
f(u) = -1, f(u’)=1 
f(ui) =1  i ≡ 0, 2 (mod 4) 
f(ui) = -1  i ≡ 1, 3 (mod 4) 
f(ui

’) =1  i ≡ 1, 3 (mod 4) 
f(ui

’) =-1  i ≡ 0, 2 (mod 4) 
 
f(v)=-1, f(v’) =1 
f(vi) = -1  i ≡ 1, 3 (mod 4) 
f(vi) = 1  i ≡ 0, 2 (mod 4) 
f(vi

’) = 1  i ≡ 1, 3 (mod 4) 
f(vi

’) = -1 i ≡ 0, 2 (mod 4) 
 
In view of the above labeling pattern, we have vf (1) = vf(-1) = n+1 and ef(-1) - 1 = ef(1) = 3n + 1. 
 
Case (ii): When n is even 
f(u) = -1, f(u’)=1 
f(ui) =1  i ≡ 1, 3 (mod 4) 
f(ui) = -1  i ≡ 0, 2 (mod 4) 
f(ui

’) =1  i ≡ 1, 3 (mod 4) 
f(ui

’) =-1  i ≡ 0, 2 (mod 4) 
 
f(v) = -1, f(v’)=1 
f(vi) =1  i ≡ 1, 3 (mod 4) 
f(vi) = -1  i ≡ 0, 2 (mod 4) 
f(vi

’) =1  i ≡ 1, 3 (mod 4) 
f(vi

’) =-1  i ≡ 0, 2 (mod 4) 
 
In view of the above labeling pattern, we have vf (1) = vf(-1) = n+1 and ef(-1)-1 = ef(1) = 3n +1. 
 
Hence  S’(Bn,n) is a signed product cordial. 
 
Example 2.4: S’(B6,6) is a signed product cordial. 

 
Fig.2 

 
Theorem 2.5: D2 (Bn, n) is a signed product cordial 
 
Proof: Consider two copies of Bn,n. 
 
Let {u, v, ui, vi ; 1 ≤ i ≤ n} and {u’, v’, ui

’, vi
’; 1 ≤ i ≤ n} be the corresponding vertex sets of each copy of Bn,n. 

 
Let G be the graph D2(Bn,n) then |𝑉𝑉(𝐺𝐺)|= 4(n+1) and  |𝐸𝐸(𝐺𝐺)|= 4(2n+1) 
 
Define vertex labeling f: v(G) →{-1, 1} as follows, 
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Case (i): When n is odd 
f(u)= -1, f(v) = -1 
 
f(u’) =1, f(v’) = 1 
f(ui) = -1  i ≡ 1, 3 (mod 4) 
f(ui) = 1  i ≡ 0, 2 (mod 4) 
f(ui

’) = 1  i ≡ 1, 3 (mod 4) 
f(ui

’) = -1 i ≡ 0, 2 (mod 4) 
f(vi) = -1  i ≡ 1, 3 (mod 4) 
f(vi) = 1  i ≡ 0, 2 (mod 4) 
f(vi

’) = 1  i ≡ 1, 3 (mod 4) 
f(vi

’) = -1 i ≡ 0, 2 (mod 4) 
 
Case (ii): When n is even 
f(u)= -1, f(v) = -1 
 
f(u’) =1, f(v’) = 1 
f(ui) = 1  i ≡ 1, 3 (mod 4) 
f(ui) = -1  i ≡ 0, 2 (mod 4) 
f(ui

’) = 1  i ≡ 1, 3 (mod 4) 
f(ui

’) = -1 i ≡ 0, 2 (mod 4) 
f(vi) = 1  i ≡ 1, 3 (mod 4) 
f(vi) = -1  i ≡ 0, 2 (mod 4) 
f(vi

’) = 1  i ≡ 1, 3 (mod 4) 
f(vi

’) = -1 i ≡ 0, 2 (mod 4) 
 
Hence, D2 (Bn, n) is a signed product cordial 
 
Example 2.6: D2 (B5, 5) is a signed product cordial 

 
Fig.3 

 
Theorem 2.7: B2

n,n is a signed product cordial. 
 
Proof: Consider Bn,n with vertex set {u, v, ui, vi; 1≤i≤n} where u, v are pendant vertices.  
 
Let G be the graph B2

n,n then |𝑉𝑉(𝐺𝐺)|= 2n+2 and  |𝐸𝐸(𝐺𝐺)|= 4n+1. 
 
Define vertex labeling f: v(G) →{-1,1} as follows, 
f(u)= -1  
f(v) = 1 
f(ui) = -1  i ≡ 1, 3 (mod 4) 
f(ui) = 1  i ≡ 0, 2 (mod 4) 
f(vi) = 1  i ≡ 1, 3 (mod 4) 
f(vi) = -1  i ≡ 0, 2 (mod 4) 
 
In view of the above labeling pattern, we have vf (1) = vf(-1) = n+1 and ef(-1)-1 = ef(1) = 2n. 
 
Hence, B2

n,n is a signed product cordial. 
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Example 2.8: B2

5,5 is a signed product cordial. 

 
Fig.4 

 
CONCLUSION 
 
As all the graphs are not signed product cordial graphs it is very interesting to investigate signed product cordial 
labeling for the graph or graph families which admit ` signed product cordial labeling. Here we have contributed some 
new results by investigating signed product cordial labeling for some star and bistar related graphs.  
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