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ABSTRACT

In this paper we study the complex reflection arrangement A (G »s) and we found the bases, circuits, broken circuits, no
broken circuits base, the triple arrangements, poincaré polynomial, and the characteristic polynomial of A (Gs).

Key word: Arrangement, bases, circuit, broken circuit.

1. INTRODUCTION

An arrangement of hyperplanes is a finite collection of codimension one subspace in a finite dimensional vector space
over R(C). We fix a linear order on A and we write A = {H,, ... ,H,}. Let L = L(A) be the intersection poset of A. L is
the set of non-empty intersections of hyperplanes in A ordered by reverse inclusion. By convention L includes V as its
unique minimal element. Then L is a ranked poset, with r(X) = codim(X), and all maximal elements have the same
rank. The rank of A is then the rank of any maximal element of L, denoted by r. The arrangement A is called centered
with center T(A) if T(A) = Ny g H# @. If A is centered, then the coordinate may be chosen so that each hyperplane
contains the origin and hence A is central. We call A centerless if the intersection of the finite family A is empty,
ieNyeyg H=0.

2. PRELIMINARY DEFINITIONS

Definition (2.1) [5][6]: A finite poset L is said to be geometric lattice if it satisfies the following conditions:
(1) L is a lattice (hence has a minimum 0 and a maximam1).
(2) Every X € Lisajoin of atoms.
(3) IfX,Y €L cover XAY then X VY covers both X and Y.

Definition (2.2) [1]: Let L be a geometric lattice of rank r and let L; be the set of atoms. A set B = {by, by, ...,b,}< L, is
said to be a base of L if n=rand, VB =1.

Note: VB the intersection of all elements of B
i.e.(VB= binb,n...Nby,).

Definition (2.3) [10]: Call B < L independent set, if r(VB) = |B| and dependent if r(VB) < |B|,where |B| is the
cardinal number of B.

Definition (2.4) [2][8]: A circuit C S A is a minimal dependent sub arrangement (with respect to the inclusion) and
for a given total order 2 of the hyperplanes of A, C = C\{H} is said to be a broken circuit of <A, where H is the
smallest hyperplane in C with respect to the ordering <. The sub-arrangement B < A which contains no broken circuit
is denoted by NBC base of A and if r(B) = k we denoted it by kK NBC base . Let X € L, we call the NBC base of A a
NBC base of X if Nyep =X
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3. THE REFLECTION ARRANGEMENT A (G2s)

In the classification of Shephard and Todd [3] Gy is the complex reflection group of order 648 generated by reflections
of order "3" and its reflection arrangement is given by:
2mi

Q (A(Gx) =xyz Tlosija(x + 0'y+w'), where w = =

Let H; = ker api, 1< i < 12 such that:

H, : x=0 Hs : Xx+y+wz=0 Ho : X+wy+ w’z=0
H, : y=0 He : Xx+y+w’z=0 Hio: X+ w?y+2=0
Hy : z=0 H;, : X+wy+2z=0 Hip: X+ w’y+2=0
Hy © X+y+2=0|Hg: x+wy+ wz=0 | Hp. X, 0y +wz=0

Thus A (Gs) contains "12" hyperplanes which are:
{Hl,Hz,H3,H4,H5,H6,H7,H8,Hg,H10,H11,H12}-

3.1. Bases Of L(A(G2s))

The set of atoms of L(c/l(Gz5)) is L, = {Hl,Hz,Hg,H4,H5,H6,H7,Hg,Hg,Hlo,Hll,le} and the sets BicL,, i=1,...,185are
bases since |Bj| =3 foralli=1,...,185andr=3,VB;=1,i=1,...,185.

The bases of L(A(Gs)) are:

{H;,HpH3} =B,

{Hz.H3,Hs} = Bug

{H3,Hg,Ho} = Bgs

{Hs,Hz,H10} = Bisp

{H,HH,} =B,

{H2,H3,He} = Bug

{Hs,He,H10} = Bgy

{Hs,Hz,H11} = Buss

{H1,Hp,Hs} = B3

{Hz,H3,H7} = Bsg

{H3,He,H11} = Bgs

{Hs,Hz,H1} = Biag

{H1,Hz,He} =By

{Hz.H3,Hg} = Bs;

{H3,He,H12} = Bgo

{Hs,Hs,Ho} = Buss

{H,,HH:} =Bs

{Hz.H3,Ho} = Bs,

{Hs,H7,Hio} = Bio

{Hs,Hg,H10} = Busg

{H1,Hp,Hg} = Bs

{Hz2,H3,Hio} = Bss

{Hs,H7,Hu1} = Bio

{Hs,Hg,H1,} = Bisy

{H1,Hp,Ho} =B

{H2,H3,H11} = Bss

{H3,Hz,Hi2} = Bigy

{Hs,Ho,H11} = Busg

{H1,Hp,Hio} = Bsg

{Hz,H3,Hi2} = Bss

{Hs,Hs,H10} = Bigs

{Hs,Ho,H1,} = Bisg

{H1,Hp,Hi}= By

{Hz,H4,Hs} = Bsg

{Hs,Hs,H11} = Bios

{Hs,H10,H12}= Biso

{H1,Ha,Hi2}= Byo

{Hz,H4,He} = Bs;

{H3,Hg,Hi2} = Bios

{Hs,H11,H12}= Biss

{H:,H3,H,} =By

{Hz,H4,Hg} = Bsg

{Hs,Hg,H10} = Bigs

{Hes,H7,Hs} = Bisy

{H1,H3,Hs} =By,

{H2,H4,Ho} = Bsg

{Hs,Hg,H11} = Bigy

{Hes,H7,Ho} = Biss

{H1,H3,Hg} = B3

{H2,Hs,H1i1} = Beo

{Hz,Ho,Hi2} =Bigs

{Hg,Hz,H10} = Biss

{H1,H3H;} =By

{Hz,H4,H12} = Bas

{H4,Hs,H7} = Bigo

{Hg,Hz,H1p} = Biss

{H1,Hs3,Hg} = Bis

{H2.Hs,He} = Bs,

{H4,Hs,Hs} = B1yo

{He,Hs,Ho} = Bise

{H1,Hs,Ho} = Bys

{Hz.Hs,H7} = Bes

{H4,Hs,Ho} = Bin

{Hg,Hg,H10} = Bis7

{H1,H3,Hio} = Byy

{Hz,Hs,Ho} = Bes

{H4,Hs,Hi0} = Busp

{Hg,Hg,H11} = Biss

{H1,H3,Hi1} = Bysg

{H2,Hs,Hi0} = Bes

{H4,Hs,H11} = Buss

{Hg,Hg,H1o} = Biso

{H1,H3,H1p} = Byo

{H2.Hs,Hi2} = Bes

{H4,Hs,Hi2} =By

{Hg,Ho,H10} = Bigo

{H1,Hg,Hs} =By

{Hz.He,H7} = Be;

{H4,He,H7} = Buss

{Hg,Ho,H11} = Bias

{H1,Hs,He} =B

{H2.He,Hg} = Bes

{Ha4,He,Hs} = Buss

{He,Hi0,H11}= Bie2

{H1,H4H;} =By,

{H2,He,H10} = Beo

{H4,He,Ho} = B1y7

{Hg,Hi0,H12}= Bies

{H1,Hg,Ho} = Bys

{H2,He,H11} = Bn

{H4,He,H10} = Busg

{He,H11,H12}= Bios

{H1,Ha,Hio} = Bys

{Hz.H7,Hg} = B4,

{H4,He,H11} = Buag

{H7,Hg,H10} = Bigs

{H1,HsH11} = Bys

{Hz.Hz,Ho} = B3

{H4,He,Hi2} = Bigo

{H7,Hg,H11} = Bigs

{H1,Hs,Hg} = By

{H2H7,H11} =Bu

{H4,H7,Hs} = B

{H7,Hg,H1p} = Bigr

{H1,Hs,H;} =By

{Hz.H7,Hi2} =Bys

{H4,H7,Ho} = Bi,

{H7,Ho,H10} = Bigs

{H1,Hs,Hg} = Byg

{Hz.Hg,Ho} = B

{H4,H7,Hu1} = Bigs

{H7,Ho,H11} = Bigo

{H1,Hs,H1:} = By

{Hz2,Hs,Hio} = B

{H4,H7,H12} = Bigg

{H7,Ho,H1p} = Bizo

{H1,Hs,Hi} = By

{Hz.Hg,Hi2} = Bys

{Ha4,Hg,Ho} = Bi2s

{H7,Hio,H11}=Bin

{H1,Hg,Hg} = B

{H2,Hg,Hi0} = By

{Ha4,Hg,Hio} = Bigs

{H7,Hi0,H12}= Bi72

{H1,Hg,Ho} = Bs,

{H2,Hg,H11} = Bgo

{H4,Hs,H11} = B1oy

{H7,Hi1,H12}= Biss

{H1,Hg,Hio} = Bss

{Hz.Hi1,Hi2} = Bgy

{H4,Hg,Hi2} = Bigg

{Hg,Ho,H10} = Bi74

{H1,Hg,H12} = B4

{H3,H4,H7} = Bg,

{Ha4,Hg,H10} = Bigg

{Hs,Ho,H11} = Bizs

{H1,Hz,Hg} = Bgs

{H3,H4,Hg} = Bgs

{H4,Hg,H11} = Bigo

{Hs,Ho,H1p} = Bizg

{H1,Hz,Ho} = Bgs

{H3,H4,Ho} = Bgs

{H4,Ho,H12} = Bigg

{Hs,Hio,H11}= B1rv

{H1,Hz,Hio} = By

{H3,Hs,Hio} = Bgs

{H4,Hio,H11}= Bis

{Hs,Hi0,H12} =Bi7s

{H1,Hz,H1p} = Bss

{H3,Hs,H11} = Bgs

{H4,Hio,H12 =Bis,

{Hs,H11,H12} =Bi7o
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{H1,Hg,Ho} = Bgo

{H3,H4,Hi2} = Bgr

{H4,Hi1,H12}= Biss

{Hg,Hio,H11} =Bigo

{H1,Hg,Hi0} = Byo

{H3,Hs,H7} = Bgs

{Hs,He,H7} = Bizs

{Ho,Hi0,H12} =Biss

{H1,Hg,H11} =By

{H3,Hs,Hg} = Bgo

{Hs,He,Hs} = Biss

{Ho,H11,H12} =Bisp

{H1,Ho,H11} =By,

{H3,Hs,Ho} = Bgo

{Hs,He,Ho} = Bi3s

{Hz,Hi0,H12} =Biss

{H1,Ho,H1} = Bys

{Hs,Hs,Hi0} = Ba

{Hs,He,H10} = Bisr

{Hz,H11,H12} =Bigs

{H1,Hio,H11} = Bus

{Hs,Hs,H11} = Bg,

{Hs,Hes,H11} = Biss

{H4,Hi0,H12} =Bisgs

{H1,Hio,H12} = Bss

{H3,Hs,Hi2} = Bgs

{Hs,Hg,Hi2} = Bisg

{H1,Hi1,Hi2} = Bgg

{H3,Hg,H7} = Bos

{Hs,H7,Hs} = Bisg

{Hz,H3,Hs} =By

{H3,He,Hg} = Bgs

{Hs,H7,Ho} = Bin
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3.2. The Circuits and Broken Circuits of A (G3s)

We will give all the minimal dependent subsets of L, (set of atoms) with < in the following table:

{H1,HsHg} = C,

{H1,HsHp} =G,
{H1,Hs,Ho} = C;

{H1,Hs,Hio} = C4
{H1,He,H:} = Cs

{H1,He,H11} = Cs
{H,H,Hu} = C;
{H1,Hs,Hi2} = Cq
{H1,Hg,Hio} = Gy
{H;,HsH/} =Cyp
{H;,HsHio} =Cyy
{H,,Hs,Hg} = Cyp

{H2,Hs,H11} =Cy3
{H2,Hg,Ho} = Cyy
{Hz2,He,H12} = Cis5
{H2,H7,Hio} = Cys
{H2,Hg,H11} = Cy7
{Hz2,Hg,H12} = Cy
{H3,Hs,Hs} = Cyg
{H3,Hs,He} = Cx
{Hs,Hs,Hg} = C»
{Hs3,H7,Hg} = Cx»
{Hs,H7,Hg} = Cy3
{Hs,Hg,Ho} = Cyy

{Hs,Hio,H11} = Css
{Hs,H10,H10} = Cy
{H3,H11,H2} = C;
{Ha,Hs,Hg} = C3s
{Ha,H7,Hio} = Cy
{Hs,Hg,H11} = Cxo
{Hs,Hg,H10} = Cx
{He,H7,H11} = Cs2
{Hg,Hg,H12} = Cs3
{H7,Hg,Hg} = C3y
{H10,H11,H12} =Cs5

All these subsets which we listed above are called circuits. Since r(VB) < |B|.

Thus the Broken circuits of A(Gs) are:

{HaHe}=C1 | {Hs,Hu} = C13 | {HioHuu} = Cas
{HaHp} = Co | {HeHo} = C1s | {Hio,H12} = Cas
{HsHo} =C5 | {HeH12} = C1s | {Hu,H12} =Cy
{Hs,Hi} = €4 | {H7,H1o} = C16 | {Hs,He} = Cas

{HeH7}=Cs | {Hs,Hu} = C17 | {H7,H1o} = Ca9
{He,Hu} = Ce {Ho,H1o} =Cig | {HaHu} = Czo
{H7Hu} = C7 | {HaHs} = C1o | {Hg,H10} = Ca
{HsH1o}= Cs {HsHe} = Cao | {H7Hu}=Cx
{Ho,Ho} = Co | {HsHe} = Ca | {Ho,H12} =Cx
{HaH7} =Co | {H7Hg} = C22 | {HgHo} = Caa

{HaHo} = Cu1 | {H7.Ho} = Co5 | {Hi,Hio} =Css
{HsHg} = C1» | {HsHo} = Co4

3.3. No Broken Circuits Base Of L(A(G2s))
We will give the NBC base of elements of L(A(G2s)) of rank two

The elements of L(A(G,s)) of rank two are:

1) HlﬂH4ﬂHgﬂH12 =d 8) H3“H7anan = ag 15) H50H7 =as
2) HlanannHlo =dy 9)H30H100H110H1: dg 16) Hanlzz dip
3) HlﬂHsﬂH7ﬂH11 =d3 10)H1“H2 = adjo 17) Hean =ay7
4) H20H4ﬂH7ﬂH10 =ds 11)H1“H3 =a 18) HeﬂHm: dig
5) HanangnHll =ds 12) Hang =d 19) H7ﬂH12 = dyg
6) Hanangnle = dg 13) H4ﬂH9 =ai3 20) HgﬂHlO:azo
7) HsNnH;NHsNHg = a5 14) HisNHy = ag, 21) HoNHy =ay
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Now we will give the NBC base of elements of L(cA (G 2)) of rank two as follows:

Elements of L(A(Gys)) of rank two The NBC bases The cardinal number of NBC bases
a {H1,Ha} {H1,Hg},{H1,Hio} 3
a {H1,Hs},{H1,Ho},{H1,Hio} 3
a3 {H1,He}.{H1,H:}.{H1,Hu1 } 3
Y {H2,Hs} . {Hz,H7},{H2,Hio} 3
as {H2,Hs},{Hz,Hg},{H2,H11} 3
as {H2,He} . {H2,Ho},{H2,H12} 3
a7 {Hs,Hs},{Hs,Hs},{Hs,He} 3
ag {Hs,H7},{Hs,Hg},{Hs,Ho} 3
ag {Hs,H10},{Hs,H1:}.{Ha,H12} 3
aio {H1,H:} 1
ain {H1,Ha} 1
ai {H2,Hz} 1
ai3 {Ha,Ho} 1
aig {HsHu1} 1
ais {Hs,H:} 1
aie {Hs,H1p} 1
a7 {He,Hg} 1
aig {He,H10} 1
aig {Hz,H1p} 1
az {Hs,Hi0} 1
az {Hg,H11} 1

Definition (3.1) [11]: Let A be an arrangement.
1. Asubset B of A, is called sub-arrangement of A.
2. Forany subspace X € L there are two smaller arrangements associated to it,
(i) Ay ={H € A|X < H}, is asub-arrangement of A, called localization arrangement.
(i) A¥ ={XNH|HeE A — Ay and X N H = ¢}, is the arrangement within the vector space X called
restriction arrangement.

Definition (3.2) [2]: Let A be an arrangement and let H € A, let A = A - {H} and A" . We call (A, A ,A ) atriple
of arrangements and H the distinguished hyperplane.

3.4. The Triple Arrangements of A(Gs)

Given the reflection arrangement
A(G2s) = {H1,Hz,Hs,HaHs,Hg,H7,Hg,Hg,Hio,H11,Hio}-

Let H; be the distinguished hyperplane then
C’q (GZS) :{H21H31H41H51H61H71H81H91H10!HlerlZ}'

By reveres inclusion as subspace of V we get A, = {H:} and
A = A (Gys) = {ay, @z, a3, a4, a5}

where:

a; =H;NnH;: y=x=0

a, =H;NnHz: x=z=0
az=HiNnH;: x=0,y=-z
a,=H; N Hs: x=0,y=-wz
0_'5=H10H6: X:O,y:'wzz

Thus the triple arrangements of A (Gs) are (A (Gzs), A (Gys), A (Gas)).

Definition (3.3) [7]: Let A be an arrangement and let L = L(A). Define the Mobius function u, =u:L XL — Zas
follows:

uX,; xX)=1 ifXeL,
Yx<w<r (X, 2)=0 if X, Y,Z e Land XY,
u(X,Y)=0 otherwise.
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Definition (3.4) [12]: Let A be an arrangement with lattice L and Maébius function. Let t be an indeterminate. Define
the poincaré polynomial of A by

(A, 1) = Ty e LX) (—1)™

To compute the poincaré polynomial of A(Gs), note that if X € L gzs) .t rk(X) = 1, then u(X) = —1, if rk(X) = 2,
and X is in two planes then u(X) = 1, and if rk(X) = 2, s.t X in four planes then u(X) = 3. This allows calculation of
1({0}) which is equal to "—28".

Thus m(A(G25)) =1 +12t +39t° + 28t°,

The Poincaré polynomial of A (G,s) can be computed by the same way after removing the distinguished hyperplane
H;.

Thus (A (G25)) =1 + 11t + 3412 +12¢°,
Nowsince (A, t) =m(A,t) +tn(A ,t) by [4]
Then m(A (G25)) =1 + 5t + 4%,

Definition (3.5) [9]: Define the characteristic polynomial of A by
‘X‘(CAP t) = t[ﬂ(d‘l, —t_l) = ZX EL”(X)t dlm(x).

By applying the above equation on A (Gs) we get:
X(A(Gys), t) =12 - 12t* + 39t - 28.

And the characteristic polynomial of A (G,s) can be computed using the same equation by removing distinguished
hyperplane H;.

Thus
(A (Gys)) = 2 — 117 + 34t — 24.

So by [4] we get:
X (A (Ggs), t) = 2 -5t + 4.
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