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ABSTRACT 
We discuss various properties of ggI  -closed sets in terms of g - closed sets, g⋆ -closed sets and gI  -closed sets. Also, 

the applications of ggI  -closed sets in *
21T  -spaces and 21

*T  -spaces are discussed. 
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1. INTRODUCTION AND PRELIMINARIES 
 
An ideal Ι [7] on a nonempty set X is a nonempty collection of subsets of X satisfying the following: (i) If A∈ Ι  and 
B⊂ A; then B∈ Ι ; and (ii) If A∈ Ι  and B∈ Ι ; then A∪B∈ Ι . A topological space (X,τ ) together with an ideal Ι  is 
called an ideal topological space and is denoted by (X, τ , Ι ). For each subset A of X, A*( Ι ,τ ) = {X∈X | U ∩ A∉ Ι } 
for every open set U containing X} is called the local function of A [7] with respect to Ι and τ .We simply write A* 
instead of A*( Ι , τ ) in case there is no chance for confusion. We often use the properties of the local function stated in 
Theorem 2.3 of [6] without mentioning it. Moreover, cl*(A) = A∪A* [9] defines a Kuratowski closure operator for a 
topology *τ  on X which is finer thanτ . A subset A of an ideal space (X,τ ) is said to be g -closed [8], if cl(A) ⊂U 
whenever A ⊂ U and U is open. The complement of a g -closed set is called a g -open set [8]. A subset A of an ideal 
space (X, τ , Ι ) is said to be gΙ -closed [5], if cl*(A) ⊂ U whenever A⊂U and U is open. The complement of an          

gΙ -closed set is called an gΙ  -open set [5]. The collection of all g -open sets in a topological space (X, τ , Ι ) is 

denoted by gτ . The g -closure of A denoted by clg(A) [1] is the intersection of all g -closed sets containing A and the g 

-interior of A denoted by intg(A) defined as the union of all g -open sets contained in A. For every A∈  P(X); A*( Ι , gτ ) 

= {X ∈ X | U ∩ A∉ Ι for every g - open set U containing X} is called the g -local function of A[1] with respect to  Ι and  

gτ  is denoted by *
τA . Also, *

gcl (A) = *
gAA∪  [1] is a Kurotowski closure operator for a topology *

gτ  = {X − A |  
*
gcl (A)= A} [1] on X which is finer than gτ . A subset A of an ideal space (X, τ , Ι )  is said to be *

gτ  [1], if *
gcl (A) = A 

or AAg ⊂
* . A subset A of a topological space (X,τ ) is said to be a g* -closed set [10], if cl(A) ⊂ U whenever A ⊂ U 

and U is g -open in X.  It is clear that every g*-closed set is a g -closed set [10]. 
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A topological space (X, τ ) is said to be a *
21T - space [10], if every g*- closed set is closed. Equivalently, a topological 

space (X,τ ) is called a *
21T - space [10] if and only if every singleton set is either g-closed or open. A topological 

space (X,τ ) is said to be a 21
*T  - space [10] if every g –closed set is a g* -closed set. Equivalently, a topological space 

(X,τ ) is called a 21
*T - space if and only if every singleton set is either closed or g*-open [10]. A topological space    

(X,τ ) is a 21T  -space if and only if it is 21
*T  and *

21T  [10]. 
 
A subset A of X is said to be an Igg - closed set [2] if *

gA ⊂ U whenever A⊂U where U is a g -open set in X, 

equivalently, *
gcl (A) ⊂ U whenever A ⊂ U where U is a g -open set in X. A is said to be an Igg -open set if X − A is an 

Igg -closed set. 
 
Lemma 1.1: [2] Let (X, τ , Ι ) be an ideal topological space and A ⊂ X. Then the following are equivalent. 
(a) A is Igg -closed. 
(b) For all  .0})({),(* ≠∩∈ AxclAclx gg  

(c) )(* Aclg  − A contains no nonempty g -closed set. 

(d) *
gA − A  contains no nonempty g -closed set. 

 
Lemma 1.2: [1] Let (X, τ , Ι ) be an ideal topological space and A⊂X.  If *

gAA ⊂  , then the following holds for 

every subset  A⊂X: 
(a)   A* = *

gA  = cl*(A) = cl(A) = )(* Aclg . 

(b) *
gA  is a g -closed set. 

(c) *
gA  = )( **

gg Acl . 

(d) *
gA   = clg(A). 

 
2. CHARACTERIZATIONS OF ggI - CLOSED SETS 
 
Theorem 2.1: Let (X, τ , Ι ) be an ideal topological space and A be an ggI -closed subset X. Then the following are 
equivalent. 
(a) A is a *

gτ  -closed set. 

(b) *
gA − A is a g -closed set. 

 
Proof: 
(a) ⇒ (b): If A is a *

gτ  - closed set, then *
gA − A = φ  and so *

gA − A is a g -closed set. 

(b) ⇒ (a): Suppose that *
gA − A is a g -closed set. Since A is Igg -closed, by Lemma 1.1(d), *

gA − A =φ  and so         
*
gA ⊂ A. Therefore, A is *

gτ  -closed. 
 
Corollary 2.2: Let (X, τ , Ι ) be an ideal topological space and A be an Igg -closed subset of X. If A ⊂ *

gA ; then the 
following are equivalent. 
(a) A is a g -closed set. 
(b) *

gA − A is a g -closed set. 
 
Proof: 
(a) ⇒ (b): If A is a g - closed set, then A is a *

gτ  -closed set. Then by Theorem 2.1, *
gA − A is a g -closed set. 

(b) ⇒ (a): If *
gA − A is g -closed and since A is Igg - closed, by Lemma1.1(d), *

gA − A = φ  and hence *
gA ⊂ A.  Since 

A ⊂ *
gA ; clg(A) = *

gA  = A by Lemma 1.2(d) and so A is a g -closed set. 
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Theorem 2.3: Let (X, τ , Ι )  be an ideal topological space and A ⊂ X. Then the following are equivalent. 
(a) A is an Igg -closed set. 
(b) )(* Aclg ∩F = φ  whenever A ∩ F = φ  and F is g -closed. 
 
Proof: 
(a) ⇒ (b): Suppose that A∩F = φ  and F is g -closed. Then A ⊂X−F and X−F is g -open. Since A is an ggI - closed 

set, )(* Aclg  ⊂ X−F which implies that )(* Aclg ∩ F =φ  

(b) ⇒ (a): Let U be a g -open set containing A. Then A∩(X−U) = φ  and X − U is g - closed. By (b),  

)(* Aclg ∩(X −U) = φ  and so )(* Aclg ⊂(X −U). Therefore, A is an ggI  -closed set. 
 
Theorem 2.4: Let (X, τ , Ι ) be an ideal topological space and A ⊂ X. If A is a closed set, then A is an ggI -closed set. 
 
Proof: Let A⊂U where A⊂X and U∈ .gτ  Since U is g -open, )(* Aclg   ⊂ cl(A) = A ⊂ U by hypothesis and so A is 

an ggI -closed set.  
 
The following Example 2.5 shows that the converse of Theorem 2.4 is not true. 
 
Example 2.5: Let X = {a, b, c},τ  = {φ , X, {a}, {b, c}} and I = {φ , {a}}.  If A = {b} and A ⊂ U where U = {b} is a   

g -open set, then cl(A) = {b, c}≠  A, but *
gA  = {b}⊂U, which implies that A is an Igg -closed set but not a closed set. 

 
Theorem 2.6: Let (X, τ , Ι ) be an ideal topological space and A ⊂ X. Then *

gA  is always an ggI  -closed set. 
 
Proof: Let *

gA ⊂ U where U is a g -open set. Since UAA ggg ⊂⊂ *** )(  [1, Theorem 3.7(e)] whenever *
gA ⊂U which 

implies that *
gA  is an ggI  –closed set. 

 
The following theorem 2.7 shows that every g*- closed set is an ggI  -closed set and Example 2.8 below shows that the 

converse is not true. Also, if *
gg ττ =  then g* -closed sets coincide with ggI  -closed sets. 

 
Theorem 2.7: Let (X, τ , Ι ) be an ideal topological space and A ⊂ X. If A is a g* -closed set, then A is an ggI  -closed 
set. 
 
Proof: Let A ⊂ U where A ⊂ X and U ∈ gτ . Since U is g -open, )(* Aclg ⊂ cl(A) ⊂ U by hypothesis and so A is an 

ggI -closed set. 
 
Example 2.8: Let X = {a, b, c}, τ  = {φ , X, {a}, {b, c}} and I  = {φ , {a}}. If A = {b} and A ⊂ U where U = {b} is a 

g -open set, then cl(A) ={b, c}⊄  U but *
gA  = {b} ⊂ U, which implies that A is an ggI  -closed set but not a g* -closed 

set. 
 
Theorem 2.9: If (X, τ , Ι ) is an ideal topological space, A is an ggI  –closed subset of X and A ⊂ *

gA  , then A is a g* -
closed set. 
 
Proof: Let A ⊂ U where U is g -open. Since A is ggI -closed, )(* Aclg ⊂U. Since A ⊂ *

gA , by [1, Theorem 3.10(a)], 

cl(A) = )(* Aclg ⊂ U which implies that A is a g* -closed set. 
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Corollary 2.10: If (X, τ , I ) is an ideal topological space where I  = {φ }, then A is ggI - closed if and only if A is       
g* - closed. 
 
Proof: If I  = {φ }, then by [1, Theorem 3.7(f)], *

gA  = clg(A)⊃A and so A⊂ *
gA . If A is ggI - closed, then by 

Theorem 2.9, A is g* - closed. The converse is clear from Theorem 2.7. 
 
Theorem 2.11: Let (X, τ , I )  be an ideal topological space where I  = {φ }. If (X, τ , I ) is a *

1 2T − space, then 

every ggI  - closed set is a closed set. 
 
Proof: By Corollary 2.10, the family of all g*- closed sets coincide with the family of all ggI - closed sets, since         

I  = {φ }. Since every g*- closed set is a closed set in every *
21T  -space, every g*- closed set is a closed set and so 

every ggI – closed set is a closed set. 
 
Theorem 2.12: Let (X, τ , Ι ) be an ideal topological space. If X is a 21

*T  -space, then for each x ∈ X; {x} is either 

closed or ggI - open. 
 
Proof: Suppose that (X, τ , I ) is a 21

*T  -space and x ∈ X.  If {x} is not a closed set, then X − {x} is not an open set. 

This implies that X − {x} is a g -closed set, since X is the only open set which contains X − {x}. Since X is a 21
*T -

space, X − {x} is a g*-closed set. Therefore, X − {x} is an ggI  -closed set by Theorem 2.7 or equivalently {x} is an   

ggI -open set. 
 
Theorem 2.13: Let (X, τ , I ) be an ideal topological space. Then either {x} is g- closed or {x}c is ggI - closed. 
 
Proof: Suppose that {x} is not g -closed. Then {x}c is not a g -open set and the only g -open set containing {x}c is X. 
Therefore, Xx g ⊂

*})({  and so {x}c is ggI  -closed. 
 
Theorem 2.14: Let (X, τ , I )  be an ideal topological space. Then the following are equivalent. 
(a) Every ggI  -closed set is *

gτ  -closed. 

(b) Every singleton subset of X is either g -closed or *
gτ  -open. 

 
Proof: 
(a) ⇒ (b): Let x ∈ X. If {x} is not g -closed, then by Theorem 2.13, {x}c is ggI  -closed and so *

gτ  -closed by 

hypothesis. Therefore, { }x  is *
gτ  -open. 

(b) ⇒ (a): Let A be an ggI  -closed set and x ∈ )(* Aclg . Then we have the following two cases. 
 
Case-1: Suppose that {x} is g -closed. By Lemma 1.1(c), )(* Aclg  −A contains no nonempty g -closed set. Therefore, X 

∉  )(* Aclg   − A which implies that x ∈ A. 
 
Case-2: Suppose that {x} is *

gτ  -open. Since x ∈ )(* Aclg , {x} ∩ A ≠ φ  Therefore, x ∈ A. Thus in both cases, x ∈ A 

and so )(* Aclg  = A which shows that A is *
gτ -closed. 
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Theorem 2.15: Let (X, τ , I ) be an ideal topological space and A ⊂ X. Then )(* Aclg  is a closed set. 
 
Proof: If x ∈ cl( )(* Aclg ) and U be an open set containing x such that U ∩ )(* Aclg  ≠ φ . Let y ∈ U ∩ )(* Aclg  for 

some y ∈ X. Since U ∈ )(ygτ  and y ∈ )(* Aclg , there exists a *
gτ  -open set V such that V ∩ A ≠ φ  Since U ∩ V is 

a *
gτ  -open neighbourhood of y,  (U ∩ V ) ∩ A  ≠ φ  which implies that x ∈ )(* Aclg . Therefore, )(* Aclg  is a closed 

set. 
 
Theorem 2.16: Let (X, τ , Ι ) be an ideal topological space and let U and A be subsets of X such that A ⊂ U ⊂ *

gA  

Then U ⊂ *
gU  , ** )( ggU  = *

gU  and ** )( ggA   = *
gA .  

 
Proof: Since A ⊂ U ⊂ *

gA  , *
gA  = *

gU  and so U ⊂ *
gU  . Since ** )( ggA ⊂

*
gA , A ⊂ *

gA  , implies that ** )( ggA   = *
gA  

and so ** )( ggU  = *
gU  . 

 
3. APPLICATIONS OF ggI  -CLOSED SETS 
 
If Y is a nonempty subset of an ideal topological space  (X, τ , I ), then (Y, Yτ , YΙ  ) is an ideal topological subspace of 

X where YΙ  = { I  ∩Y | I ∈ I } [4] is an ideal on Y, the restriction of  I  to Y and Yτ  = {U ∩ Y | U ∈τ } is the 
relative topology on Y. 
 
Lemma 3.1: [6, Lemma 6.6] Let (X, τ , Ι ) be an ideal topological space and A ⊂ X. Then *)( Aτ ( AΙ ) = A)(* Ιτ  . 
 
Lemma 3.2: [3] Let (X, τ , Ι ) be an ideal topological space and A ⊂ Y ⊂ X.  If Y is g -open in X, then 

),(*
gYYgA τΙ  = ),(*

ggA τΙ ∩ Y where gYτ  = gτ | Y. 
 
Proof: Let x ∉ ),(*

ggA τΙ ∩ Y. Then either X ∈ Y or x ∉  Y.  
 
Case-1: Suppose that x ∉Y. Since ),(*

gYYgA τΙ ∩Y ⊂ Y,  x∉ ),(*
gYYgA τΙ . 

 
Case-2: Suppose that x∈Y. Since x∉ ),(*

ggA τΙ , there exists a g -open set V in X containing X,  such that V ∩A ∈ Ι . 

Since x∈Y and Y is g –open in X,  Y ∩ V ∈ gτ  such that (Y ∩ V ) ∩ A ∈ Ι  and so (Y ∩V )∩A ∈ YΙ . Consequently, 

x ∉  ),(*
gYYgA τΙ . Hence ),(*

gYYgA τΙ ⊂ ),(*
ggA τΙ ∩Y. To prove the converse, consider x ∉  ),(*

gYYgA τΙ . Then 

for some g -open set V in (Y, Yτ  ) containing X, there exists U ∈ gτ  such that V = U ∩Y and so (U ∩ Y ) ∩ A ∈ YΙ . 

Since A ⊂ Y, U ∩ A ∈ YΙ  ⊂ Ι  gives U ∩ A ∈ Ι  for some g -open set U containing X. Therefore, x∉ ),(*
ggA τΙ . 

Therefore, ),(*
gYYgA τΙ  = ),(*

ggA τΙ ∩ Y. 
 
Theorem 3.3: Let (X, τ , Ι ) be an ideal topological space and A ⊂ Y ⊂ X. If A is an ggI  -closed set in (Y, Yτ , YΙ  ) 

and Y is g -open and *
gτ -closed in X, then A is an ggI  - closed set in X. 

 
Proof: Let A ⊂ U where U is g -open in X. Then U ∩ Y is g -open in Y. This implies that ),(*

gYYgA τΙ  = ),(*
ggA τΙ

∩Y by Lemma 3.2. Since Y is *
gτ  -closed in X, ),(*

ggA τΙ  ⊂ ),(*
ggY τΙ  ⊂ Y and so ),(*

gYYgA τΙ  = ),(*
ggA τΙ ∩ 

Y. Since A is ggI  -closed in Y and A ⊂ U ∩ Y, ),(*
ggA τΙ  = ),(*

gYYgA τΙ  ⊂U ∩ Y ⊂ U ∪ (X − ),(*
ggA τΙ ). 

Therefore, ),(*
ggA τΙ ⊂ U∪(X − ),(*

ggA τΙ ) which implies that ),(*
ggA τΙ ⊂U and so A is an ggI  -closed set in X. 
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Theorem 3.4: Let (X, τ , Ι ) be an ideal topological space and A ⊂Y ⊂ X. If A is ggI  -closed in X and Y is g -open in 

X, then A is ggI  -closed in (Y, Yτ , YΙ ). 
 
Proof: Let U be a g -open subset of (Y, Yτ , YΙ ) such that A⊂U. Since Y is g -open in X, U is g -open in X and so 

),(*
ggA τΙ ⊂U. By Lemma 3.2, ),(*

gYYgA τΙ  = ),(*
ggA τΙ ∩Y ⊂ U ∩ Y = U and hence ),(*

gYYgA τΙ Therefore, A 

is an Igg -closed set in (Y, Yτ , YΙ ). 
 
Corollary 3.5: Let (X, τ , I ) be an ideal topological space where Y is a g -open and *

gτ  -closed subset of X. Then A is 

ggI  -closed in (Y, Yτ , YΙ  ) if and only if A is ggI  -closed in X. 
 
Theorem 3.6: Let (Y, Yτ , YΙ  ) be a g -closed subspace of an ideal topological space (X, τ , I ) and U be ggI  - open in 

X.  Then U ∩ Y is ggI  -open in Y. 
 
Proof: Let F be a g -closed subset of (Y, Yτ , YΙ  ) such that F⊂U∩Y. Since U is ggI  -open in X, by [2, Theorem 2.4], 

F ⊂ )(int* Ug  and  F = F ∩Y ⊂ )(int* Ug ∩Y ⊂ *int gY (U∩Y ). Therefore, U∩Y  is ggI  -open in Y. 
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