SOME STAR AND BISTAR RELATED SIGNED PRODUCT CORDIAL GRAPHS

SANTHI.M*
Research Scholar, Karpagam University, Coimbatore, India.

JAMES ALBERT
Department Of Science and Humanities,
Hindusthan Institute of Engineering and Technology, Coimbatore, India.

(Received On: 19-06-15; Revised & Accepted On: 30-10-15)

ABSTRACT

A vertex labeling $f: V(G) \rightarrow \{-1, 1\}$ of a graph G with induced edge labeling $f^*: E(G) \rightarrow \{-1, 1\}$ defined by $f^*(uv) = f(u)f(v)$ is called a signed product cordial labeling if $|v_f(-1) - v_f(1)| \leq 1$ and $|e_f(-1) - e_f(1)| \leq 1$ where $v_f(-1)$ is the number of vertices labeled with `-1' and $v_f(1)$ is the number of vertices labeled with `$+1$'. A graph with a signed product cordial labeling is called a signed product cordial graph. In this paper, we prove that splitting graphs of star $K_{1,n}$ and Bistar $B_{n,n}$ are signed product cordial graphs.

Keywords: Signed product cordial labeling, Signed product cordial graph.

1. INTRODUCTION

Let $G = (V(G), E(G))$ be a simple, finite and connected graph.

Now we give some useful terms such as labeling, cordial labeling (CL), Product cordial labeling (PCL), Total product cordial labeling (TPCL), Signed product cordial labeling (SPCL) and total signed product cordial labeling (TSPCL). Also, We derive few theorems in signed product cordial labeling.

Definition 1.1: A mapping $f: V(G) \rightarrow \{0, 1\}$ is called binary vertex labeling of G under $f(v)$, called label of vertex v of G under f. The induced edge labeling $f^*: E(G) \rightarrow \{0, 1\}$ is given by $f^*(e=uv) = |f(u) - f(v)|$. Let $V_f(0)$, $V_f(1)$ be the number of vertices labeled with 0 and 1 under f. Let $e_f(0)$, $e_f(1)$ be the number of edges of G having labels 0 and 1 respectively under f. A binary vertex labeling of graph G is called cordial labeling if $|V_f(0) - V_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$. A graph G is cordial if it admits cordial labeling.

Definition 1.2:A vertex labeling $f: V(G) \rightarrow \{-1, 1\}$ of a graph G with induced edge labeling $f^*: E(G) \rightarrow \{-1, 1\}$ defined by $f^*(uv) = f(u)f(v)$ is called signed product cordial labeling if $|v_f(-1) - v_f(1)| \leq 1$ and $|e_f(-1) - e_f(1)| \leq 1$ Where $V_f(-1)$ is the number of vertices labeled with `-1', $V_f(1)$ is the number of vertices labeled with `+1'. A graph with a signed product cordial labeling is called a signed product cordial graph. In this paper, we prove that splitting graphs of star $K_{1,n}$ and Bistar $B_{n,n}$ are signed product cordial graphs.

Keywords: Signed product cordial labeling, Signed product cordial graph.
Definition 1.5: For a graph G the splitting graph $S'(G)$ of a graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that $N(v) = N(v')$.

Definition 1.6: Let $G = (V(G), E(G))$ be a graph with $V = S_1 \cup S_2 \cup \ldots \cup S_l \cup T$ where each S_i is a set of vertices having at least two vertices of the same degree and $T = V \setminus \bigcup S_i$. The degree splitting graph of G denoted by $DS(G)$ is obtained from G by adding vertices v_1, v_2, \ldots, v_l and joining to each vertex of S_i for $1 \leq i \leq l$.

Definition 1.7: The Shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G say G' and G'', and joining each vertex u' in G' to the neighbors of the corresponding vertex v' in G''.

Definition 1.8: The graph G^2 is a graph with the vertex set V as in G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

2. MAIN RESULTS

Theorem 2.1: $S'(K_{1,n})$ is a signed product cordial graph.

Proof: Let v_1, v_2, \ldots, v_n be pendant vertices and let v be the apex vertex of $K_{1,n}$ and u, u_1, u_2, \ldots, u_n are added vertices corresponding to v_1, v_2, \ldots, v_n to obtain $S'(K_{1,n})$.

Let G be the graph $S'(K_{1,n})$. Then $|V(G)| = 2n + 2$ and $|E(G)| = 3n$.

Define $f: V(G) \rightarrow \{-1, 1\}$ as follows,

Case (i): When n is odd

- $f(u) = 1$, $f(v) = -1$
- $f(u_i) = 1$ if $i \equiv 1, 3 \pmod{4}$
- $f(u_i) = -1$ if $i \equiv 0, 2 \pmod{4}$
- $f(v_i) = 1$ if $i \equiv 0, 2 \pmod{4}$
- $f(v_i) = -1$ if $i \equiv 1, 3 \pmod{4}$

Case (ii): When n is even

- $f(u) = 1$, $f(v) = -1$
- $f(u_i) = -1$ if $i \equiv 1, 3 \pmod{4}$
- $f(u_i) = 1$ if $i \equiv 0, 2 \pmod{4}$
- $f(v_i) = 1$ if $i \equiv 1, 3 \pmod{4}$
- $f(v_i) = -1$ if $i \equiv 0, 2 \pmod{4}$

In view of the above labeling pattern, we have $V_f(1) = V_f(-1) = n+1$, $e_f(1) = e_f(-1) = 3n / 2$. Hence, $S'(K_{1,n})$ is a SPCL.

Example 2.2: $S'(K_{1,3})$ is a signed product cordial graph.

Theorem 2.3: $S'(B_{n,n})$ is a signed product cordial graph.

Proof: Consider $B_{n,n}$ with vertex set $\{u, v, u_i, v_i; 1 \leq i \leq n\}$ where u_i, v_i are pendant vertices. In order to obtain $S'(B_{n,n})$ add the vertices u', v', u'_i, v'_i corresponding to u, v, u_i, v_i for $1 \leq i \leq n$.

If $G^2 = S'(B_{n,n})$ then $|V(G)| = 4(n+1)$ and $|E(G)| = 6n+3$.

© 2015, IJMA. All Rights Reserved
Define vertex labeling \(f: v(G) \rightarrow \{-1, 1\} \) as follows.

Case (i): When \(n \) is odd

\[
\begin{align*}
 f(u) &= -1, f(u') = 1 \\
 f(u_i) &= 1 & i & \equiv 0, 2 \pmod{4} \\
 f(u_i) &= -1 & i & \equiv 1, 3 \pmod{4} \\
 f(v) &= -1, f(v') = 1 \\
 f(v_i) &= -1 & i & \equiv 1, 3 \pmod{4} \\
 f(v_i) &= 1 & i & \equiv 0, 2 \pmod{4}
\end{align*}
\]

In view of the above labeling pattern, we have \(v_f(1) = v_f(-1) = n + 1 \) and \(e_f(-1) - 1 = e_f(1) = 3n + 1 \).

Case (ii): When \(n \) is even

\[
\begin{align*}
 f(u) &= -1, f(u') = 1 \\
 f(u_i) &= 1 & i & \equiv 1, 3 \pmod{4} \\
 f(u_i) &= -1 & i & \equiv 0, 2 \pmod{4} \\
 f(v) &= -1, f(v') = 1 \\
 f(v_i) &= -1 & i & \equiv 0, 2 \pmod{4} \\
 f(v_i) &= 1 & i & \equiv 0, 2 \pmod{4}
\end{align*}
\]

In view of the above labeling pattern, we have \(v_f(1) = v_f(-1) = n + 1 \) and \(e_f(-1) - 1 = e_f(1) = 3n + 1 \).

Hence, \(S'(B_{n,n}) \) is a signed product cordial.

Example 2.4: \(S'(B_{6,6}) \) is a signed product cordial.

Theorem 2.5: \(D_2(B_{n,n}) \) is a signed product cordial

Proof: Consider two copies of \(B_{n,n} \).

Let \(\{u, v, u_i; 1 \leq i \leq n\} \) and \(\{u', v', u'_i; 1 \leq i \leq n\} \) be the corresponding vertex sets of each copy of \(B_{n,n} \).

Let \(G \) be the graph \(D_2(B_{n,n}) \) then \(|V(G)| = 4(n+1) \) and \(|E(G)| = 4(2n+1) \)

Define vertex labeling \(f: v(G) \rightarrow \{-1, 1\} \) as follows.
Case (i): When n is odd
\(f(u) = -1, \ f(v) = -1 \)
\(f(u') = 1, \ f(v') = 1 \)
\(f(u) = 1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(u') = 1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v) = -1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v') = -1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(u) = 1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(u') = 1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v) = -1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v') = -1 \quad i \equiv 0, 2 \pmod{4} \)

Case (ii): When n is even
\(f(u) = -1, \ f(v) = -1 \)
\(f(u') = 1, \ f(v') = 1 \)
\(f(u) = 1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(u') = 1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(v) = -1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(v') = -1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v) = -1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(v') = 1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v') = -1 \quad i \equiv 0, 2 \pmod{4} \)

Hence, \(D_2(B_{\text{odd}}, n) \) is a signed product cordial.

Example 2.6: \(D_2(B_5, 5) \) is a signed product cordial

\[\text{Fig.3} \]

Theorem 2.7: \(B^2_{n,n} \) is a signed product cordial.

Proof: Consider \(B_{n,n} \) with vertex set \(\{u, v, u_i, v_i; \ 1 \leq i \leq n\} \) where \(u, v \) are pendant vertices.

Let \(G \) be the graph \(B^2_{n,n} \) then \(|V(G)| = 2n+2 \) and \(|E(G)| = 4n+1 \).

Define vertex labeling \(f: v(G) \rightarrow \{-1, 1\} \) as follows,
\(f(u) = -1 \)
\(f(v) = 1 \)
\(f(u) = 1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(u) = 1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(v) = 1 \quad i \equiv 0, 2 \pmod{4} \)
\(f(v) = 1 \quad i \equiv 1, 3 \pmod{4} \)
\(f(v) = 1 \quad i \equiv 0, 2 \pmod{4} \)

In view of the above labeling pattern, we have \(v_i(1) = v_i(-1) = n+1 \) and \(e_i(1) - e_i(-1) = e_i(1) = 2n \).

Hence, \(B^2_{n,n} \) is a signed product cordial.
Example 2.8: $B^2_{5,5}$ is a signed product cordial.

CONCLUSION

As all the graphs are not signed product cordial graphs it is very interesting to investigate signed product cordial labeling for the graph or graph families which admit signed product cordial labeling. Here we have contributed some new results by investigating signed product cordial labeling for some star and bistar related graphs.

REFERENCE

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]