International Journal of Mathematical Archive-6(11), 2015, 65-70

CHARACTERIZATIONS OF I_{gg} -CLOSED SETS

K. BHAVANI*1, T. BABITHA2

¹Department of Mathematics, SRM University Ramapuram, Chennai, Tamil Nadu, India.

²Department of Mathematics, MVM Government Arts College for women, Dindugal, Tamilnadu, India.

(Received On: 08-09-15; Revised & Accepted On: 17-10-15)

ABSTRACT

We discuss various properties of I_{gg} -closed sets in terms of g - closed sets, g*-closed sets and I_{g} -closed sets. Also, the applications of I_{gg} -closed sets in $T_{1/2}^*$ -spaces and ${}^*T_{1/2}$ -spaces are discussed.

Keywords and Phrases: I_g -closed set, g -closed set, g^* -closed set, g -local function, $T_{1/2}^*$ -space and relative topology.

AMS 2010 Subject classification: 54 A 05, 54 A 10.

1. INTRODUCTION AND PRELIMINARIES

An *ideal* [7] on a nonempty set X is a nonempty collection of subsets of X satisfying the following: (i) If $A \in I$ and $B \subset A$; then $B \in I$; and (ii) If $A \in I$ and $B \in I$; then $A \cup B \in I$. A topological space (X, τ) together with an ideal I is called an *ideal topological space* and is denoted by (X, τ, I) . For each subset A of X, $A^*(I, \tau) = \{X \in X \mid U \cap A \notin I\}$ for every open set U containing X is called the *local function* of A [7] with respect to I and τ . We simply write A* instead of $A^*(I, \tau)$ in case there is no chance for confusion. We often use the properties of the local function stated in Theorem 2.3 of [6] without mentioning it. Moreover, $cl^*(A) = A \cup A^*$ [9] defines a Kuratowski closure operator for a topology τ^* on X which is finer than τ . A subset A of an ideal space (X, τ) is said to be g -closed [8], if $cl(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a g -closed set is called a g -open set [8]. A subset A of an ideal space (X, τ, I) is said to be I_g -closed [5], if $cl^*(A) \subset U$ whenever $A \subset U$ and U is open. The complement of an I_g -closed set is called an I_g -open set [5]. The collection of all g-open sets in a topological space (X, τ , I) is denoted by τ_g . The g -closure of A denoted by $cl_g(A)$ [1] is the intersection of all g -closed sets containing A and the g -interior of A denoted by $int_g(A)$ defined as the union of all g -open sets contained in A. For every $A \in P(X)$; $A^*(I, \tau_p)$ = { $X \in X | U \cap A \notin I$ for every g - open set U containing X} is called the g -local function of A[1] with respect to I and τ_g is denoted by A_{τ}^* . Also, $cl_g^*(A) = A \cup A_g^*$ [1] is a Kurotowski closure operator for a topology $\tau_g^* = \{X - A \mid x \in A\}$ $cl_{g}^{*}(A) = A/[1]$ on X which is finer than τ_{g} . A subset A of an ideal space (X, τ , I) is said to be τ_{g}^{*} [1], if $cl_{g}^{*}(A) = A$ or $A_{a}^{*} \subset A$. A subset A of a topological space (X, τ) is said to be a g^{*} -closed set [10], if $cl(A) \subset U$ whenever $A \subset U$ and U is g -open in X. It is clear that every g^* -closed set is a g -closed set [10].

> Corresponding Author: K. Bhavani^{*1}, ¹Department of Mathematics, SRM University Ramapuram, Chennai, Tamil Nadu, India.

K. Bhavani *1 , T. Babitha 2 / Characterizations of $I_{gg}\,$ -Closed sets / IJMA- 6(11), Nov.-2015.

A topological space (X, τ) is said to be a $T_{1/2}^*$ -space [10], if every g^* -closed set is closed. Equivalently, a topological space (X, τ) is called a $T_{1/2}^*$ -space [10] if and only if every singleton set is either g-closed or open. A topological space (X, τ) is said to be a ${}^*T_{1/2}$ -space [10] if every g-closed set is a g^* -closed set. Equivalently, a topological space (X, τ) is called a ${}^*T_{1/2}$ -space if and only if every singleton set is either closed or g^* -open [10]. A topological space (X, τ) is a $T_{1/2}$ -space if and only if it is ${}^*T_{1/2}$ and $T_{1/2}^*$ [10].

A subset A of X is said to be an I_{gg} - closed set [2] if $A_g^* \subset U$ whenever $A \subset U$ where U is a g -open set in X, equivalently, $cl_g^*(A) \subset U$ whenever $A \subset U$ where U is a g -open set in X. A is said to be an I_{gg} -open set if X - A is an I_{gg} -closed set.

Lemma 1.1: [2] Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then the following are equivalent. (a) A is I_{gg} -closed. (b) For all $x \in cl_g^*(A)$, $cl_g(\{x\}) \cap A \neq 0$.

(c) $cl_g^*(A)$ – A contains no nonempty g -closed set.

(d) $A_g^* - A$ contains no nonempty g -closed set.

Lemma 1.2: [1] Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subseteq A_g^*$, then the following holds for every subset $A \subseteq X$:

(a) $A^* = A_g^* = cl^*(A) = cl(A) = cl_g^*(A)$. (b) A_g^* is a g -closed set. (c) $A_g^* = cl_g^*(A_g^*)$. (d) $A_g^* = cl_g(A)$.

2. CHARACTERIZATIONS OF I_{gg} - CLOSED SETS

Theorem 2.1: Let (X, τ, I) be an ideal topological space and *A* be an I_{gg} -closed subset *X*. Then the following are equivalent.

(a) A is a \$\tau_g^*\$ -closed set.
(b) \$A_g^*\$ - A is a g -closed set.

Proof:

(a) \Rightarrow (b): If A is a τ_g^* - closed set, then $A_g^* - A = \phi$ and so $A_g^* - A$ is a g -closed set. (b) \Rightarrow (a): Suppose that $A_g^* - A$ is a g -closed set. Since A is I_{gg} -closed, by Lemma 1.1(d), $A_g^* - A = \phi$ and so $A_g^* \subset A$. Therefore, A is τ_g^* -closed.

Corollary 2.2: Let (X, τ, I) be an ideal topological space and A be an I_{gg} -closed subset of X. If $A \subseteq A_g^*$; then the following are equivalent.

(a) A is a g -closed set.

(b) $A_g^* - A$ is a g-closed set.

Proof:

(a) \Rightarrow (b): If A is a g - closed set, then A is a τ_g^* -closed set. Then by Theorem 2.1, $A_g^* - A$ is a g -closed set. (b) \Rightarrow (a): If $A_g^* - A$ is g -closed and since A is I_{gg} - closed, by Lemma1.1(d), $A_g^* - A = \phi$ and hence $A_g^* \subset A$. Since $A \subset A_g^*$; $cl_g(A) = A_g^* = A$ by Lemma 1.2(d) and so A is a g -closed set.

© 2015, IJMA. All Rights Reserved

Theorem 2.3: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then the following are equivalent. (a) *A* is an I_{gg}-closed set. (b) $cl_g^*(A) \cap F = \phi$ whenever $A \cap F = \phi$ and *F* is g-closed.

Proof:

(a) \Rightarrow (b): Suppose that $A \cap F = \phi$ and F is g -closed. Then $A \subseteq X - F$ and X - F is g -open. Since A is an I_{gg} - closed set, $cl_g^*(A) \subseteq X - F$ which implies that $cl_g^*(A) \cap F = \phi$ (b) \Rightarrow (a): Let U be a g -open set containing A. Then $A \cap (X - U) = \phi$ and X - U is g - closed. By (b), $cl_g^*(A) \cap (X - U) = \phi$ and so $cl_g^*(A) \subseteq (X - U)$. Therefore, A is an I_{gg} -closed set.

Theorem 2.4: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If A is a closed set, then A is an I_{gg} -closed set.

Proof: Let $A \subseteq U$ where $A \subseteq X$ and $U \in \tau_g$. Since U is g -open, $cl_g^*(A) \subseteq cl(A) = A \subseteq U$ by hypothesis and so A is an I_{gg} -closed set.

The following Example 2.5 shows that the converse of Theorem 2.4 is not true.

Example 2.5: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $I = \{\phi, \{a\}\}$. If $A = \{b\}$ and $A \subseteq U$ where $U = \{b\}$ is a g-open set, then $cl(A) = \{b, c\} \neq A$, but $A_g^* = \{b\} \subseteq U$, which implies that A is an I_{gg} -closed set but not a closed set.

Theorem 2.6: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then A_g^* is always an I_{gg} -closed set.

Proof: Let $A_g^* \subset U$ where U is a g -open set. Since $(A_g^*)_g^* \subset A_g^* \subset U$ [1, Theorem 3.7(e)] whenever $A_g^* \subset U$ which implies that A_g^* is an I_{gg} -closed set.

The following theorem 2.7 shows that every g*- closed set is an I_{gg} -closed set and Example 2.8 below shows that the converse is not true. Also, if $\tau_g = \tau_g^*$ then g* -closed sets coincide with I_{gg} -closed sets.

Theorem 2.7: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If A is a g^* -closed set, then A is an I_{gg} -closed set.

Proof: Let $A \subset U$ where $A \subset X$ and $U \in \tau_g$. Since U is g -open, $cl_g^*(A) \subset cl(A) \subset U$ by hypothesis and so A is an I_{gg} -closed set.

Example 2.8: Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $I = \{\phi, \{a\}\}$. If $A = \{b\}$ and $A \subseteq U$ where $U = \{b\}$ is a g -open set, then $cl(A) = \{b, c\} \not\subset U$ but $A_g^* = \{b\} \subseteq U$, which implies that A is an I_{gg} -closed set but not a g^* -closed set.

Theorem 2.9: If (X, τ, I) is an ideal topological space, A is an I_{gg} -closed subset of X and $A \subseteq A_g^*$, then A is a g^* -closed set.

Proof: Let $A \subset U$ where U is g -open. Since A is I_{gg} -closed, $cl_g^*(A) \subset U$. Since $A \subset A_g^*$, by [1, Theorem 3.10(a)], $cl(A) = cl_g^*(A) \subset U$ which implies that A is a g^{*} -closed set.

Corollary 2.10: If (X, τ, I) is an ideal topological space where $I = \{\phi\}$, then A is I_{gg} - closed if and only if A is g^* - closed.

Proof: If $I = \{\phi\}$, then by [1, Theorem 3.7(f)], $A_g^* = cl_g(A) \supset A$ and so $A \subset A_g^*$. If A is I_{gg} - closed, then by Theorem 2.9, A is g^* - closed. The converse is clear from Theorem 2.7.

Theorem 2.11: Let (X, τ, I) be an ideal topological space where $I = \{\phi\}$. If (X, τ, I) is a $T_{1/2}^*$ – space, then every I_{gg} - closed set is a closed set.

Proof: By Corollary 2.10, the family of all g^* - closed sets coincide with the family of all I_{gg} - closed sets, since $I = \{\phi\}$. Since every g^* - closed set is a closed set in every $T_{1/2}^*$ -space, every g^* - closed set is a closed set and so every I_{gg} - closed set is a closed set.

Theorem 2.12: Let (X, τ, I) be an ideal topological space. If X is a ${}^{*}T_{1/2}$ -space, then for each $x \in X$; $\{x\}$ is either closed or I_{gg} - open.

Proof: Suppose that (X, τ, I) is a ${}^{*}T_{1/2}$ -space and $x \in X$. If $\{x\}$ is not a closed set, then $X - \{x\}$ is not an open set. This implies that $X - \{x\}$ is a g-closed set, since X is the only open set which contains $X - \{x\}$. Since X is a ${}^{*}T_{1/2}$ -space, $X - \{x\}$ is a g^{*}-closed set. Therefore, $X - \{x\}$ is an I_{gg} -closed set by Theorem 2.7 or equivalently $\{x\}$ is an I_{gg} -open set.

Theorem 2.13: Let (X, τ, I) be an ideal topological space. Then either $\{x\}$ is g-closed or $\{x\}^c$ is I_{gg} -closed.

Proof: Suppose that $\{x\}$ is not g -closed. Then $\{x\}^c$ is not a g -open set and the only g -open set containing $\{x\}^c$ is X. Therefore, $(\{x\})_g^* \subset X$ and so $\{x\}^c$ is I_{gg} -closed.

Theorem 2.14: Let (X, τ, I) be an ideal topological space. Then the following are equivalent. (a) Every I_{gg} -closed set is τ_g^* -closed.

(b) Every singleton subset of X is either g -closed or τ_g^* -open.

Proof:

(a) \Rightarrow (b): Let $x \in X$. If $\{x\}$ is not g -closed, then by Theorem 2.13, $\{x\}^c$ is I_{gg} -closed and so τ_g^* -closed by hypothesis. Therefore, $\{x\}$ is τ_g^* -open.

(**b**) \Rightarrow (**a**): Let A be an I_{gg} -closed set and $x \in cl_g^*(A)$. Then we have the following two cases.

Case-1: Suppose that $\{x\}$ is g-closed. By Lemma 1.1(c), $cl_g^*(A) - A$ contains no nonempty g-closed set. Therefore, $X \notin cl_g^*(A) - A$ which implies that $x \in A$.

Case-2: Suppose that $\{x\}$ is τ_g^* -open. Since $x \in cl_g^*(A)$, $\{x\} \cap A \neq \phi$ Therefore, $x \in A$. Thus in both cases, $x \in A$ and so $cl_g^*(A) = A$ which shows that A is τ_g^* -closed.

Theorem 2.15: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then $cl_g^*(A)$ is a closed set.

Proof: If $x \in cl(cl_g^*(A))$ and U be an open set containing x such that $U \cap cl_g^*(A) \neq \phi$. Let $y \in U \cap cl_g^*(A)$ for some $y \in X$. Since $U \in \tau_g(y)$ and $y \in cl_g^*(A)$, there exists a τ_g^* -open set V such that $V \cap A \neq \phi$ Since $U \cap V$ is a τ_g^* -open neighbourhood of y, $(U \cap V) \cap A \neq \phi$ which implies that $x \in cl_g^*(A)$. Therefore, $cl_g^*(A)$ is a closed set.

Theorem 2.16: Let (X, τ, \mathbf{I}) be an ideal topological space and let U and A be subsets of X such that $A \subset U \subset A_g^*$ Then $U \subset U_g^*$, $(U_g^*)_g^* = U_g^*$ and $(A_g^*)_g^* = A_g^*$.

Proof: Since $A \subseteq U \subseteq A_g^*$, $A_g^* = U_g^*$ and so $U \subseteq U_g^*$. Since $(A_g^*)_g^* \subseteq A_g^*$, $A \subseteq A_g^*$, implies that $(A_g^*)_g^* = A_g^*$ and so $(U_g^*)_g^* = U_g^*$.

3. APPLICATIONS OF I_{gg} -CLOSED SETS

If *Y* is a nonempty subset of an ideal topological space (X, τ, I) , then (Y, τ_Y, I_Y) is an ideal topological subspace of *X* where $I_Y = \{I \cap Y | I \in I\}$ [4] is an ideal on *Y*, the restriction of *I* to *Y* and $\tau_Y = \{U \cap Y | U \in \tau\}$ is the relative topology on *Y*.

Lemma 3.1: [6, Lemma 6.6] Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then $(\tau_A)^*(I_A) = \tau^*(I)_A$.

Lemma 3.2: [3] Let (X, τ, I) be an ideal topological space and $A \subseteq Y \subseteq X$. If Y is g -open in X, then $A_g^*(I_Y, \tau_{gY}) = A_g^*(I, \tau_g) \cap Y$ where $\tau_{gY} = \tau_g | Y$.

Proof: Let $x \notin A_g^*(\mathbf{I}, \tau_g) \cap Y$. Then either $X \in Y$ or $x \notin Y$.

Case-1: Suppose that $x \notin Y$. Since $A_g^*(I_Y, \tau_{gY}) \cap Y \subseteq Y$, $x \notin A_g^*(I_Y, \tau_{gY})$.

Case-2: Suppose that $x \in Y$. Since $x \notin A_g^*(I, \tau_g)$, there exists a g-open set V in X containing X, such that $V \cap A \in I$. Since $x \in Y$ and Y is g-open in X, $Y \cap V \in \tau_g$ such that $(Y \cap V) \cap A \in I$ and so $(Y \cap V) \cap A \in I_Y$. Consequently, $x \notin A_g^*(I_Y, \tau_{gY})$. Hence $A_g^*(I_Y, \tau_{gY}) \subset A_g^*(I, \tau_g) \cap Y$. To prove the converse, consider $x \notin A_g^*(I_Y, \tau_{gY})$. Then for some g-open set V in (Y, τ_Y) containing X, there exists $U \in \tau_g$ such that $V = U \cap Y$ and so $(U \cap Y) \cap A \in I_Y$. Since $A \subset Y$, $U \cap A \in I_Y \subset I$ gives $U \cap A \in I$ for some g-open set U containing X. Therefore, $x \notin A_g^*(I, \tau_g)$. Therefore, $A_g^*(I_Y, \tau_{gY}) = A_g^*(I, \tau_g) \cap Y$.

Theorem 3.3: Let (X, τ, I) be an ideal topological space and $A \subseteq Y \subseteq X$. If A is an I_{gg} -closed set in (Y, τ_Y, I_Y) and Y is g -open and τ_g^* -closed in X, then A is an I_{gg} - closed set in X.

Proof: Let $A \subseteq U$ where U is g open in X. Then $U \cap Y$ is g open in Y. This implies that $A_g^*(I_Y, \tau_{gY}) = A_g^*(I, \tau_g)$ $\cap Y$ by Lemma 3.2. Since Y is τ_g^* oclosed in X, $A_g^*(I, \tau_g) \subseteq Y_g^*(I, \tau_g) \subseteq Y$ and so $A_g^*(I_Y, \tau_{gY}) = A_g^*(I, \tau_g) \cap Y$. Since A is I_{gg} oclosed in Y and $A \subseteq U \cap Y$, $A_g^*(I, \tau_g) = A_g^*(I_Y, \tau_{gY}) \subseteq U \cap Y \subseteq U \cup (X - A_g^*(I, \tau_g))$. Therefore, $A_g^*(I, \tau_g) \subseteq U \cup (X - A_g^*(I, \tau_g))$ which implies that $A_g^*(I, \tau_g) \subseteq U$ and so A is an I_{gg} oclosed set in X. **Theorem 3.4:** Let (X, τ, I) be an ideal topological space and $A \subseteq Y \subseteq X$. If A is I_{gg} -closed in X and Y is g -open in X, then A is I_{gg} -closed in (Y, τ_Y, I_Y) .

Proof: Let U be a g -open subset of (Y, τ_Y, I_Y) such that $A \subseteq U$. Since Y is g -open in X, U is g -open in X and so $A_g^*(I, \tau_g) \subseteq U$. By Lemma 3.2, $A_g^*(I_Y, \tau_{gY}) = A_g^*(I, \tau_g) \cap Y \subseteq U \cap Y = U$ and hence $A_g^*(I_Y, \tau_{gY})$ Therefore, A is an I_{gg} -closed set in (Y, τ_Y, I_Y) .

Corollary 3.5: Let (X, τ, I) be an ideal topological space where Y is a g-open and τ_g^* -closed subset of X. Then A is I_{gg} -closed in (Y, τ_Y, I_Y) if and only if A is I_{gg} -closed in X.

Theorem 3.6: Let (Y, τ_Y, I_Y) be a g-closed subspace of an ideal topological space (X, τ, I) and U be I_{gg} - open in X. Then U \cap Y is I_{gg} -open in Y.

Proof: Let F be a g -closed subset of (Y, τ_Y, I_Y) such that $F \subseteq U \cap Y$. Since U is I_{gg} -open in X, by [2, Theorem 2.4], $F \subseteq \operatorname{int}_{g}^{*}(U)$ and $F = F \cap Y \subseteq \operatorname{int}_{g}^{*}(U) \cap Y \subseteq \operatorname{int}_{gY}^{*}(U \cap Y)$. Therefore, $U \cap Y$ is I_{gg} -open in Y.

REFERENCES

- 1. K. Bhavani, g -Local Functions, J. Adv. Stud. Topol., 5(1)(2013), 1 5.
- 2. K. Bhavani, Igg -Closed Sets, Intern. J. Math. Archives, 4(12) (2013), 250-252.
- 3. K. Bhavani, Generalized compatible Ideals, (Communicated).
- 4. J. Dontchev, On Hausdorff Spaces via Topological Ideals and I –irresolute Functions, Annals of the New York academy of Sciences, General Topology and Applications, 767(1995), 28 38.
- 5. J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Mathematica Japanica, 49 (3), (1999), 395-401.13
- D. Jankovic and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295 - 310.
- 7. K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- 8. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89 –96.
- 9. R. Vaidyanathaswamy, The localization theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51 61.
- 10. M. K. R. S. Veerakumar, Between Closed Sets and g -Closed Sets, Mem.Fac. Kochi. Univ (JAPAN). Ser. A., 21 (2000), 1 19.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]