HYPER-WIENER INDEX USING DEGREE SEQUENCE

SHIGEHALLI V. S.¹, SHANMUKH KUCHABAL*²

¹Professor, Department of Mathematics, Rani Channamma University, Vidya Sangama, Belagavi- 591 156, India.
²Research Scholar, Department of Mathematics, Rani Channamma University, Vidya Sangama, Belagavi- 591 156, India.

(Received On: 15-10-15; Revised & Accepted On: 07-11-15)

ABSTRACT

Let G be the connected graph. The Wiener index \(W(G) \) is the sum of all distances between vertices of G, whereas the hyper-Wiener index \(WW(G) \) is defined as \(WW(G) = W(G) + \frac{1}{2} \sum_{[u,v] \subseteq V(G)} d(u,v)^2 \). In this paper we prove some general results on the hyper-Wiener index of graphs using degree sequence.

Keywords: molecular graphs and hyper-Wiener index.

1. INTRODUCTION

In mathematical terms a graph is represented as \(G = (V,E) \) where \(V \) is the set of vertices and \(E \) is the set of edges. Let \(G \) be an undirected connected graph without loops or multiple edges with \(n \) vertices, denoted by \(1,2,\ldots,n \). The topological distance between the vertices \(u \) and \(v \) of \(V(G) \) is denoted by \(d(u,v) \) or \(d_{uv} \) and it is defined as the number of edges in a minimal path connecting the vertices \(u \) and \(v \).

The Wiener index \(W(G) \) of a connected graph \(G \) is defined as the sum the distances between all unordered pairs of vertices of \(G \). It was put forward by Harold Wiener [5]. The Wiener index is a graph invariant intensively studied both in mathematics and chemical literature, see for details [5 – 10].

The hyper-Wiener index was proposed by Randic [6] for a tree and extended by Klein et al. [1] to a connected graph. It is used to predict physicochemical properties of organic compounds. The hyper-Wiener index defined as,

\[
WW(G) = \sum_{[u,v] \subseteq V(G)} (d_{uv} + 1) = W(G) + \frac{1}{2} \sum_{[u,v] \subseteq V(G)} d(u,v)^2
\]

The hyper-Wiener index is studied both from a theoretical point of view and applications. We encourage the reader to consult [4, 5, 10 and 12 – 15] for further readings. The hyper-Wiener index of complete graph \(K_n \), path graph \(P_n \), star graph \(K_{1,(n-1)} \) and cycle graph \(C_n \) is given by the expressions

\[
WW(K_n) = \frac{n(n-1)}{2}, \quad WW(P_n) = \frac{n^4 + 2n^3 - n^2 - 2n}{24}, \quad WW(K_{1,(n-1)}) = \frac{1}{2} (n-1)(3n-4)
\]

And

\[
WW(C_n) = \begin{cases} \frac{n^2(n+1)(n+2)}{48}, & \text{if } n \text{ is even} \\ \frac{n(n^2-1)(n+3)}{48}, & \text{if } n \text{ is odd} \end{cases}
\]

Corresponding Author: Shanmukh Kuchabal*²
²Research Scholar, Department of Mathematics, Rani Channamma University, Vidya Sangama, Belagavi- 591 156, India.
For example: Consider a graph G with vertices v_1, v_2, v_3 and v_4 as labeled in the figure below.

Here $d(v_1, v_2) = 1$, $d(v_1, v_3) = 2$, $d(v_1, v_4) = 2$, $d(v_2, v_3) = 1$, $d(v_2, v_4) = 1$, $d(v_3, v_4) = 1$.

Therefore $WW(G) = \sum_{\{u,v\} \subseteq V(G)} (d_{uv} + 1) = 2 \times \frac{1}{2} + 3 \times \frac{2}{2} + 3 \times \frac{2}{2} + 2 \times \frac{1}{2} + 2 \times \frac{1}{2} + 2 \times \frac{1}{2} = 1 + 3 + 3 + 1 + 1 + 1 = 10$.

2. EXISTING RESULTS

Theorem 2.1: [4,6] If $G(p, q)$ is a is a graph, with $\Delta(G) = p - 1$ then $W(G) = p^2 - p - q$.

Theorem 2.2: [6] If $G(p, q)$ is a connected graph then the Wiener Index of $G + x$ is $p^2 - p$.

Theorem 2.3: [6] If $G(p, q)$ be a graph and x is any vertex in G of degree $p - 1$ such that the graph $G - x$ is connected then Wiener index of $G - x$ is $(p - 1)^2 - q$.

Theorem 2.4: [6] If $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ are two connected graphs then the Wiener index of $G_1 + G_2$ is $W(G_1 + G_2) = p_1(p_1 - 1) + p_2(p_2 - 1) + p_1p_2 - q_1q_2$.

Theorem 2.5: [6] The Wiener index of $W(G^{-1}) = m(m - 1) + p(p - 1) + mp - q$.

3. MAIN RESULTS

3.1 Bounds for the hyper-Wiener index in terms of Order, Size and Maximum Degree:

Lemma 3.1.1: Let G be the graph with n vertices m edges, then $WW(G) \geq \frac{3n^2 - 3n - 4m}{2}$.

Proof: Let n_i be any vertex of G. Then,

$$d(n_i|G) \geq \deg(v_i) + 2[n - 1 - \deg(v_i)] = 2n - 2 - \deg(v_i)$$

$$d(n_i|G)^2 \geq \frac{d(n_i|G) + 1}{2} \times d(n_i|G) = 2n - 2 - \deg(v_i) + n - 1 - \deg(v_i) = 3n - 3 - 2\deg(v_i)$$

Since $\deg(v_i)$ number of vertices are adjacent to u_i and the remaining vertices are at distance greater than or equal to two from u_i.

$$WW(G) = \frac{1}{2} \sum_{i=1}^{n} d(n_i|G)^2 \geq \frac{1}{2} \sum_{i=1}^{n} (3n - 3 - 2\deg(v_i)) = \frac{1}{2} \sum_{i=1}^{n} (3n - 3) - \sum_{i=1}^{n} 2\deg(v_i)$$
The bounds in the above lemma is sharp, for any graph G of diameter two, which we will see in the following theorem, Theorem 3.1.2: If G(n,m) is a graph with Δ(G) = n − 1 then WW(G) = \(\frac{3n^2 - 3n - 4m}{2} \).

Proof: Let WW(G) = W(G) + \(\frac{1}{2} \sum_{(u,v) \in V(G)} d(u,v)^2 \)

By taking W(G) = \(n^2 - n - m \) in the theorem 2.1

We get \(WW(G) = n^2 - n - m + \frac{1}{2} \sum_{(u,v) \in V(G)} d(u,v)^2 \)

Let V = v₁, v₂, ..., vₙ and deg(vₙ) = n − 1. For any arbitrary pair of vertices (vᵢ, vⱼ). If \(d(vᵢ, vⱼ) > 2 \) then we take shortest path (vᵢ, vⱼ), (vⱼ, vⱼ) so that \(d(vᵢ, vⱼ) = 2 \) i.e. \(d(vᵢ, vⱼ) \leq 2 \) always. The meaning of deg(vᵢ) is the cardinality of NBH(vᵢ). Number of vertices lie at distance 1 from vᵢ. Therefore \((n - 1) - \text{deg}(vᵢ) \) is the number of vertices vⱼ. Which is not in the neighborhood of vᵢ, i.e. \((n - 1) - \text{deg}(vᵢ) \) vertices has the distance 2 from vᵢ.

\[WW(G) = n^2 - n - m + \frac{1}{2} \left(\sum_{j=1}^{n} d(v₁, vⱼ)^2 + d(v₂, vⱼ)^2 + \ldots + d(vₙ, vⱼ)^2 \right) \]

\[WW(G) = n^2 - n - m + \frac{1}{2} \sum_{j=1}^{n} d(v₁, vⱼ)^2 + \sum_{j=1}^{n} d(v₂, vⱼ)^2 + \ldots + \sum_{j=1}^{n} d(vₙ, vⱼ)^2 \]

\[= n^2 - n - m + \frac{1}{2} \left((n - 1) - \text{deg}(v₁) + (n - 1) - \text{deg}(v₂) + \ldots + (n - 1) - \text{deg}(vᵢ) \right) \]

\[= n^2 - n - m + \frac{1}{2} \left(\sum_{i=1}^{n} (n - 1) - \sum_{i=1}^{n} \text{deg}(vᵢ) \right) \]

\[= n^2 - n - m + \frac{1}{2} \left((n(n - 1) - 2m) \right) \]

\[= n^2 - n - m + \frac{1}{2} \frac{n(n - 1) - 2m}{2} - m \]

\[= \frac{3n(n - 1) - 2m}{2} \]

\[WW(G) = \frac{3n^2 - 3n - 4m}{2} \]

Illustration: Following is the example for \(\text{diam} \leq 2 \) of graph,

\[n = 4, \ m = 3 \text{ and } WW(G) = 12 \]
Corollary 3.1.3 If \(G(n, m) \) is a connected graph then the hyper-Wiener index of \(G + x \) is \(\frac{3n^2 - n - 4m}{2} \)

Proof: Let \(G \) be a graph with \(n \) vertices \((v_1, v_2, v_3, ..., v_n)\). The graph \(G + x \) is obtained from \(G \) by adding \('n'\) new edges by joining all the vertices of \(G \) to the vertex \(x \). Let vertex set of the graph \(G + x \) be \((v_1, v_2, v_3, ..., v_n, x)\) and the edge set be \((e_1, e_2, ..., e_m, e_{m+1}, ..., e_{n+m})\). The graph \(G + x \) has \(n + 1 \) vertices and \(n + m \) edges. Hence substituting number of vertices as \(p = n + 1 \) and number of edges as \(q = n + m \) in the previous Theorem,

\[
WW(G + x) = \frac{3(n+1)^2 - 3(n+1) - 4(n + m)}{2} = \frac{3(n^2 + 2n + 1) - 3(n+1) - 4n - 4m}{2}
\]

\[
WW(G + x) = \frac{3n^2 - n - 4m}{2}
\]

Illustration: Following is the example for join of two graphs

\[
n = 4, m = 4 \text{ and } WW(G) = 14
\]

Corollary 3.1.4: If \(G(n, m) \) be a graph and \(x \) is any vertex in \(G \) of degree \(n - 1 \) such that the graph \(G - x \) is connected then hyper-Wiener index of \(G - x \) is \(\frac{3n^2 - 5n - 4m + 2}{2} \)

Proof: Let \(G \) be a graph without pendent vertices. If there exists at least one vertex \(v \) such that \(\deg(v) = n - 1 \). The vertex \(v \) is named as \(x \), we remove the vertex \(x \) from \(G \) is \(G - x \). The vertex of \(G - x \) is \(n - 1 \) and the edges be \(m - n + 1 \) then by the theorem 3.1.2.

\[
WW(G) = \frac{3n^2 - 3n - 4m}{2}
\]

\[
WW(G - x) = \frac{3(n - 1)^2 - 3(n - 1) - 4(m - n + 1)}{2} = \frac{3(n^2 + 2n - 1) - 3n + 3 - 4m + 4n - 4}{2} = \frac{3n^2 + 6n - 3n + 3 - 4m + 4n - 4}{2}
\]

\[
WW(G - x) = \frac{3n^2 - 5n - 4m + 2}{2}
\]

Illustration: Example for connected \(G - x \) of graph

\[
n = 4, m = 6 \text{ and } WW(G) = 3
\]
Theorem 3.1.5: If \(G_1(n_1, m_1) \) and \(G_2(n_2, m_2) \) are two connected graphs then the hyper-Wiener index of \(G_1 + G_2 \) is
\[
WW(G_1 + G_2) = \frac{3n_1(n_1 - 1)}{2} + \frac{3n_2(n_2 - 1)}{2} + n_1n_2 - 2m_1 - 2m_2.
\]

Proof: By definition,
\[
WW = W(G) + \frac{1}{2} \sum_{[u,v] \subseteq V(G)} d(u, v)^2
\]
From theorem 2.4
\[
W(G_1 + G_2) = n_1(n_1 - 1) + n_2(n_2 - 1) + n_1n_2 - m_1 - m_2
\]
Therefore,
\[
WW(G_1 + G_2) = n_1(n_1 - 1) + n_2(n_2 - 1) + n_1n_2 - m_1 - m_2 + \frac{1}{2} \sum_{[u,v] \subseteq V(G)} d(u, v)^2
\]
The graph \(G_1 \) has \(n_1 \) vertices with degree sequence \((d_1, d_2, d_3, \ldots, d_{n_1}) \). The graph \(G_2 \) has \(n_2 \) vertices with degree sequence \((g_1, g_2, g_3, \ldots, g_{n_2}) \). In \(G_1 + G_2 \) graph all the vertices of \(G_1 \) and \(G_2 \) are at distance one. In graph \(G_1 \) \((n_1 - 1) - \deg(v_{i_1}) \) vertices are at distance two and similarly graph \(G_2 \), \((n_2 - 1) - \deg(v_{i_2}) \) vertices are at distance two.

Then,
\[
WW(G_1 + G_2) = n_1(n_1 - 1) + n_2(n_2 - 1) + n_1n_2 - m_1 - m_2 + \frac{1}{2} \sum_{i=1}^{n} (n_1 - 1) - \deg(v_{i_1}) + (n_2 - 1) - \deg(v_{i_2})
\]
\[
WW(G_1 + G_2) = n_1(n_1 - 1) + n_2(n_2 - 1) + n_1n_2 - m_1 - m_2 + \frac{1}{2} \sum_{i=1}^{n} \deg(v_{i_1}) + \sum_{i=1}^{n} (n_1 - 1) - \sum_{i=1}^{n} \deg(v_{i_1})
\]
\[
WW(G_1 + G_2) = n_1(n_1 - 1) + n_2(n_2 - 1) + n_1n_2 - m_1 - m_2 + \frac{1}{2} (n_1(n_1 - 1) - 2m_1 + n_2(n_2 - 1) - 2m_2)
\]
\[
WW(G_1 + G_2) = \frac{3n_1(n_1 - 1)}{2} + \frac{3n_2(n_2 - 1)}{2} + n_1n_2 - 2m_1 - 2m_2
\]

Illustration: Example for \(G_1 + G_2 \) of two graphs

\[
n_1 = 3, n_2 = 2, m_1 = 2, m_2 = 1 \text{ and } WW(G) = 12.
\]

Theorem 3.6: The hyper-Wiener index of \(WW(G^1) = \frac{3l(l - 1)}{2} + \frac{3n(n - 1)}{2} + nl - 2m \). Where \(G^1 = G + lK_1 \)

Proof: Let \(G(n, m) \) be a connected graph. The graph \(G^1 = G + lK_1 \) is obtained from graph \(G \) by joining all the vertices of graph \(G \) to the new \(l \) vertices of graph \(G^1 \). The vertex set of \(G^1 \) be \(V(G^1) = \{v_1, v_2, \ldots, v_n, x_1, x_2, x_3, \ldots, x_l\} \) and the edge set be \(E(G^1) = E(G) \cup \{v_i x_j: 1 < i < n, 1 < j < l\} \).

By definition,
\[
WW(G^1) = W(G^1) + \frac{1}{2} \sum_{[u,v] \subseteq V(G)} d(u, v)^2
\]
From theorem 2.5
\[
WW(G^1) = l(l - 1) + n(n - 1) + ln - m
\]
Therefore,
\[WW(G^1) = l(l - 1) + n(n - 1) + ln - m + \frac{1}{2} \sum_{(u,v) \in V(G)} d(u,v)^2 \]

\[WW(G^1) = l(l - 1) + n(n - 1) + ln - m + \frac{1}{2} \left\{ \sum_{i=1}^{n} (n - 1) - \sum_{i=1}^{n} deg_v + 1 + 1 + \cdots + 1 \right\} \]

\[WW(G^1) = l(l - 1) + n(n - 1) + ln - m + \frac{1}{2} (n(n - 1) - 2m + l(l - 1)) \]

\[WW(G^1) = \frac{3l(l - 1)}{2} + \frac{3n(n - 1)}{2} + nl - 2m \]

Illustration: Example for \(G^1 \) of graphs

\[l = 2, n = 3, m = 3 \text{ and } WW(G^1) = 12 \]

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]