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ABSTRACT

In this paper, new algorithms for finding numerical solution of Linear mixed Volterra-Fredholm integral equations of
the second kind (LMVFIE's) are introduced to solve (LMVFIE's) based on some method. These methods namely are
Simpson's 3/8 method, Durand’s method and Weddle method. Two examples are given and their results shown in tables
and figures to illustrate the efficiency and accuracy of this methods to find the result by using modify program
(MATLAB) version 7.11.0, product 2010.

1. INTRODUCTION

A numerical quadrature (numerical integration) rules is the approximate computation of an integral using numerical
techniques so is a primary tool used by engineers and scientists to obtain approximate answers for definite integrals that
cannot be solved analytically [1]. Numerical integration has always been useful in biostatistics to evaluate distribution
functions and other quantities.

Integral equations have received considerable interest in the mathematical literatures, because of their many fields of
application in different areas of sciences. Integral equations are encountered in various fields of science and numerous
applications in elasticity, plasticity, heat and mass transfer, approximation theory, fluid dynamics, filtration theory,
electrostatics, electrodynamics, biomechanics, game theory, control, electrical engineering, economics and medicine
[2,3].

Let us consider the following (LMVFIE's):
x b
ulx) = f(x) +J K(x, t)u(t)dt+f L(x, tu(t)dt (1.1)

Where a < x < b, f(x), K(x,t) and L(x,t), are given continuous functions and u(x) is the unknown function to be
determined. Some kinds of Volterra-Fredholm integral equations had been solved numerically, by different methods
that are indicated below.

Many researchers studied and discussed (LMVFIE's), Muna M. and Iman N. in [4] using Lagrange polynomials for
solving the linear Volterra-Fredholm integral equation. Hendi F. and Bakodah H. in [5] employed discrete adomain
decomposition method to solve Fredholm-Volterra integral equation in two dimensional space. Majeed S. and Omran
H. in[6] applied the repeated Trapezoidal method and the repeated Simpson's 1/3 method for solving linear Fredholm-
Volterra integral equation, Omran H. in[7] applied the repeated Trapezoidal method and the repeated Simpson's method
for solving the first order linear Fredholm-Volterra integro-differential equations. Maleknejad K. and Mahdiani K. in
[8] using Piecewise Constant block-pulse functions for solving linear two Dimensional Fredholm-Volterra Integral
Equations. Hendi F. and Albugami A. in [9] adopt collocation and Galerkin methods for solving Fredholm-Volterra
integral equation of the second kind.

In this paper, we show how the numerical methods which are based on the Simpson's 3/8 quadrature formula, Weddle
quadrature formula and Durand's quadrature formula can be used to solve (LMVFIE's).
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This paper is organized as follows:

In section 2 we will present quadrature method for solving (LMVFIE's). In section 3 we solve equation (1.1) by
Simpson's 3/8 method. In section 4 we solve equation (1.1) by Durand's method. So in section5 we solve equation (1.1)
by Weddle method. In section6 we apply the proposed method in some examples, showing the accuracy and efficiency
of the method. Finally, the report ends with a brief conclusion.

2. NEW ALGORITHMS (QUADRATURE METHOD FOR SOLVING LINEAR MIXED VOLTERRA-
FREDHOLM INTEGRAL EQUATION):

The numerical integration methods (also called quadrature rule) is an approximation of the definite integral of a
function, usually stated as a weighted sum of function values at specified points within the domain of integration. the
term quadrature means the process of finding square with the same area as the area enclosed by the arbitrary closed
curve. Integration by quadrature either means solving an integral analytically (i.e., symbolically in terms of known
functions), or solving of an integral numerically (Gaussian quadrature, Newton-Cotes formulas).

An obvious numerical procedure is to approximate the integral term (1.1) via a quadrature rule which integrates over
the variable t for a fixed value x. it is natural to choose a regular mesh in x and t ; thus setting x = x; = a + ih, where
h = (b — a)/n is the fixed step length. We approximate in an obvious notation the integral term in linear equation (1.1)

by
x: b L n
f LK(xi,t)u(t)dt + f L(x;, u(t)dt =~ h Zwi]-K(xi,tj)u(tj) + ZwijL(xl-,tj)u(tj)
a a j=0 j=0
= h[Xj-o(wy Ky +wy Ly Ju; + Efiiyr wy Ly ]

Where x; = t;, i = 0,1,..,n. This quadrature rule leads to the following set of equations:
n

u(y) = FG) + h ) woLojug
j=0

u(xy) = f(x1) + h [ (wWyoKiouo + wir Kiyug) + Z wyjLijw | + E(K(x,t), (L(x, )u(t))
=0

i n
u(xl') Zf(xl‘) +h Z(WUKU "‘Wl]Ll])u7 + Z Wl]Ll]u] +E((K(x,t),L(x, t))u(t)), = 2,...,71
j=0 j=i+1
where E((K (x, t), L(x, t))u(t)) represents the error term in the quadrature rule. The set w;; represents the weight
function for an point quadrature rule of Newton-cotes type for the interval [0, ih].

Now let us start by (Simpsons 3/8 rule).
3. ALGORITHM1 (SIMPSON'S 3/8 RULE)

Simpson's 3/8 rule is numerical method use to solve numerical integration proposed by Thomas Simpson. This
approach approximates the function u(x) by cubic curve and the area contained in three strips under a curve can be
evaluated from x, to x5.

Consider the (LMVFIE's) given by equation (1.1). To solve this equation we divide the finite interval [a, b] into 3n
smaller interval of width h, where h=(b — a)/3n. The i-th point of subdivision is denoted by x;, such thati =0, 1,..., n.
The approximate solution will be defined at the mesh point x; is denoted by u(x53;) and is given by:

X3i b
u@w=f@m+f K@%0Mﬂm+fLw%0uﬂw 3.1)
i=01,..,n. ‘ ‘
And in the odd nods

Xm b
u(x,,) = flx,) +f K (x,,, u(t)dt +f L(x,,, Hu(t)dt, (3.2)

m=5711,..,3n—1 if niseven (n = 2,4,6,...),
m=5711,..,3n—2 ifnisodd (n=3,5,7,..).
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And in the even nods

Xy b
u(x,) = f(x,) +J- K(x,,t)u(t)dt+f L(x,, t)u(t)dt, (3.3)

r=248,..,3n—2 ifniseven(n =24,6,..),
r=248..3n—1 if nisodd (n =3,5,7,...).

If we approximation the integrals that appeared in equations (3.1) - (3.3) by the Simpson's 3/8 formula which will yield
the following system of equations: (remark we divide the Volterra integral equation see [10])

n—1 n—1
h
=fo+ Looug + 32 Lozjy1Uzjer + 22 Lozjusz; + 32 Lozj—1uzj_1 + Loznlsn |-
j=0 j=1 j=1
i—-1
uz; = f3 + (L310 + K30 + 32(’431 3j+1 + Kzizjen)usjen + 32(11313, 1+ Kaizjo1)uzjq +
j=0 j=1
i—1 n—1
+ 22@31‘,3;’ + K3i,3j)u3j + (2L313; + K330 usz; + 2 z L3;3jus;
j=1 j=i+l
n—1
+ 32 L3izjp1uszje +3 Z L3izj_1uszj_q + L3;zplUza |, = 1,2,. -1
j=i j=i+1

3h
Uy = fm + E (Lm,O + Km,O)uO

136
+3Z(Lm] + K j )y +<2Lm3+ — Km3)u3

m-—1

32
+ 3(2 Lipzjsiusjr + Z Lyj_qUzj_1) +2 Z Ly zjus; + 9 K
j=4,68,10,.
m
16 8
? z Km} 21 2+9Kmmu +Lm3nu3n'
j=7911,.
m=25,7,11,..3n—-1 if niseven (n =24,5,...),
m=5711,...3n—2 ifnisodd (n=3,5,7,..).
3h 8
u, = ﬂ +§ (Lr'o +§Kr'0)u
+ 3(2 Ly zj41uzjyr + z Ly 3j—quzj—1) +2 z Ly 35us3;
r—1
32 16 8
+ ? z Kr,juj + ? Z Kr,j—Zuj—Z + §Kr,rur + Lr,3nu3n ,
j=13,5,. j=4,68..
r=248,..,3n—2 ifniseven(n=24,6,..),
r=248..3n—1 if nisodd (n =3,5,7,...).
n—1
3h
Uzp = f3n + r} (L3nyo + K3n0)uo + 3 Z(L3n,3j+1 + K3n,3j+1)u3j+1 +
=0
n—1
+ 3Z(L3n 3j—1 + Kzn3j— 1)”3] 1t ZZ(L3n 3 + Kz 3;)”3] + (L3n3ntKzn3n) s, |- (34)
j=1 j=1
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where:

Kj =K(x;,x) (=01,..0,

Lik = L(xi ,xk) (k = 0’1’ ._.’n)’

g: = g(x;), and u; is the approximate value of the unknown function u at the node x; ,i =0,1,.., n.

By solving the system given by equation (3.2) which consists of (n+1) equations and (n+1) unknowns, the approximate
solution of (1.1), is obtained.

4. ALGORITHM2 (DURAND'S RULE)

Durand's rule is one of a family of formulas for numerical integration called Newton—Cotes formulas. the formula
approximates the function on ( xy5,x3) by a curve that passes through four points
(%0, f (x0)), Cx1, f(x1)), (x5, f(x2)), (x3, f(x3)) which results in Durand's rule.

Consider the (LMVFIE's) given by equation (1.1). Here we use Durand's method to find the solution of equation
(1.1).To do this, we divide the finite interval [a,b] into 3n smaller interval of width h, where h = (b — a)/3n. The
approximate solution of (1.1) will be defined at the mesh point x; is denoted by u(x;) and is given by

X b
u(x;) = f(x;) +f K(xi,t)u(t)dt+f L(x;, u(t)dt, i=0,12,..,n (4.1)

By using the Durand's formula to approximate the integrals that appeared in equations (4.1) can get the following
system of equations:

3n-2
2 11 < 11 2
U =fo+h gLo,ouo + ELO,lul + Z Loju + ELOBn—luSn—l + §L0,3nu3n .
=2
3n-2
1 2 1 11 < 11 2
w=fith (EKLO + §L1,0)u0 + (EKM + ELl,l)ul + z Lyju ++ EL1,3n—1u3n—1 + §L1,3nu3n .
=
1 2 4 11 1
u, =fr,+h (§K2,o +§L2_0)u0 + (§K2,1 + ELM)ul + (§K2,2 + Lz,z)uz
i 3n-2
11 2
+ z Lyzn_oUzn_p + EL2,3n—1u3n—1 + §L2,3nu3n .
=3
) i i—2 3n—2 i
w=fith T (Ki,O + Li,O)uO + 10 (Ki,l + Li,l)ul + (Z K + Liju + E(Ki,i—lui—l + Li3n—1U3n—1)
= =2

2
+ 3 (Kiu; + Lizp)usn |,

i=3456,...,3n—1.

2 11
Uzp = f3n + R 3 (KSn,O + L3n,0)u0 + 10 (KSn,l + L3n,1)u1
3n—-2

11 2
+ (K?m,j + L3n,j )u] + ﬁ (K3n,3n—1 + L3n,3n—1)u3n—1 + g (K3n,3n + L3n,3n)u3n . (42)
=2

5. ALGORITHM3 (WEDDLE RULE)

Is a numerical method that approximates the value of a definite integral and so is one of the Newton cotes formulas.
The formula approximates the function on ( xy,x;) by a curve that passes through seven points

(xo, £ (o)), (21, £ (1)), (32, F (32)), (s, f (D), (a, f (x4)), (x5, f (x5)) and (xe, f (%)), which results in Weddle's

rule.
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Consider the (LMVFIE's) given by equation (1.1). Here we use Weddle method to find the solution of equation
(1.1).To do this, we divide the finite interval [a, b] into 6n smaller interval of width h, where h = (b — a)/6n. The
approximate solution of (1.1) will be defined at the mesh point xg; is denoted by u(x,;) and is given by

X6i b
u(xg;) = f(x6;) +f K (xg;, u(t)dt +f L(xg;, u(t)dt, i =0,1,..,n. (5.1)
a a
Xm b
u(xy,) = fn +J- K(x,,, t)u(t)dt +f L(x,,, tyu(t)dt, m=1,..,5. (5.2)
a a
Xy b
u(x,) =f, +f K(x,, Hu(t)dt +f L(x,, u(t)dt, r=789,..,6n—1. (5.3)
a a
n—1
3h
u(xo) = fo + 10 Looup + 52 Logj—1Usj—1 + 52 Logj+1Usj+1 + z Loej—2Usj—2
j=1 j=0 j=1
n—1 n—1 n—2
+ Z Logj+2Usjrz + 62 Logj3Uejrz + 2 Z Logjus; + Lo,enuanl-
=0 =0 =2

3h :
u(xe;) = foi + 10 (Ksio + Leio)uo + 5 Z(KGi,6j—1 + Lei g —1)u6j -1
j=1
i—-1

+ SZ(K& 6j+1 T Loigj+1)ej+1 + Z(Kﬁl 6j—2 T Leigj—2)Uej—2

j=0 j=1

i—1 i—1
+ Z(K6i,6j v2+ Loigj+2)Usjz + 6 z(K6i,6j+3 + Lejgj+3)Usj+3

j—O j=0

+ ZZ(Kﬁl 6j—6 + Loisj—6)Usj—s + (Ksisi + 2Lei6:)Usi

+5 Z Lgj6j—1Ugj— 1+52L616]+1u6]+1+ Z Lei6j—2Usj—2

j=i+1 j=i+1
n—1 n— 1 n—-2
+ Z Leigjr2Uj42 + 6 Z Lei6j+3Ugj43 + 2 Z Leigjue; + LoionUen |-
j=i j=i j=i

Now, we will show table to illustrates divided the equation (5.2) m=1,...5. coefficient of K, ;

m J
1| 5/3 | 53 Trapezoidal
2 | 10/9 | 40/9 | 10/9 Simpsoinl/3
3 | 5/4 | 15/4 | 15/4 | 5/4 Simpsoin3/8
4 | 10/9 | 40/9 | 20/9 | 40/9 | 10/9 Composite Simpsoin1/3
5| 5/3 |10/3 | 10/3 | 10/3 | 10/3 | 5/3 | Comp. Trapezoidal
Coefficient of L,, ¢,(Weddle rule)
| 1 | 5|16 |15 ] 2|5 ]1]e6]1]5]1]. [e6npoint |
m = 3NW10*(K,, ju; + Ly uy),  j=0,1,2,345 and [ =0,1,..,6n
Lm,O Lm,l Lm,Z Lm,3 Lm,4 Lm,5
m +Km,0 +Km,1 +Km,2 +Km,3 +Km,4 +Km,5 Lm'f Lm" Lm' Lm'( Lm,l
1| 1+5/3 | 5+5/3 1 6 1 5 2 | 5]1]6|1]5]1] eén(oint
2| 1+10/9 | 5+40/9 | 1+10/9 6 1 5 2 |5]1]6]1]5]1
3| 1+5/4 | 5+15/4 | 1+15/4 6+5/4 1 5 2 |5]1]6]1]5]1
4| 1+10/9 | 5+40/9 | 1+20/9 | 6+40/9 | 1+10/9 5 2 |5]1]6]1]5]1
5| 1+5/3 | 5+10/3 | 1+10/3 | 6+10/3 | 1+10/3 |5+5/3| 2 | 5|1 |6 |1 |5 |1
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1 1

3h
ulx,) = f + 10 (Ko + Lro)ug + SZ(KT,4j+1 + Ly g1 ) Uajr + Z(Kr,2j+2 + Ly gj42) Uz + 6(Ky 3 + Ly 3 )us
j=0 j=0
r—1 6n—1
8 5 10

+ §Kr_6u6 + §Kr_rur + ?Z K. jw +5 Z L,y

=7 j=7,11,13
6n—6 6n—2 6n—3
+2 z L ju + Z Lju +6 L jui + Lesnutgn |,
j=3*(even num.) j=8,10,14,.. j=3*(odd num.)
r=1789,..,6n—1 (5.4)

6. NUMERICAL EXAMPLE

In this section we give some of the numerical examples to illustrate the above methods for solving the (LMVFIE'S). In
all case we chose f(x) in such a way that we know the exact solution. This exact solution is used only to show that the
numerical solution obtained with our method is correct. Then, in such example, we calculate the errors at some points.
We solve these examples by using MATLAB version 7.11.0.

Example 1: Consider the (LMVFIE) of the second kind:
x 1

u(x) = (cosx — 1)x? + (2cos1 — cosx — sinl — 1)x + 2sinx + f (x% — tu(t) dt + f (xt + x)u(t) dt
0 0

for which the exact solution is u(x) = sin(x). Tables 1.1, 1.2 and Figures 1.1, 1.2, 1.3 and 2.1, 2.2, 2.3 show that the
approximation and exact solution by using Simpson's 3/8 method, Durand's method and Weddle method respectively
forn=5,7.

Table 1.1: The Error of Example 1 by using Simpson's 3/8 rule, Durand's rule and Weddle rule respectively with n=5,7

N

0 0.000e+000 0.000e+000 0.000e+000
0.067 2.098e-005 5.385e-005 5.211e-005
0.133 5.659e-005 8.958e-006 1.039e-004
0.2 8.438e-005 4.270e-005 1.542e-004
0.267 1.117e-004 3.695e-005 2.169e-004
0.333 9.014e-005 3.144e-005 2.788e-004
0.4 1.669e-004 2.623e-005 3.404e-004
0.467 2.036e-004 2.140e-005 4.024e-004
0.533 2.215e-004 1.697e-005 4.655e-004
0.6 2.510e-004 1.292e-005 5.308e-004
0.667 2.811e-004 9.213e-006 5.998e-004
0.733 5.006e-004 5.785e-006 6.739e-004
0.8 3.500e-004 2.544e-006 7.550e-004
0.867 6.957e-004 6.238e-007 8.455e-004
0.933 4.388e-004 3.856e-006 9.479e-004

1 4.971e-004 7.312e-006 1.066e-003
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0.9 T T T T T T T T T
—©— Exact
0.8 | =4 Approx.

0.7F

0.6

0.5F

Values

0.4F

0.3F

0.2F

0.1F

1 1 1 1 1 1 1 1 1
0 01 0.2 03 04 05 06 07 08 09 1
Nodes 0..1

Figure 1.1: shows both the exact and the approximate Simpson's 3/8 rule with n =5

0.9 T T T T T T T T T
—©— Exact
0.8 | =—#— Approx. B

Values

1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 05 06 07 08 09 1
Nodes 0..1

Figure 1.2: compares the exact solution u(x) = sinx with the approximate Durand's rule with n=5

0.9 T T T T T T T T T
—©— Exact
0.8 —#— Approx. E

Values

1 1 1 1 1 1 1 1 1
0 01 0.2 03 04 05 06 07 0.8 09 1
Nodes 0..1

Figure 1.3: compares the exact solution with the approximate Weddle solution.
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Table 1.2: With n=7

Values

Figure 2.1: compares the exact solution u(x) = sinx with the approximate Simpson's 3/8 solution with n=7

Values

Figure 2.2: shows the exact solution u(x) = sinx with the approximate Durand’s rule when n=7
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0.8 | —— Approx.

0.7

0.6

0.5

0.4

0.3f

0.2F

0.1f

0 0.1 0.2

0.9

0.3

0.4

0.5

0.6 0.7 0.8

Nodes 0..1

0.9 1

—O— Exact

0.8 | —4— Approx.

0.7f

0.6

0.5

0.4

0.3

0.2F

0.1

0 0.1 0.2

0.3

0.4

0.5

0.6 0.7 0.8

Nodes 0..1

0.9 1

l Error Durand's rule llError Weddle rule

0 0.000e+000 0.000e+000 0.000e+000
0.048 4.253e-006 1.673e-005 2.071e-005
0.095 2.744e-005 2.517e-006 4.134e-005
0.143 4.103e-005 6.970e-006 6.167e-005
0.19 5.447e-005 2.071e-006 8.642e-005
0.238 4.357e-005 2.772e-006 1.109e-004
0.286 8.134e-005 7.547e-006 1.352e-004
0.333 8.549¢-005 1.225e-005 1.593e-004
0.381 1.078e-004 1.687e-005 1.834e-004
0.429 1.210e-004 2.143e-005 2.074e-004
0.476 1.343e-004 2.595e-005 2.317e-004
0.524 1.850e-004 3.044e-005 2.564e-004
0.571 1.616e-004 3.494e-005 2.816e-004
0.619 2.440e-004 3.950e-005 3.077e-004
0.667 1.905e-004 4.416e-005 3.350e-004
0.714 2.072e-004 4.897e-005 3.637e-004
0.762 2.243e-004 5.401e-005 3.943e-004
0.810 3.878e-004 5.935e-005 4.271e-004
0.857 2.630e-004 6.507e-005 4.627e-004
0.905 4.761e-004 7.127e-005 5.015e-004
0.952 3.106e-004 7.805e-005 5.443e-004

1 3.390e-004 8.555e-005 5.916e-004

0.9 . .
—O©— Exact

43
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0.9

—©— Exact b
0.8| —— Approx. E

0.7F 1

0.6 1

0.5 1

Values

0.4 1

0.3 _

0.2f 1

0.1f 1

1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 04 0.5 0.6 0.7 08 09 1
Nodes 0..1

Figure 2.3: shows the exact solution u(x)= sinx with the approximate Weddle solution when n=7.

CONCLUSIONS

Which obtain from the illustrative example, we conclude that:

1. The proposed numerical methods are efficient and accurate to estimate the solution of these equations.

2. In most cases, the (LMVFIE's) are usually difficult to solve analytically, so we can solved by approximation
method.

3. Inthis work the tables are appointed the common points of comparison between the three methods.

4. The Durand's method gives better accuracy than other methods.

5. When n increase, we notice the values h decrease and the error decrease.

6. This methods can be applied to nonlinear (MVFIE’s).
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