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ABSTRACT

The object of this paper is to establish some integral transforms involving product of generalized M-series and H-
function of two variables. Some special cases have also been derived.
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1. INTRODUCTION

Recently, the Mellin-Barnes type contour integral of H-function of two variables evaluated by P.C.Srinivas [9]. In the
present paper we establish the Mellin transform and Laplace transform of H-function of two variables with generalized
M-series.

We shall utilized following formulae in present investigation. The H-function of one variable given by Charles Fox [2]

H[x]:Hm,n[X]:Hm,n{X(aJ’Aj)l,p }

P.q P.q b.,B.
5B
:LIF(S)des, i=v-1,x%0 (1.1)
2riy
Where
m n
[T I'(b;—B;s) IT T'X-a; +A;s)
F(s) = (;:1 lep
[T T@-b+B;s) II TI(a;—As)
j=m+1 j=n+1

An empty product is interpreted as unity; m,n,p and q are integers satistying 0 <m <g¢q,0<n<p; A(j =1,.....p),
Bij(j = 1......,0) are positive numbers and &( = 1,..,p), bj(j = 1,.....,q) are complex numbers such that no poles of
I'(bj-Bjs), j = 1,... .m coincide with any pole of T'(1-aj+A;s), j = 1,.....n ie Aj(b+N) # Bu(a-M-1), where
k=1,....., m;j=1,...., n,M=0,1,2, ......
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N 1h=1)---!m; N :11---1n;

b, +
The contour L runs from o-ico to o+ico, & be a positive constant such that the points § = —

h
a,-M-1

which are the poles of I'(bj-B;s), j = 1,.....,m lie to the right and the points s = !

a.
j
which are the poles of I'(1-g;+A;s), j = 1,.....,n lie to the left of L.
The H-function of two variables given by Prasad and Gupta[6]
ol@.;a., A :(c.,C. (e.,E.
M,N:m,n;g,h|7X ( | ’)1,P ( J J)l, p ( J J)l,u }

HIxyl=Hp 5. 0 o _ _ _
Qi p.q UV nx&(bj,ﬁj,Bj)l,Q.(dj,Dj)l’q,(fj,Fj)llv

—— | ] (90,0w(s )yldsdt ,i=-1

(27“) L L, (1.2)
where X,y =0,
m
]‘[F(d DJs)l‘[F(l cJ+C s)
#(s) = (’4‘ =1
II F(l—dj+Djs) H F(cJ—C s)
j=m+1 j=n+1
X rf ri- E.t
,El(j J)E ( eJ+JJ
4, (t)=
\ u
I F(l—f.+F.tj I F(e-—E-tj
j=g+1 J Jj=h+1 J J
M N
_1‘_[11“(bj—ﬂjs—Bjtj_l‘_[ll"(l—aj+ajs+Ajtj
w(st)=—23= 1=

Q P
I1 l“(l—bj +ﬂjs+ Bjt) I1 F(aj —ajs—Ajtj
j=M +1 j=N+1

where M, N, P, Q, m,n, p, q, g, h, u, v are all non negative integers suchthat 0 <N <P, Q >0,0<m<q,0<n<q,0
<g<v,0<h<uand ¢ 5 A B;, C;, Dj, E; Fj are all positive. The sequence of parameters (ap), (bg), (Cp), (dg), (L)
and (f,) are so restricted that none of the poles of the integrand coincide.

The contour L; lies in the complex s-plane and runs from -ico to +ico with loops, if necessary, to ensure that the poles
of T(dj-Ds), (=1, 2, ..., m), lie to the right of the path; and those of T'(1 —¢; + Cs), (j = 1, 2,....., n) and
F(1-aj+as+At), (=1,2,....,N) lie to the left of the path.

Also the contour L, lies in the complex t-plane running from -ico to +ico with loops, if necessary, to ensure that the
poles of T'(fi- Fit), (i = 1, 2,....., 9), lie to the right of the path; and those of T'(1 —¢;+ E;t), (j =1, 2,....., h) and
IF(1-aj+a;s+At), (=1,2,....,N) lie to the left of the path. All poles of the integrand are simple poles.

The Mellin transform of the function f(x) is defined as

o0
M {F(x);s}= [ x> 1f (x)d xRe(s)>0 (13)
0
If Laplce transform of f(t) is F(p) and G(s) is Mellin transform of f(t), then
OO
Fp= 3 & Sp)
= 0 ' (1.4)
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According Erdelyi [1, p.307]

o0 _ 1 C+loo _
[ {T I g(s)x Sds}dxg(s) (L5)
0 C—ioo

The Generalized M-Series is defined by Sharma and Renu[8] as

M M(a1 R W PPN

P q

= (ai)k (ap)k Zk . N
Z (bl)k (bq)k F((){k—{—ﬂ) Z,OL,B [SL R(OL) 0 (16)

Series is convergent for all z if g > p, it is convergent for |z| < 1 if p = g+1 and divergent if p > g+1. Where p = g+1 and

P g
|z| = 1, the series convergent in some case. Let S = Z a; —Z b;
j=1 j=1

It can be shown that when p = gq+1 the series is absolutely convergent for |z| = 1 if R(B) < 0. Conditionally convergent
forz=-1if 0 <R(B) <1 and divergent for |z|=1 if 1 < R(B).

2. MAIN RESULTS

Theorem 1: Prove that
a.;a., A. :(c.,C. (e E.
wp Nemnme s [eo | @i % AL CC 1 p BB
M IM(al,....,al;bl, ,m,ax)HF,Q_pmlqulp 2q 2|7 sl B (. D 1_ fE 2 ;S
NP [ OB P U i,

|
Ak
(a; +k) . 9 @+ 0. (I 5)A.), -,
~ H j wH j a¥ (;k)H::\)/l+m1+n2('?N+nl+m2 . 5 (a +( 5 ) Jaj (o/9) j)l,P
T I'(ak +p,1t0,,Q+0, +p Ak
Ha kOH(b]+k) (o +ﬂ) 1 72 1 "2 (bJ (S+ )B ﬂ —(o/16)B. )1Q

=1

s+ Ak s+/1k
F. (c/5)F. ,(c.,C. (@1-f. -
5 P 1Ry 050y 0T

s+ Ik s+/1k
(e~ )Ej’(6/5)Ej)1,m2'(dj'Dj)l,ml’(l_ej 5 @By +1’q2’(di'Dj)m1+1'q1

)F (O'/é')F) (c.,C.)

a-f. —( ,
n+1,p2 j Jn1+1,p1

Provided 6 >0, & > 0, A is complex number
aj- (o/8) Aj>0forj=1,2,---,P

Bj- (c/8) Bj>0forj=1,2,---,Q

larg y] < (1/2) 7t Ay, Jarg n| < (1/2) T A

where A; = Za] Za +ZﬁJ Zﬂj ZD - Z D, +ZC - ZCJ-

j=N+1 j=M+1 j=1 j=m;+1 j=n+1
Q
iA—ZA +iB —ZB +§:F_ Z +ZE _ZE
and A,= 17 j=N+1 j=1 j=M+1 i= j=m,+1 jompl

o(a; -1
and Re S+T <0 forj=1,2,.....,N

]
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5b
Re{s+B—}>0 for j=1,2,..... M
i

ob; - . .
Re{s+B—‘+%d'}>0 for i=1,2,.....,my; for j=1,2,.....m,
i

Re{s + o -1 + o(c -1)
j C

Proof: To prove this theorem, take f(x) as

(a-;a-,A-) :(c-,C-) ;(e-,E-)
ap M,N:m,n;m,n,|»x® LP 1Lp Lp, 7.
M (@b OHp 0 L 120 2 4 . N }m (1.3),
" 1o P22 |0 |0 A By g Py g (T iy,

then expression becomes

a..a., A. :(c.,C. (e.,E.
wp MN[0 |G %5 AL CC iy p i€ By p
MAM (@ BBy By XYM Q'pmlthp N ' 5|0.::,B.) ~:(d:,D.) 1'(f F.) 2
PP [ Ay By g AP g (T Py g
2.2)
oL A :(c.,C. (e.,E.
2 e M N smynim [0 (B34 AR i p B,
=Ixs—M Im(al,....,a,; T - Ve )HPQ'p 0P slo:p.B). :@d.D) (FF) }dx
° 14 P29 x| OBy g )Py g TP g

By using (1.2) and (1.6) represent H-function in integral form and M series as series form. Put dt, = -u, we get

S e AR P e e

oo By

Interchange the order of integration, we get
N (ag)--@)y a t) [yotrakes 1 *u .
_g(bl)k ----- (o), F(ak+ﬂ)52ﬂlj¢l( 4 I VZ( ] [tl_j e

Use result (1.5) and (1.1) to get the result. Change of order of integration is justifiable due to convergence of integrals.

Theorem 2:
a.;a., A. :(c.,C. (e.,E.
wp m,nim,.n, S [P AL O p € B
L IM(ai,....,a,;bl,....,bm;ax‘)HF,Q 0. qp.q sl 5 B . D (fE 'S
v P2r% [ (051 B g 5Pyl g 1T Fidi g,

(aj +k) s+Ak+1
_1 i Z( p)° 2111 a* n(s+2k+l)H2/l+m1+n2c,gN +ny+m, n_%y(aj+( 5 A @A) p.
+ P +0,,Q+0y +
Halso st kOH(b F(ak+/3) P +4o 0+ P2 (bj+(s+/1k+l)5 ﬁj (c15)B; )1Q
(l_f__(s+/1k+1);: (o 16)F; )1n (€5.C;j )lnl(l £ (S+/1k+1)F (GIO)F. )n 1y o )nl+1yp1
s+k +1 s+4k +1
(L-ej—( JEj (01 O)E ) m, (@)D m, =€~ JEj (/B P, +1,4,@ Dy 414

Proof: To prove this theorem use (1.4) to get the result
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3. SPECIAL CASES
(i) Take
(aP): (AP): (BQ): (bQ): (091): (D(h): (Epz) (qu) 1
We get Mellin and Laplace transforms of G-function of two variables with Generalized M-series

(i) PuuM=N=P=Q=0in(2.1) and (2.3), we get

B (C"C') 7 r 5(e-,E.)
a,p o 1’ 11
MM BBy D aX)le’q " (dJ DJ) " HEZ'CTZ " (fJ FJ) s
10 M1 L ja J qu i 21112 L j1 J 1’q2 (31)
- o|(€:.C) . - | E.)
a,p o 1, 11
M AN B BB aX)le’q " (dJ DJ) " Hrgz.gz " (fJ FJ) s
R ¥ R - A A N A
m |
b (aj +k) . o stk - _ >
11}1 JZH ] 2 ( Ak)HmlJ_:nz n1:m2 _Ey(l f ( )FJ,( /5)FJ)1,p2‘(CJ’CJ)l,n1'
Hajkol—[(b F(ock+/3) PLt+dp o+ P e, _(S+/1k)Ej,(0/5)Ej)1,q2,(dj,Dj)l’ml,
(Cj'cj)n1+1xpl
@:Pm, +1,)
(C’C) 5(E,E)
a.p o 1’ 1’
LAM (8,0 83D, By X )Hgll’; {“ (dJ DJ) Py }H?Z,;{nx (fJ FJ) P, }
1 M1 j1 J 1,q1 271112 ja J 1,q2 (3-2)
(aj+k) ks ol g S o
_1 1—1 Z( p)* zl;! a* 7%,4”‘1*”2'”1”"2 ry @-fj—( 5 )Fj.( /5)FJ)1,p2,
Tk +p)" pedpa+ By | seken

)ij(0/5)Ej)1,q2,

Hal e OH(bJ+k
j=1

©3C P CjCin r1py
@D P1m (@D Pm, 1,4
(iif) For B =1 in (2.1) and (2.3), we get Mellin and Laplace transform of H-function of two variables with generalized

M-series by M. Sharma [7]

(iv) For  =m =0 in (2.1) and (2.3), we get Mellin and Laplace transform of H-function of two variables involving
Mittag-Leffler function Eq (@) [4]

(v) Take o = B =1 in (2.1) and (2.3), we get Mellin the Laplace transform of H-function of two variables involving
generalized hypergeometric function [3]

(vi)Putl=0,m=1and b;=1in (2.1) and (2.3), we get Mellin and Laplace transform of H-function of two variables

involving Wright function W(ax";o.,p) [5].

CONCLUSION
Thus we proved Mellin and Laplace transforms of H-function of two variables involving generalized M-series and

special cases, which gives some interesting applications in fractional calculus.
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